



Abstract—So far, security mechanisms for mobile devices

have had difficulties to protect from malicious threats due to the

limited resources of mobile devices. With the prevalence of

cloud computing, one of promising solutions to overcome the

difficulties is to exploit cloud environments, where a remote

virtual machine performs the resource-consuming security

analysis instead of a mobile device. However, existing

cloud-based solutions are still insufficient because of the code

coverage problem and security level degradation. Therefore,

this paper proposes a static and dynamic analysis based security

solution called SORcloud. For dynamic analysis, it offloads a

process of a suspicious application to a remote virtual machine

for dynamic security analysis, by which SORcloud resolves two

problems mentioned above. Through comprehensive

experiments, we show how efficiently the proposed scheme

works and detects malicious behavior.

Index Terms—Dynamic analysis, execution offloading,

malware, mobile cloud computing.

I. INTRODUCTION

The number of malware targeting mobile devices such as

smartphones or tablets is growing fast. Mobile devices

usually have several types of critical information: user’s

position, certificates including personal information which is

used for the financial transactions, private contacts, and a

gallery containing pictures and videos, and so on. This nature

of the mobile devices tempts malicious attackers to steal the

valuable information through malware attacks, which makes

it necessary to protect the mobile devices against the

information leakage.

Of course, the malware attacks are not new threats. The

malware on mobile devices are not quite different from those

of PCs (personal computer) such as desktops and laptops. In

order to protect from malware attacks, there have been

proposed a lot of solutions to detect the malware. However,

the legacy solutions are not suitable for mobile devices

because of the limited capacity and computing resources of

mobile devices.

One of alternative solutions to overcome the limitation of

mobile devices is to detect malware by using separate servers.

The basic concept is that separate powerful servers take on

the detection which requires a heavy workload on behalf of

mobile devices. Recently, with the prevalent use of the cloud

computing, Virtual Machines (VM) are widely used as the

separate servers. In this paper, therefore, every separate

Manuscript received September 14, 2015; revised November 25, 2015.

Donghyun Kwon, Ali Almokthar, and Yunheung Paek are with Seoul

National University, Korea (e-mail: ypaek@sor.snu.ac.kr).

Jungsoo Park, Seolah Je, Minho Park, and Souhwan Jung are with

Soongsil University, Korea (e-mail: {mhp, souhwanj}@ssu.ac.kr).

server is assumed to operate as the VM in the cloud. This

kind of solutions can be broadly classified into two different

approaches, sandbox-based and replay-based.

Firstly, the sandbox-based approach [1]-[6] literally uses a

VM as a sandbox1. In this approach, the required security

modules, e.g., a static malware detector or a dynamic

behavior analyzer, are installed into the VM, and a suspicious

program is executed and analyzed through the installed

security modules in the VM acting as a sandbox. Thus, this

approach can avoid the overload of mobile devices for

detection. Furthermore, the information can always be

protected even if the suspicious program fulfills its task since

the VM is not a real mobile device but just a sandbox.

However, it cannot be guaranteed that the behaviors of the

suspicious program are examined thoroughly, which is called

a Code Coverage Problem, since the inputs to the program,

e.g., typing numbers or pressing a volume button, are not

generated from a real user, but an emulator.

Secondly, in the replay-based approach [7], [8], all the

events that occur in the mobile device are replayed in the VM.

Similar to the sandbox, the required security modules are

installed into a VM, and they examine the behaviors of the

suspicious program. The main difference is that the inputs to

the application program are sent from the real user’s device in

real-time, and what the suspicious program does in the

mobile device are replayed in the VM. In other words, the

VM executes the suspicious program one more time with the

same inputs as the mobile device. Therefore, it does not have

the code coverage problem due to the use of the actual user’s

inputs. However, it needs the initial overhead to make the

same environment as the mobile device in the VM, and the

communication overhead to transmit user’s input to the VM.

The fatal shortcoming is that it cannot prevent the

information leakage since it is a post processing method. That

means even if malicious behaviors are detected in the VM,

the information has been already stolen from the mobile

device. To sum up, the sandbox-based approaches offer the

secure analysis environment which can prevent the

information leakage, but have the code coverage problem. On

the other hand, the replay-based approaches provide the

complete examination, but cannot guarantee the information

leakage prevention, which causes the degradation of security

level. So far, we have had to abandon one of code coverage

and security level because of the tradeoff between two

different approaches.

In this paper, we propose a new approach to overcome the

tradeoff, which is an offloading-based security solution for

mobile devices called SORcloud (Security ORiented cloud).

1Sandbox is a security mechanism for separating untrusted or suspicious

programs

An Effective Cloud Solution to Ensure the Integrity of

Mobile Application via Execution Offloading

Donghyun Kwon, Ali Almokthar, Jungsoo Park, Minho Park, Souhwan Jung, and Yunheung Paek

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

17DOI: 10.7763/IJET.2017.V9.938

SORcloud also installs the required security service modules

on a VM, executes a suspicious program in the VM, and

makes it analyzed through the security modules. It is

noteworthy that execution offloading 2 is introduced for

dynamic analysis for the behaviors of mobile devices.

The rest of this paper is organized as follows. In Section II,

we discuss related work. In Section III, we explain SORcloud

framework design and implementation. In Section IV, we

evaluate SORcloud. We conclude in Section V and finally in

Section VI, we discuss future work.

II. RELATED WORK

An android application sandbox system called AAsandbox

[1] is one of the early sandbox based approaches. An

application is executed in a fully isolated environment, where

low-level interactions like system calls are logged for

monitoring and analysis. The other sandbox based approach

is Appspalyground [2], which consists of detection

components and exploration mechanisms to analyze smart

phone applications. The automatic exploration mechanism is

used to allow more parts of the application to be executed,

which can increase the code coverage. Mobile-sandbox [3] is

a sand-box based hybrid system combining static and

dynamic analysis. It detects the malicious behaviors of an

application by logging calls to native (non-Java) APIs.

Andrubis [4] is also a hybrid system designed to analyze

unknown applications. It performs more efficient dynamic

analysis by using the results of the static analysis. Taintdroid

[5] is a dynamic taint tracking system which has the ability to

track multiple sources of sensitive data. It provides the real

time analysis by leveraging Android’s virtualized execution

environment. Droidbox [6] is based on the Taintdroid

approach. It provides an effective way for dynamic analysis,

and generates the reports for information leakage via network,

file and SMS. Furthermore, the analysis process could show

the cryptography operations which is being done in the

execution using Android API [9]. Secloud [7] is one of replay

based approaches. It replicates a device registered to a

designated cloud, and replays the replica in the cloud through

the synchronization of the device and the replica by passing

the device inputs and network connections. It allows the

server to perform a resource-intensive security analysis.

Another similar approach is Paranoid Android [8]. It

provides security checks on remote servers, and applies

multiple detection techniques simultaneously. The difference

between the two replay based approaches is that in paranoid

approach the tracing and replay process are done in the

application level and it has the advantage of removing the

non-deterministic inputs.

Sandbox and replay based approaches are similar to our

work, In sandbox approaches, the main difference is that

sandbox uses user data generated by emulator, however we

use user input’s state data generated by device which

increases code cover and makes it hard to malware detection

to speculate the type of environment they are running in. In

replay based approaches, instead of replicating all the data to

2 The execution offloading is a technique that gets some parts of a

program code run in remote cloud in order to avoid mobile device’s overhead

the VM and by the time replay based solutions detect the

suspicious behavior, the device would have already been

attacked, however SORcloud offloads the required data from

device to the VM using the specific data state, which

minimize the bandwidth and storage capacity, besides that

the device can’t fully execute the application until it has been

confirmed by security models in cloud that it’s out of any

suspicious activity.

III. SORCLOUD FRAMEWORK

A. System Overview

As a hybrid system, SORcloud provides both static and

dynamic analysis. While the static analysis is performed

when an application is installed into a device, the dynamic

analysis inspects the behaviors of the application at run-time.

According to the purpose, the seven modules of SORcloud

can be classified into three categories, security modules,

execution offloading modules and system modules. Static

Analyzer and Dynamic Analyzer are security modules, State

Manager, Offloader and Code Instrumentor are execution

offloading modules, and Installer and Packet Manager are

system modules. These modules, furthermore, can be divided

into two types according to when they work, install-time and

run-time modules. In this section, we briefly explain how

each module works at install-time and run-time.

Fig. 1. SORcloud overview. The dotted and solid lines present the flows of

static analysis and dynamic analysis, respectively.

When the user launches the application which was

instrumented at install-time, the runtime process of

SORcloud begins. This process is presented with the solid

line in Fig. 1. When the code inserted by Code Instrumentor

trigger the execution offloading during the application

execution, State Manager in the device captures the state of

the current application thread, and suspends the thread (1).

On receiving the state from State Manager (2), Offloader in

the device passes the state to Packet Manager in the cloud (3).

Packet Manager forwards the state to Offloader in VM where

the application was installed (4). State Manager inside VM

receives the state from Offloader, and restores the application

thread and resumes the execution (5). During the execution,

the dynamic analyzer monitors the behaviors, i.e., network

traffic, of the application thread (6). When the execution

offloading ends, State Manager in VM captures the state of

the current application thread and suspend it (7). If no

malicious behavior is detected during execution, the state is

sent back to Offloader in the device (8-10). Then State

Manager takes over this state (11), restores the application

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

18

thread, and resumes the execution (12). Whenever the

execution offloading occurs, this run-time process is

repeated.

B. Code Instrumentation

For the runtime execution offloading, it is needed to

determine which parts of the application code should be

offloaded in order to analyze dynamic behaviors of the

application at runtime. Code instrumentation is a process to

inject the code which indicates the offloading points for the

thread migration. An android application usually consists of

various call-back methods, which are invoked only when

designated events happen. Since some of the designated

events should be analyzed at runtime through offloading, the

offloading points generally correspond to call-back methods.

It is noteworthy that SORcloud does not have code coverage

problem like replay-based approaches because the call-back

methods corresponding real-time user inputs are executed in

cloud. For example, assume that a click event on a button

invokes a call-back method. If the call-back method is

executed in the cloud, we can monitor the behaviors of this

click event.

In SORcloud, we define target method which is a call-back

method to be monitored at runtime. There are two kinds of

target methods: User Interface call-back method and Activity

Life Cycle call-back method.

1) User Interface call-back methods : onClick(),

onLongClick(), onFucusChange(), onKey(), onTouch(),

onCreateContextMenu()

2) Activity Life Cycle call-back methods : onCreate(),

onStart(), onResume(), onPause(), onStop(),

onDestroy()

In code instrumentation part, two dummy –empty-

methods (doMigration() and doRemigration()) are declared

first. The dummy methods are inserted at the beginning and

end of the target method body, respectively. When

doMigration() method is invoked at the device, the execution

offloading starts. In the other way, when doRemigration()

method is invoked at the cloud, the execution offloading

ends.

However, there may be some code in the target method

body which cannot be offloaded. For example, UI related

API code, e.g., getting/setting user input data from/to a UI

component, and hardware related API code cannot be

executed in the cloud because these do not work correctly in

VM. Therefore, we define these methods as non-offloadable

API code which should be executed only in the device, not in

the cloud. If there are any non-offloadable API code in the

target method body, the code is executed in the device. Fig. 2

shows an example of Code Instrumentation.

C. Thread Migration

The proposed SORcloud exploits the execution offloading

to monitor runtime behaviors of an unknown application by

executing the application code in the cloud. More specifically,

we use execution offloading technique by implementing

thread migration. Offloading framework for thread migration

has been already suggested in several studies [10], [11], and

we use some modules of the existing frameworks. In this

subsection, it will be described what modules are being used

and how these modules work.

In Android framework, each android application runs on

an application virtual machine (VM)3. Once an application

VM is assigned, it allocates a thread to execute the

application code. The state of the thread, i.e., program

registers, call stack and heap objects, are changing while the

application code is being executed. For the thread migration

between a device and a server, these states should be

transferred between them. This state transfer is handled by

two modules, State Manager and Offloader. State Manager

captures and restores the state, and Offloader sends and

receives the state from a device to a server and vise verse.

State Manager exists for each application VM in both a

device and a server. When the code injected by Code

Instrumentor is executed, the interpreter of an application

VM signals to State Manager to capture the state of the thread

and to suspend execution of the thread. When State Manager

receives the state from Offloader, it restores and resumes the

suspended thread with the received state. Offloader

implemented as Android application sends and receives state

of a thread from and to state manager as well as transfers

them between a device and a cloud.

D. Security Analysis

For security analysis, SORcloud can adopt various security

modules. However, this work does not focus on security

modules, but on the offloading framework for security

analysis. In this work, therefore, we just use two types of

security modules, Source code analysis and Network security

modules. The source code analysis module, Static Analyzer

in this work, analyzes the source code before the offloading

and the network security module, Dynamic Analyzer, checks

3 In this work, we use Dalvik VM because Android 4.0.3 is used in our

experiment.

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

19

Fig. 2. Example of code instrumentation. The code written in bold are

injected ones by Code instrumentor. doMigration() and doRemigration()

methods are defined in (1). These methods are inserted in the target method to

apply execution offloading (2) and to guarantee non-offloadable API code

executed in the device (3). Through this, it is determined that which codes are

executed in either device (4) or cloud (5).

if the information leakage happens through the network.

As a source code analysis module, the Virustotal website

tool [12] is used. This tool examines android applications and

URLs with 54 different virus-scanning software products.

Static Analyzer automatically sends an APK file that a user

clicked on his/her device to the tool through the public APIs.

Untangle [13] is used as Dynamic Analyzer in order to

prevent the information leakage by malicious application. It

is an open source solution that combines the GUI web-based

network management and control for network security. In

this work, Dynamic Analyzer is configured to block the

traffic outgoing to specific websites. It monitors traffic

generated by the running application and reports filtering

results.

IV. EVALUATION

A. Experimental Setup

In this work, we have built the prototype of SORcloud. We

used Galaxy Nexus with dual-core 1.2 GHz CPU and 1 GB of

RAM as a mobile device. For the cloud, a quad-core desktop

with a 3.4GHz CPU and 32 GB of RAM running CentOS 6.5

is used. And using KVM, 2GHz core and 8GB of memory are

allocated to each VM in the cloud. Packet Manager is

implemented on Software Defined Network (SDN) controller.

A mobile device and VMs use the same Android 4.0.3

version. State Manager is implemented by modifying Dalvik

VM. Installer and Offloader are implemented as an android

application. Code Instrumentor is implemented by using

dex2jar [14].

B. Experimental Results

Efficiency of dynamic analysis. The first concern is the

networking traffic caused by transferring the state for

execution offloading because the application execution may

be delayed due to data exchange time. To show that

SORcloud incurs the reasonable amount of traffic, we

measure the traffic caused when a user executes an

application remotely through Remote Desktop Protocol

(RDP) [15]. The RDP provides the user with a graphical user

interface to connect to a remote VM actually running the

application over a network connection. The execution

offloading traffic and the RDP traffic are compared for three

real world android applications: TinyURL, mOTP and

DroidWeight.

Fig. 3 shows the average sizes of the transferred data while

the applications are being executed with the same user

scenario. In the cases of TinyURL and mOTP, SORcloud

incurs less network traffic than the RDP solution. However,

when DroidWeight is running, SORcloud incurs more data

traffic. These results can be explained as follows. In

SORcloud, there is no data transfer when a part of the

application code is not offloaded. However, the more

frequent offloading causes more network traffic. In the RDP

solution, upload data for the user inputs and download data

for the screen display are transferred continuously, even in

the idle state. Although the amount of network traffic varies

according to the type of application, we can say SORcloud is

comparable with the RDP. That means SORcloud is

sufficient to execute applications in real time.

Fig. 3. Run-time data transfer overhead.

Security enhancement. Since many recent approaches

use a mobile device emulator for dynamic analysis to detect

malware, malware developers devise techniques to evade the

malware detection. One of popular techniques is to stop a

malware working in an emulator. Therefore, malware

developers exploit some APIs to check the running

environment [16], [17].

Fig. 4. Sample Java code of emulator detection.

Although SORcloud also relies on a VM-based emulator

in the cloud, malware have no way to figure out their running

environments since the hardware related API code is

executed only in the mobile device.

Fig. 4 shows a simple example code for emulation

detection. The code at line 5 is to get name of device, and the

code at line 7-14 is the actual behavior based on the name of

device. According to the execution environment, the

behavior of this code would be different. If this code is

executed in an emulator, we cannot detect the malicious code

since nothing happens. On the other hand, in SORcloud, the

mobile device name is obtained since the hardware related

code at line 5 is executed in the mobile device. And the states

of thread including the object for a device name are migrated

to the cloud. Therefore, even if the code at line 7-14 is

executed in the emulator, we can detect the malicious

behavior as if this code is running in the real mobile device.

V. CONCLUSION

In this paper, we proposed SORcloud which is a cloud

based solution for detecting mobile android malware

statically and dynamically. The execution offloading

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

20

technique is introduced to monitor the runtime behavior of

applications. SORcloud overcomes limitations of the existing

approaches, code coverage problem and security degradation.

It is shown that SORcloud can detect efficiently malicious

behaviors of unknown applications at runtime.

VI. FUTURE WORK

Since SORcloud is an extensible cloud based framework,

it can easily add or remove security modules. Therefore, it

will be the first step to add more security modules such as

System Call Monitor and Taint Analyzer to monitor various

dynamic behaviors.

SORcloud does not examine the non-offloadable APIs in

order to hinder malwares from figuring out the running

environment. However, since it may be asked if the

non-offloadable APIs are safe, a mechanism to monitor the

behaviors of them needs to be considered.

ACKNOWLEDGMENT

This research was supported by the MSIP (Ministry of

Science, ICT and Future Planning), Korea, under the ITRC

(Information Technology Research Center) support program

(IITP-2015-H8501-15-1008) supervised by the IITP

(Institute for Information & communications Technology

Promotion), the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MSIP) (No.

2014R1A2A1A10051792), IDEC, the Brain Korea 21 Plus

Project in 2015 and Inter-University Semiconductor

Research Center (ISRC).

REFERENCES

[1] T. Blasing, L. Batyuk, A. -D. Schmidt, S. A. Camtepe, and S. Albayrak,

“An android application sandbox system for suspicious software

detection,” in Proc. the 2010 5th International Conference on

Malicious and Unwanted Software (MALWARE), pp. 55-62, 2010.

[2] V. Rastogi, Y. Chen, and W. Enck, “appsplayground: Automatic

security analysis of smartphone applications,” in Proc. the Third ACM

Conference on Data and Application Security and Privacy, pp.

209-220, ACM, 2013.

[3] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,

“Mobile-sandbox: Having a deeper look into android applications,” in

Proc. the 28th Annual ACM Symposium on Applied Computing, pp.

1808-1815, ACM, 2013.

[4] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,

V. V. D. Veen, and C. Platzer, “Andrubis: Android malware under the

magnifying glass,” Vienna University of Technology, Tech. Rep.

TRISECLAB-0414-001, 2014.

[5] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. -G. Chun, L. P. Cox, J.

Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow

tracking system for realtime privacy monitoring on smartphones,”

ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, 2014.

[6] P. Lantz, A. Desnos, and K. Yang, Droidbox: Android Application

Sandbox, 2012.

[7] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders,

“Secloud: A cloud-based comprehensive and lightweight security

solution for smartphones,” Computers & Security, vol. 37, pp. 215-227,

2013.

[8] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid

android: Versatile protection for smartphones,” in Proc. the 26th

Annual Computer Security Applications Conference, pp. 347-356.

ACM, 2010.

[9] Droidbox  Android Application Sandbox. [Online]. Available:

https://github.com/pjlantz/droidbox.

[10] B. -G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:

elastic execution between mobile device and cloud,” in Proc. the Sixth

Conference on Computer Systems, pp. 301-314, ACM, 2011.

[11] S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, and Y. Paek,

“Fast dynamic execution offloading for efficient mobile cloud

computing,” in Proc. 2013 IEEE International Conference on

Pervasive Computing and Communications (PerCom), pp. 20-28,

2013.

[12] Virustotal. [Online]. Available:

http://en.wikipedia.org/wiki/VirusTotal.

[13] Web filter lite. [Online]. Available:

http://wiki.untangle.com/index.php/Web_Filter_Lite.

[14] Tools to work with android .dex and java .class files. [Online].

Available: https://code.google.com/p/dex2jar/

[15] Spice. [Online]. Available: http://www.spice-space.org/

[16] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system

emulators,” in Proc. of 10th International Conference on Information

Security, pp. 1-18, Springer, 2007.

[17] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders,

“Secloud: A cloud-based comprehensive and lightweight security

solution for smartphones,” Computers & Security, vol. 37, pp. 215-227,

2013.

Dong-Hyun Kwon received the BSc degree in

electrical and computing engineering from the Seoul

National University, Korea in 2012. He is currently

working towards the PhD degree in electrical and

computing engineering from the Seoul National

University, Korea. His research interests include

mobile cloud computing and mobile system security.

Ali Almokhtar received the BSc degree in

information technology from Multimedia

University, Malaysia in 2009. He received his MSc

degree from Seoul National University, Korea in

2015 and is currently working towards the PhD

degree in electrical and computer engineering from

the Seoul National University, Korea. His research

interests include mobile cloud computing and big

data.

Jung-Soo Park received the B.S and M.S. degrees

in electronics engineering from Soongsil

University in 2013 and 2015, respectively. He is

currently studying for Ph.D. course in electronics

engineering from Soongsil University. His research

interests include cloud security, mobile security,

and identity and access Management system.

Min-Ho Park received the BS and MS degrees in

electronics engineering from Korea University in

2000 and 2002, respectively. He received the PhD

degree in the School of Electrical Engineering and

Computer Science from Seoul National University,

Seoul, Korea, in 2010. He is an assistant professor

in School of Electronic Engineering, Soongsil

University, Seoul, Korea. He was at Samsung

Electronics from 2002 to 2004. As a postdoctoral

researcher, he was at Carnegie Mellon University for two years since

2011.

Before the postdoctoral researcher at CMU, he was a senior engineer

for 3GPP LTE S/W Development Group of Samsung Electronics. His

current research interests include wireless networks, vehicular

communication networks, network security, and cloud computing.

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

21

Souhwan Jung received the B.S and M.S. degrees in

electronics engineering from Seoul National

University in 1985 and 1987, respectively, and the

Ph.D. degree from the University of Washington,

Seattle, USA in 1996. From 1996 to 1997 he was a

senior software engineer at Stellar One Corporation,

Bellevue, USA. In 1997, he joined the School of

Electronic Engineering at Soongsil University, Seoul,

Korea, and currently serves as a professor. He is an

executive director of the Korea Institute of Information Security and

Cryptology. He was also a R&D program director of Ministry of Knowledge

Economy in Korea for information security area from 2009 to 2011. His

research area includes wireless network security, cloud security, mobile

security, identity and access management system, and IoT security.

Yun-Heung Paek received the BSc and MSc degrees

in computer engineering from the Seoul National

University, Korea in 1988 and 1990, respectively. He

received his PhD degree in computer science from

University of Illinois at Urbana-Champaign in 1997.

Currently he is a professor at the Department of

Electrical and Computing Engineering, Seoul National

University, Korea. His research interests include

mobile cloud computing, embedded security systems and re-targetable

compiler

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

22

