
Abstract—To improve Winkler foundation model that 

ignores the shear effect of the layered soil, the second soil 

elastic parameter is introduced to take into account the shear 

deformation of soil. An initial parameter method is developed 

to solve the dynamic differential equation of lateral vibration 

for a pile which is embedded in a layered Pasternak 

foundation. By means of the transfer matrix method, the 

relationship of the lateral displacement, rotation angle, 

bending moment and shear force between the pile head and 

pile tip is investigated. Based on the boundary conditions as 

well as the continuity conditions, the accuracy of the 

theoretical derivation and the calculation program of the 

natural frequency has been verified through an engineering 

example. The method in this paper gives much better results in 

contrast to the energy method and equivalent depth method. 

The analysis also demonstrates that the role of soil shear 

makes the dynamic stiffness of a pile increase when compared 

with one in the Winkler foundation model. 

 
Index Terms—Bridge pier, natural frequency, pasternak 

foundation, soil-foundation dynamic interaction. 

 

I. INTRODUCTION 

The natural frequency reflects the inherent vibration 

characteristics of the structure. At the same time, the 

soil-structure interaction (SSI) under impact or seismic 

excitations is a key issue in the dynamic problems of pile 

foundation. Therefore attention has been paid to the natural 

frequency of a pile considering pile-soil dynamic 

interaction. Various Models, such as the continuum model 

[1], the Winkler model [2], [3] and the finite element model 

[4], [5]
 

have been presented to study the dynamic 

interaction problems. The continuum model only applies to 

the homogeneous foundation model, on the other hand, the 

numerical model cannot be extended to large practical 

projects because of high cost. The Winkler foundation has 

experienced widespread applications in which the pressure 

at that point is only related to the deflection at that point, in 

addition to the clear physical concept and simple 

calculation. In contrast to the three-dimensional analysis 

results, Kagawa [6]
 
established the coefficients of the 

pile-soil model. Some domestic scholars compared this 

model in consideration of the shear effect [7] of a pile and 

layered soil [8]
 
with the finite element results. However, 

based on a series of independent springs and dashpots, the 

Winkler model ignores the shear behavior of soil, that is to 

say, it cannot describe the continuous deformation of a 

practical foundation, which is not theoretically rigorous. 
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Combing spring-dampers with the incompressible pure 

shear element that only result in vertical shear deformation, 

the Pasternak foundation model introducing a second 

foundation parameter improves the previous model, namely, 

it overcomes the limitation of the Winkler model. Jue Wang 

[9]
 
made vibration impedance analysis on a pile considering 

soil shear effect in layered foundation which indicated it 

was necessary to make use of two-parameter foundation 

model. In addition, the vibration of pile foundation is that of 

infinite number of degrees of freedom system. Considering 

the complexity of pile-soil interaction, the primary circular 

frequency of a pile simplified to the cantilever structure is 

solved by the equivalent depth method [10] which 

presented a simplified analytical formulation. Weifeng Sun 

[10]
 
adopted the energy method [11] to simplify the layered 

foundation into soil springs with equivalent stiffness 

coefficient as well as obtained the results compared with the 

energy method and the measured data. In this paper, a study 

is focused on vibration of a pile in the two-parameter 

foundation. The method of initial parameter and transfer 

matrix are developed to acquire the differential equation of 

lateral vibration of a pile. According to the boundary 

condition and continuous condition, the accuracy of the 

natural frequency formula is verified by an engineering 

example. 

II. FORMULATIONS 

A. Vibration of the Pile below the Ground 

To better understand the behavior of dynamic interaction 

of the bridge pier in Pasternak foundation model, lateral 

vibration model of the pile below the ground is shown in 

Fig.1. The Euler-Bernoulli beam theory is used to describe 

the vibration of a pile. When the piers are impacted, the 

displacement and deformation will be transmitted to the 

superstructure through the bearings while the deformation 

of the superstructure will also restrain the piers 

correspondingly. In such a case, springs with compressive 

rigidity and rotational stiffness can be used to represent the 

lateral restraint to the piers. The pile below the ground is 

divided into N segments along its shaft according to the 

specific distribution of the stratum. Each segment with 

more or less uniform mechanical property is taken into 

account as a system composed of an incompressible shear 

layer, which is connected through infinitely close linear 

springs and dashpots. 
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The dynamic equation of the jth segment, without 

consideration of the damping effect, can be expressed as  
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Fig. 1.

 

Lateral vibration model of the pile below the ground in Pasternak 

foundation. 

               where 
b ( , )ju z t  is the transverse deflection of the jth 

segment and 
b bA  is the mass per unit length along the 

single pile; 
b bE I  is the flexural stiffness of the pile. 

xjg

 

and 
xjk  are the shear stiffness and the compressive 

stiffness of the jth layer, respectively. 
G xj xjg k   is 

defined as the ratio of the elastic foundation parameters in 

the Pasternak model, whose algebraic expressions have 

been developed in [2]. During the steady-state harmonic 

vibration, the deflection of a pile can be expressed as 

b b( , ) ( )j

i t

ju z t U z e  , where 1i   ,   is the frequency 

of the excitation. In such a case, equation (1) becomes 
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 where j  and j  are defined by G b bj j xjH k E I 

 
and

24
b b b bj j xjH A k E I    , respectively. The general 

solution for (2), which exists four characteristic roots, is 

obtained by 
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in which 
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jA , jB , jC , jD are undetermined coefficients which are 

determined by the boundary condition between the head of 

the pile below the ground and the tip of the pile above the 

ground. 

According to the deflection curve differential equation of 

the beam, rotation angle b ( )j z , bending moment b ( )jM z  

and shear force b ( )jP z  of the pile are 
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According to the initial parameter method, we define a 

local coordinate system for jth segment to represent the 

internal forces and deflections at the top of the segment as 
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Thus, the four unknown coefficients can be acquired 

from (3)-(7) as follows: 
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The relationship of deflections and internal forces 

between the top and the head at the jth segment by 

substituting (8) into (3)-(6) can be written in a matrix form, 

as shown below 
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where the expression of each element in matrix bjT  is 

given in Appendix. 

Based on the continuity condition at the interface of the 

adjacent segments, we can obtain the relationship of the 
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deflections and internal forces between the head and the tip 

of a pile by means of the transfer matrix method, which is 

recommended as 
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where 
bb 1b 1N N T T T T  is called the lumped transfer 

matrix. 

B. Vibration of the Pile above the Ground 

When the compressive stiffness in the (1) is zero, the 

dynamic equation of the ith segment of the pile above the 

ground can be derived as 
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where 
u ( , )iu z t  is the transverse deflection of the ith 

segment and 
u ui iA  is the mass per unit length along the 

pile; 
u ui iE I  is the flexural stiffness of the pile. Lateral 

vibration model of the pile above the ground is shown in 

Fig.2. 

 

 

Fig. 2. Lateral vibration model of the pile above the ground in Pasternak 
foundation. 

Referring to the solution of the dynamic equation of the 

jth segment as well as the transfer matrix of the pile below 

the ground, we can establish the transfer matrix 
uiT  of the 

ith segment above the ground correspondingly, where 

u u u ui i i i i ih A E I    and the expression of each element 

in matrix uiT  are given in Appendix. 

 

III. CONTINUITY CONDITIONS 

According to the continuity condition at the interface of 

the pile above the ground and that below the ground, 

equation (12) can be expressed as 

 

u1 b1

u1 b1

u1 b1

u1 b1

(0) (0)

(0) (0)
.

(0) (0)

(0) (0)

U U

P P

M M

 








 

             (12) 

 

where 
b1U ,

b1 ,
b1P ,

b1M  are amplitude of lateral 

displacement, rotation angle, shear force and bending 

moment of the first segment of the pile above the ground. 

Applying the dynamic equation of the ith segment on 

(3)-(6), equation (13) is 
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in which, 
u1 1uE I  is the flexural stiffness of a pile above the 

ground in the first segment. 
ia ,

ib ,
ic ,

id  are undetermined 

coefficients which are determined by the boundary 

condition. 

 

IV. BOUNDARY CONDITIONS 

Selecting the segments of the first and second line in the 

transfer matrix of (10), the following matrix equation is 

recurrently obtained as 
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   (14)                      

By applying the boundary condition at the pile tip 

{ b ( ) 0U L  ,
b ( ) 0L  } to (14), the force-displacement 

relationship at the pile head below the ground can be 

acquired 
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Combined with (7), the unknown coefficients can be 

obtained 
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Taking the restraint of the superstructure to the pier into 

consideration, the boundary conditions of the pile head 

above the ground can be derived as 
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in which, 
unu ,

un ,
unP ,

unM  are lateral displacement, 

rotation angle, shear force and bending moment of the 

segment n of the pile above the ground. During the 

steady-state harmonic vibration, we have combined with the 

transfer matrix above the ground. Equation (18) can be 

written as 
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t T . Equation 
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parameter solution of the pile above the ground 
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V. FREQUENCY EQUATION 

Equation (13), equation (16) and equation (19) can be 

written in the form of 0BC  (20), in which 

1 1 1 1 1 1 1 1[ ]Ta b c d A B C DC . The expression of each 

element in matrix B  is given in Appendix in detail. To 

make (20) have nonzero solutions, that is to say, 

1 1 1 1 1 1 1 1 0a b c d A B C D 、 、 、 、 、 、 、 , the determinant of 

matrix B  must be zero, then the frequency equation about 

  can be acquired finally. 

 

VI. EXAMPLE VALIDATION 

The first order natural frequency of No.6 test pile of 

Qingdao Bay Bridge was obtained with the energy method 

in [10]. In this paper, we choose this engineering example 

to verify the accuracy of the theoretical deduction. 

Geological conditions of No.6 test pile is shown in Table I. 

 
TABLE I: GEOLOGICAL CONDITIONS OF NO.6 TEST PILE. 

Layer 

Number 

Bottom 

Elevation 

Layer 

Thickness 

Geotechnical 

Classification 

Bearing 

Capacity 

Friction 

Resistance 

1 -10.54 5.62 Silt Clay 70 20 

2 -15.92 5.38 Clay 270 55 

3 -18.32 2.4 Coarse Sand 350 70 

4 -20.22 1.9 Clay 200 50 

5 -33.82 13.6 Gravel Sand 500 100 

6 -37.52 3.7 

Strongly 

Weathered 

Mudstone 

400 80 

7 -66.12 28.6 

Weakly 

Weathered 

Mudstone 

550 110 

 

In ABAQUS analysis, we use Unit C3D8R to simulate 

the bridge pier and linear Drucker Prager plasticity model 

for each soil layer setting the shear hardening parameters, 

as well as tangential friction coefficients at the interface of 

adjacent layers, regardless of those at pile-soil interface. We 

employ far-place boundaries to improve the accuracy when 

simulating the soil boundary, whose diameter is taken as 10 

times that of the bridge pier. Fig. 3 gives modal analysis 

results of No.6 test pile in Pasternak foundation.  

 

 
Fig. 3. Modal analysis results of No.6 test pile in Pasternak foundation. 

 

The numerical results of MATLAB program are 

developed to obtain the first order natural frequency of a 

pile embedded in the Pasternak foundation model in 

contrast to the theoretical result, which is given in Table II. 

TABLE II: ANALYSIS OF FUNDAMENTAL NATURAL FREQUENCY OF NO.6 

TEST PILE 

  
Measured 

Value 
Abaqus Matlab 

Energy 

Method 

Equivalent Depth 

Method 

Frequency 2.000  2.031  2.593  2.670  4.030  

Error - 1.55% 29.65% 33.50% 101.50% 

 

It can be seen from the above analysis that the method 

proposed in this article is more accurate than the equivalent 

method [10] and energy method [11], namely, as a theory 

model, the Pasternak model is more reasonable than the 

Winkler model due to overcoming the defect of ignoring 

shear capacity of layered soils. In Winkler model, 

foundation parameter ratio G  is taken as zero, while the 

actual value is in the range of 0-1. For the Pasternak model 

in the current analysis, the value of G  is assumed to be 1. 

It can be seen from Fig. 4 that stiffness coefficient in the 

Pasternak model which takes the shear effect into 

consideration is significantly larger than that in the Winkler 

model. Therefore, it is more accurate to obtain the natural 

frequency of a pile in the two-parameter foundation model. 
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Fig. 4. Comparison of the stiffness coefficient of a pile in Pasternak 

foundation. 

 

VII. CONCLUTION 

In the present analysis, the natural frequency of a pile 

embedded in the two-parameter (Pasternak) foundation 

model has been investigated in the framework of the 

Euler-Bernoulli beam theory. A pile is divided into n N  

segments along its shaft with the transfer matrix employed 

to deal with the layered characteristics of the soil media. 

The correctness of the theoretical derivation has been 

proved through a comparative study. The Winkler model is 

less reasonable than the Pasternak model because it ignores 

the shear stiffness of the soil layer. Throughout the 

comparison to the equivalent method, the energy method 

and the engineering example, the Pasternak model is more 

accurate in terms of the natural frequency. The numerical 

results indicate that the dynamic stiffness coefficient in the 

two-parameter model composed of infinitely close linear 

springs and dashpots, which is connected with 

incompressible shear layers is obviously larger than that in 

the single-parameter (Winkler) model. 

 

APPENDIX 

The elements in matrix B : 

 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b











B







 
 
 
 
 
 
 

 

in which, 

1 1 11 21

11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28

1 1 1 1

2 2 2 2

1 1 11 21

31 u1 u1 32 33 u1 u1 34 35 b b 36 37 b b2 2 2 2

1 1 1 1
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   

   

                   

        
3

1
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1
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1 11 21 1 1 1 1

44 u1 u1 45 46 b b 47 48 b b 51 11 u1 u1 13 52 12 u1 u1 14 53 11 u1 u1 133 3 3 2 3 2
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3
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54 12 u1 u1 3

1 1
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
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 

   

             
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2 3 2

1 1 1 1
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11 1 1

3

1 1
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  
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H
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
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3
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The elements in matrix uiT : 

3 2

3 2

u u u u

2
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u u
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The elements in matrix b jT : 
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