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Abstract—In the present study, the 3D numerical analysis 

method is developed with Eigenfunction expansion method to 

evaluate the wave forces acting on the array of dual cylindrical 

cylinders with partial porous area, which consist of an 

impermeable inner cylinder and a porous outer cylinder. The 

wave forces and water wave interaction on dual cylindrical 

cylinders with partial porous area are presented for various 

porosity depths, and the comparison between the impermeable 

cylinder and the permeable cylinder is made to examine the 

effects of porosity. From these results, the present method is 

very useful to evaluate the wave force and water wave 

interaction acting on the array of dual cylindrical cylinders 

with partial porous area. 

 
Index Terms—Eigenfunction expansion method, dual 

cylindrical cylinder, partial porous area, water wave 

interaction, wave force. 

 

I. INTRODUCTION 

There is a large variety of offshore structures in ocean. An 

offshore structure is generally subjected to very different 

situations from a shore structure because it is subjected to 

severe environmental conditions such as wave forces, wind 

forces and current forces etc. To perform the reliable design 

of an offshore structure, it is very important to exactly 

evaluate the wave forces acting on the offshore structure.  

It is well recognized that the wave diffraction problem 

about a vertical circular cylinder carried out by MacCamy 

and Fuchs [1] is a typical problem with exact analytical 

solution in ocean engineering. As regarding shallow water 

wave diffraction around a vertical cylinder, Isaacson [2], [3] 

was among the pioneers to derive analytical solutions. Under 

the assumptions of potential flow and linear wave theory, a 

semi-analytical solution is obtained by an Eigenfunction 

expansion approach first proposed for impermeable cylinders 

(Spring and Monkmeyer [4]), and latter simplified by Linton 

and Evans [5] for N bottom-mounted circular cylinders. 

Kagemoto and Yue [6] have developed another solution that 

is formally exact within the context of the linear theory. In the 

case where the cylinder spacing is large relative to the 

incident wave length, approximate techniques may 

reasonably be used to quantify the hydrodynamic interactions 

between the members of multi-column structures. A popular 

approach, based on the wide-spacing assumption is the 

so-called modified plane-wave approach first developed by 

McIver and Evans [7], and later used in a number of 
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applications by McIver, Williams and Demirbilek [8], 

Williams and Abul-Azm [9], and Williams and Rangappa 

[10]. All of the above studies, however, assume that the 

cylinders are impermeable. 

In case of porous cylinders, the wave motions in the 

exterior and all interior fluid regions are expressed by 

Williams and Li [11], [12]. Wang and Ren [13] were the 

earliest to study the wave interaction with a concentric 

surface piercing porous outer cylinder protecting an 

impermeable inner cylinder. It was reported that the outer 

porous cylinder is significantly effective to reduce the 

hydrodynamic force and wave run-up on the inner cylinder 

compared to be exposed to direct wave impact. Wang and his 

research group (Wang et al. [14], Wang and Jiang [15], Jiang 

and Wang [16], Wan and Ren [17], [18]) carried out a 

systematic numerical analysis of solitary and cnoidal waves 

interacting with a vertical cylinder or cylinder arrays. 

In the present study, the 3D numerical analysis method is 

developed with Eigenfunction expansion method which is 

expressed by Williams and Li [12], and Wang and Len [13]. 

The analysis method could be applied for the wave force 

evaluation to the array of dual cylindrical cylinders with 

partial porous area, which consist of an impermeable inner 

cylinder and a porous outer cylinder. Firstly, the results 

obtained from the developed numerical method are compared 

with ones such as Linton and Evans [5], and Wang and Ren 

[13] to verify the developed numerical analysis method. 

Moreover, the wave forces and water wave interaction on 

dual cylindrical cylinders with partial porous area are 

presented for various porosity depths, and the comparison 

between the impermeable cylinder and the permeable 

cylinder is made to examine the effects of porosity. From 

these results, the present method is very useful to evaluate the 

wave force acting on the array of dual circular cylinders with 

partial porous area. Moreover the interaction effects between 

wave and cylinders are closely related to the diameter of 

cylinder and the spacing between cylinders. In other words, 

the porosity of cylinders is remarkably effective to reduce the 

interaction effects. 

 

II. FORMULATION 

It is assumed that the computational fluid domain is 

inviscid and incompressible, and its motion is irrotational. An 

arbitrary array of N dual cylindrical cylinders with partial 

porous area is situated in water of uniform depth d and the 

draughts of each permeable and impermeable area of dual 

cylindrical cylinders with partial porous area are h and c, 

respectively. The outer and the inner radius of the jth dual 

cylindrical cylinder are aj and bj, respectively. Also, the 
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global Cartesian coordinate system (x, y, z) is defined with an 

origin located on the sea bed with the z-axis directed 

vertically upwards. The center of each dual cylindrical 

cylinder at (xj, yj) is taken as the origin of a local polar 

coordinate system (rj, θj), where θj is measured 

counterclockwise from the positive x-axis. The center of the 

lth dual cylindrical cylinder has a polar coordinate (Rjl, αjl) 

relative to the jth dual cylindrical cylinder. The coordinate 

relationship between the jth and lth dual cylindrical cylinder 

is shown in Fig. 1. Moreover, the fluid domain is divided into 

two regions: region 1 which is interior to the dual cylindrical 

cylinder (bj≤rj≤aj, d-h≤z≤d) and region 2 which is exterior to 

the dual cylindrical cylinder and extends to infinity in the 

horizontal plane (rj≥aj, 0≤z≤d). 

 

 
Fig. 1. Coordinate system for an array of dual cylindrical cylinders with 

partial porous area. 

The array of dual cylindrical cylinders is subjected to a 

train of regular waves of height H and angular frequency ω 

propagating at an angle β to the positive x-axis. The velocity 

potential of the computational domain can be written as 

      , , , Re / 2 , ,
i t

x y z t igH x y z e


 


   
         (1) 

where Re[ ] denotes the real part of a complex velocity 

potential Φ, and g is the gravitational acceleration. 

As a governing equation, the Laplace equation is satisfied 

for the entire fluid domain of the present boundary value 

problem: 

2
0                                            (2) 

For solving the governing equation, the following 

boundary conditions for the free surface (Eq. (3)), bottom of 

region 1 (Eq. (4)), vertical wall of upper and lower area (Eq. 

(5)), flat rigid sea bottom (Eq. (6)), and the Sommerfeld 

radiation boundaries (Eq. (7)) can be given, respectively: 

2

0 on z d
z g

 



  


                            (3) 

0 ,  
j j

on z d h b r a
z


    


                (4) 

,  ( )
0

,  0 ( )

j

jj

on r b d h z d

on r a z d hr

    


   
              (5) 

0 0on z
z


 


                                     (6) 

   2 2
lim 0

in in
r

r ik
r

   



   



 
  

               (7) 

where k is the incident wave number related to the wave 

frequency through the dispersion relation 2
tanhgk kh  , and 

d is the water depth. 
2

  and 
in
  denote the total velocity 

potential in region 2 and the incident wave potential, 

respectively. 

The wave potential in the interior region(1) of the jth 

cylinder, which satisfies the appropriate free surface and 

structural boundary conditions, can be expressed by the 

following Eigenfunction expansion, 
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in which Jn and Yn denotes the Bessel function of the first and 

the second kind of order n, and 
nJ   and 

nY   are the first 

derivatives of the Bessel function, respectively. An
j is the 

unknown complex potential coefficient. A new wave number 

k0 is introduced, which satisfies the dispersion relation 
2

0 0tanhgk k h  , where h denote local water depth in the 

interior region 1. 

The incident wave potential in the jth local polar 

coordinate system can be expressed using Jacobi-Anger 

expansion of Bessel function as follows, 

   / 2cosh

cosh

jinj

in j n j

n

kz
T J kr e

kd
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
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where 
 cos sin

j j
ik x y

j
T e

 
  is a phase factor associated with the 

cylinder j from the global origin. 

The wave potential in the exterior region (2), which is 

expressed by using Graf’s addition theorem for the Bessel 

functions [19] and satisfies the Helmholtz equation, can be 

expressed by the following Eigenfunction expansion, 
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The right-hand side of Eq. (10) represents the incident 

wave upon the jth cylinder, the scattered wave produced by 

the jth cylinder, and the re-scattered wave generated by the 

adjacent cylinder l, respectively. Cn
j is the unknown complex 

potential coefficient. Hn is the Hankel function of the first 

kind of order n, and nH   is the first derivatives of the Hankel 

function, respectively. 

The fluid flow passing through the porous surface of dual 

cylindrical cylinder is assumed to obey Darcy’s law. 

Therefore it can be written as follows [12], 
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where μ is the coefficient of dynamic viscosity, γ is a material 

constant having the dimension of length and ρ is the fluid 

density, respectively. Subsequently, the porosity of the dual 

cylindrical cylinder will be characterized by the 

dimensionless parameter, G. The body boundary condition 

on the porous surface of dual cylindrical cylinder can be 

expressed with the G. 
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In addition to applying the body boundary conditions 

associated with the free surface conditions, the present 

boundary value problem must satisfy the matching conditions 

at the interface between the regions, which are given by 
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Substituting Eq. (8) and (10), and using the orthogonality 

of depth from z=d-h to d, the first matching condition 

between region 1 and 2 in Eq. (13) can be rewritten as, 
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Applying the orthogonal property to the second matching 

conditions in Eq. (13), with respect to z over the region of 

validity, the following equation can be obtained: 
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By applying Eq. (14) to Eq. (15), the key equation for 

unknown coefficients Cn
j can be obtained as follows, 
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In order to calculate the potential coefficients from the 

infinite system, Eq. (16) is truncated to (2M+1)N equations 

with (2M+1)N unknown values for j=1, 2,…, N and n=-M,…, 

M. 
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where, 
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By using a stand matrix technique, the equations on Cn
j can 

be solved and the unknown coefficients An
j may then be 

obtain from Eq. (14) by applying Cn
j. In this manner the 

velocity potential in each fluid region ( 1

j
 , 2

j
 ) can be 

determined.  

After solving the velocity potentials, the wave excitation 

forces on each dual cylindrical cylinder are obtained using 

the integration of pressure on the wetted surface of cylinder. 

Wave forces in x-direction (Fx) and in y-direction (Fy) are 

calculated as follows, 
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where Eq. (18) is for porous part and Eq. (19) is for 

impermeable portion of dual cylindrical cylinder. 

 

III. NUMERICAL RESULTS AND DISCUSSION 

Fig. 2 shows the comparison of numerical results between 

the present method and the Linton and Evans [5] to examine 

the wave force interaction acting on the array of impermeable 

cylindrical cylinders. The various parameters are a/d=1/2, 

S/d=2 and β=π/4. The cylinders are numbered clockwise 

from 1 to 4, and are situated at (-2a, 2a), (2a, 2a), (2a, -2a) and 

(-2a, -2a) respectively, so that the wave forces in the direction 

of wave advance on cylinders 1 and 3 are identical. It is 

understood that interaction effects can be significantly 

important in determining the amplitude of the wave forces. It 

is noted that the wave force by the present method gives the 

good agreement to the results from Linton and Evans. 

Therefore, the present method on wave force evaluation is 

remarkably useful to evaluate the wave forces acting on the 

array of impermeable cylindrical cylinders. 
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Fig. 2. Comparison of dimensional wave forces on four cylinders for a/d=1/2, 

S/d=2, β=π/4. 
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Fig. 3. Comparison of dimensionless wave forces on a dual cylindrical 

cylinder for b/a=1/2 and β=00: (a) Inner force, (b) Outer force. 

 

In order to verify the accuracy of the calculated wave 

forces on a dual cylindrical cylinder, which the outer cylinder 

is porous and the inner cylinder is impermeable, the present 

numerical results are compared with the numerical results of 

Wang and Ren [13]. It is indicated that the hydrodynamic 
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force on the inner cylinder can be effectively reduced by the 

existence of outer porous cylinder. Fig. 3 shows the 

comparison of wave forces on a dual cylindrical cylinder. 

The various parameters are b/a=0.5, G=1, 2, 5 and β=00, 

respectively. The abscissa denotes the dimensionless 

frequency, g/ω2d, and the vertical axis is the dimensionless 

wave force normalized with ρgadH and ρgbdH, respectively. 

The wave force on the inner cylinder is gradually increased 

and the wave force on outer cylinder is inversely decreased as 

the porosity parameter G increase. It means that the wave 

force on inner cylinder is increased by the wave infiltration 

which percolates in the inside as the porosity of outer 

cylinder increase. The wave force of inner cylinder has the 

peak value at wave frequency 0.5; on the other hand, the 

wave force of outer cylinder has the lowest value. It is 

indicated that the calculated wave forces are in good 

agreement with the results from Wang and Ren. Therefore, 

the present method is very available to evaluate the wave 

forces on the dual cylindrical structure. 

In order to examine the validity of the wave force on an 

array of four dual cylindrical cylinders, the comparisons are 

made with the numerical results of Sankarbabu [20]. Fig. 4 

shows the comparison of wave forces on the array of four 

dual cylindrical cylinders for various porosity depths (h/d) of 

outer cylinder. The calculation conditions are a=5.0m, 

b/a=0.5, d/a=5, G=1.0 and β=0.00. The dual cylindrical 

cylinders are numbered clockwise from 1 to 4, and situated at 

(-15.0, 15.0)m, (15.0, 15.0)m, (15.0, -15.0)m, and (-15.0, 

-15.0)m, respectively. The distance between cylinder centers 

(S) is 30.0m, which is 6 times of cylinder radius (S/a=6). In 

the comparison the ratio of h/d=0.0 indicates the full-body 

impermeable cylindrical cylinder, while h/d=1.0 represents 

the full-body porous cylindrical cylinder. The calculated 

outer and total forces are normalized by ρg(H/2)a2 and the 

inner forces are normalized by ρg(H/2)b2. Since the amount 

of incident wave passing through porous area is increased as 

the porosity depth increases, the inner force is increased. 

Although in the long wave region (ka≤0.55) the pattern of 

inner force is strongly influenced by the porosity depth, the 

pattern of both porosity depth 0.5 and 1.0 becomes very 

similar in the short wave region (ka≥0.55). The outer force is 

inversely decreased with increment of porosity depth 

compared to the case of inner force. The difference of outer 

force between the porosity depth 0.5 and 1.0 is also very 

small in the short wave region (ka≥0.55). It means that the 

dual cylindrical cylinder with porosity depth 0.5 is very 

efficient to reduce the effect of wave force in the short wave 

region like the case of full-body porous cylindrical cylinder. 

The comparison of total force between the dual cylindrical 

cylinder with partial porous area and the full-body 

impermeable cylindrical cylinder (h/d=0.0) is made in Fig. 

(c). The total forces of dual cylindrical cylinder with porosity 

depth 0.5 at the first and the second peaks (ka=0.19 and 

ka=0.86) decrease about 8.0% and 62.0%, respectively, 

compared to full-body impermeable cylindrical cylinder. 

Especially, the dual cylindrical cylinder with partial porous 

area is significantly effective to reduce the effect of wave 

forces in the short wave region. Moreover, the calculated 

wave forces are in good agreement with the results from 

Sankarbabu in the case of full-body porous cylindrical 

cylinder (h/d=1.0). 
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Fig. 4. Dimensionless wave forces on the array of four dual cylindrical 

cylinders with a=5.0m, b/a=0.5, S/a=6, d/a=5, G=1.0 and β=0⁰ for various 

porosity depths (h/d) of outer cylinder: (a) Inner force, (b) Outer force, (c) 

Total force. 

 

Fig. 5 shows the wave forces on the dual cylindrical 

cylinder with partial porous area (h/d=0.5) for various 

porosity ratios (G) of outer cylinder. Although the inner 

forces decrease as the porosity of outer cylinder increases, it 

has a very similar peak value for all cases. The outer force is 

significantly decreased as the porosity ratio increases and is 

close to zero when wave frequency is approximately 1.65, at 

which the first nontrivial zero of the derivative of the Bessel 

function 
nJ   exists. The peak frequency of outer force is 

decreased as the porosity increase. It means that the structural 

properties of the system have been changed due to porosity of 

the outer cylinder. The total forces on the dual cylindrical 

cylinders have very similar values when the wave frequency 

is larger than 1.5. It means that the dual cylindrical cylinder is 

remarkably efficient to reduce the wave forces in the short 
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wave region (ω≥1.5) regardless of porosity ratios. 
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Fig. 5. Wave forces on the dual cylindrical cylinder with a=5.0m, b/a=0.5, 

d/a=5, h/d=0.5 and β=0⁰ for various porosity (G): (a) Inner force, (b) Outer 

force, (c) Total force. 

 

Fig. 6 shows the comparison of wave run-up between the 

dual cylindrical cylinder and the full-body impermeable 

cylinder. Since the wave force has the peak value when the 

wave frequency is 0.7, the comparison is made at 

ω=0.7rad/sec. The wave run-up is normalized by incident 

wave height (H) and the abscissa denotes the angle (θ) 

measured counterclockwise from the positive x-axis. Since 

the incident wave energy is reduced when the incident waves 

pass through the porous area, the maximum outer run-up on 

the dual cylindrical cylinder is significantly lower than the 

full-body impermeable cylinder. The maximum value of 

outer run-up is occurred at the similar location, around the 

angle of 1800, where the incident wave propagates toward the 

cylinder. It is found that the dual cylindrical cylinder, when 

the porous-length ratio becomes a larger than 50.0% of whole 

draft (h/d=0.5), is remarkably effective to reduce the outer 

wave run-up like the case of full-body porous cylinder. 
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Fig. 6. Wave run-up(η/H) on the dual cylindrical cylinder with a=5.0m, 

b/a=0.5, d/a=5, G=6.0, β=0⁰ and ω=0.7 for various porosity depths (h/d) of 

outer cylinder: (a) Inner wave run-up, (b) Outer wave run-up. 

 

Fig. 7 shows the total force on four dual cylindrical 

cylinders with partial porous area for various distances (S) 

among cylinders. The magnitude of calculated force was 

modulated and several peaks were observed according to 

wave frequency. As the gap distance changed, the location of 

the modulated peaks also varied. It means that wave force 

interaction is strongly influenced by the relationship between 

the incident wave length and the distance among the dual 

cylindrical cylinders. Although the maximum peak point on 

inner cylinder presents at short wave region as the distance 

among the dual cylindrical cylinder increase, the maximum 

peak point on outer cylinder appears at long wave region. 
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Fig. 7. Dimensionless total wave forces on the array of four dual cylindrical 

cylinders with b/a=0.5, d/a=5, h/d=0.5, G=1.0, β=0⁰ for various distance (S/a) 

among the dual cylindrical cylinders. 

 

IV. CONCLUSION 

Under the assumption of potential flow and linear wave 

theory, the 3D numerical method for the array of dual 

cylindrical cylinders with partial porous area is developed 

using the Eigenfunction expansion method and Darcy’s law. 

For verification of this new method, the calculated results for 

an array of dual cylindrical cylinders are compared with the 

numerical results and are found to be in good agreement. It is 

suggested that the developed numerical method is very useful 

to evaluate the wave force acting on the array of dual 

cylinders with partial porous area, which consist of an 

impermeable inner cylinder and a porous outer cylinder. The 

water wave interaction due to the array of permeable or 

impermeable cylindrical cylinders is demonstrated to 

examine the effects of the various wave and structural 

parameters. The wave force caused by the interaction effects 

between wave and cylinders is significantly diminished as the 

porosity of the outer cylinder increases. It is suggested that 

the porosity of structure is very effective on the reduction of 

the wave force and wave run-up acting on the offshore 

structure. It is also found that a dual cylindrical cylinder with 

porosity depth (h/d) 0.5 effectively reduces the wave force 

like the full-body porous cylindrical cylinder. Moreover, the 

scattered waves from dual cylindrical cylinder with partial 

porous area rapidly diminish via damping as the waves pass 

through the porous regions. 
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