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Abstract—The objective of this study is two-fold. The first is 

to define the significant risk factors pertinent to the corrosion 

and excavation failures in the natural gas pipeline industry and 

subsequently check for reliability of the data in hand. The 

second is to propose a statistical model to predict the odds of 

survival of the pipeline for the next ten years. The data for the 

proposed statistical model was obtained from the U.S. 

Department of Transportation-Pipeline & Hazardous 

Materials Safety Administration (PHMSA) database of 

pipeline failure over the past 25 years. A statistical model to 

predict probability of pipeline failure in the forthcoming 

decade was developed by processing the data through the JMP 

software to get the significant parameters contributing to 

failure. The proposed model predicts that the chance of 

survival of the pipe, according to the data evaluated, decreases 

gradually with age for the initial 40 years of the pipeline life 

and remains within acceptable limits till its nominal expected 

life.  Between years 40 and 60, the survival rate is almost 

constant and just about at the threshold level, if one assumes a 

threshold of about 50% survival odds for the forthcoming ten 

years. The interesting take away from the trend observed is the 

increase in survival odds beyond the age of 60. The possible 

reasons contributing to this trend and a detailed analysis of the 

results based on the proposed model are discussed in the paper. 

 
Index Terms—Pipeline failure, corrosion, excavation, 

multivariate regression model. 

 

I. INTRODUCTION 

Pipelines are a reliable and economic option for the gas 

industry to transport energy. Oil-gas industry has been 

seeking a solution picture of the frequencies and probability 

of incidents. Because of this reason, U.S. Department of 

Transportation-Pipeline & Hazardous Materials Safety 

Administration (PHMSA) has started to gather incidents 

data from all pipeline operators. PHMSA’s data provides 

reliable source that is used to help pipeline operators to 
establish failure rates and causes of failures in the gas 

transmission pipeline systems since 1986 [1,] [2]. In the 
database, there are three different categories namely, natural 

gas transmission system, natural gas distribution system, and 

natural gas gathering system. 

In this study, the natural gas transmission pipelines  data 

since 1986 has been analyzed. The U.S. Congress signed 

into law, the Pipeline Safety Improvement Act (PSIA) in 

2002. With this law, natural gas transmission operators have 

had new responsibilities to develop and implement an 

 
 

    

 

 

  

Integrity Management Program (IMP), so the PHMSA 

database has been a valuable and reliable source of 

information for oil-gas industry since 2002 [3]. The database 

provides useful information about trends which have 

developed over the years. The PHMSA database covers only 

significant incident data that lead to an unintentional gas 

release. Also, the database has both design parameters 

(pressure, diameter of pipe, depth of cover) and some 

incidents parameters (coordinate of incident, incident cause, 

and total property damage).   

The objective of this paper is two-fold. First, is to define 

the significant risk factors pertinent to the corrosion and 

excavation failures in the natural gas pipeline industry and 

subsequently check for reliability of the data in hand. The 

second objective is to propose a statistical model to predict 

the odds of survival of the pipeline for the next ten years.  

 

 
Fig. 1. Detailed representation of failure distribution of Pipelines. 

 

II. OVERVIEW OF THE PHMSA PIPELINE DATA 

PHMSA provides three different time periods for all 

pipeline incidents which are 1986-2001, 2002-2009, and 

2010-present. There are 2625 incidents since 1986 on 

natural gas transmission pipeline system. Data from all three 

time periods was used for analysis. A detailed representation 

of failure distribution of pipelines is presented in Fig. 1. 

There are 34 different causes reported for failure of 

pipelines over the 25-year period such as heavy rains/floods, 

external corrosion, and equipment not installed properly etc. 

Overall, corrosion (internal and external) is responsible for 

24.3% of failures and third party damage/excavation 

damage is responsible for 25.5% of failure. Therefore, 49.9% 

of the total failure incidents reported has happened because 

of these two causes [4]. These are the two causes that have 

been considered for this study and it is reasonable to assume 

that the sample set would give a good representation of the 

entire data set. Also, 92.1% of the pipeline is made by steel, 

and we have considered just steel pipeline for our analysis. 
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Fig. 2 shows that as of 2011 the total interstate and 

intrastate transmission pipeline length was around 305,000 

miles. According to the 2013 PHMSA annual report, 30% of 

all intrastate pipelines were located in Texas, followed by 

California (11%) and Oklahoma (6%).  

 

 
Fig. 2. Distribution of total Pipeline transmission length by year. 

 
Fig. 3. Distribution of Pipeline incidents by year. 

 
Fig. 4. Cumulative Representation of Pipeline Incidents over the 25-year 

analysis period. 

 

III. CONTENTS OF DATABASE  

As described in the previous section, we have considered 

corrosion failure and third party damage. In the original 

PHMSA database, there are more than 100 columns of 

information to describe each incident [2], [5]. For statistical 

analysis, we should not need all the columns and hence 

many parameters which were thought to be irrelevant to this 

study were eliminated. We considered the following 

parameters for preliminary brainstorming the statistical 

model:  

 Type of Material (Steel Pipeline) 

 Incident Year 

 Installation Year 

 Depth of Cover  

 Pipe Diameter 

 Pipe Wall Thickness 

 Incident Pressure 

Fig. 3 and Fig. 4 display the yearly and cumulative 

occurrences of pipeline incidents over the 25-year analysis 

period, respectively. Even though significant number 

incidents have been taking place, pipeline incidents 

involving death or injury to people dropped by more than 

half over the past two decades due to the gradually 

improving safety performance [6]. 

Out of a total of 2625 incidents recorded between the 

years 1986-2012 by PHMSA, there is an increasing trend for 

corrosion failure (Fig. 5) and a decreasing trend for third 

party damage (Fig. 6). Our opinion is those operators have 

been aware of cause of third party damage, so they have 

taken precautions for it. For example, they mark the line 

direction and they give free meeting for people in the region 

who live close the line. Also, they offer free calling system 

for emergency situation. Because of these precautions, there 

is decreasing trend.  

 

Fig. 5. Year-wise distribution of Pipeline incidents due to corrosion. 

 
Fig. 6. Year-wise Distribution of Pipeline Incidents due to External 

Interference.   
 

IV. SAMPLING PROTOCOL 

The extensive data provided by the U.S. Department of 

Transportation-Pipeline & Hazardous Materials Safety 

Administration (PHMSA), on 2625 significant pipeline 

incidents was carefully prioritized based on engineering 

judgment of the cause-effect relationship between the 

parameters in consideration and also through some logical 

assumptions to achieve the desired sample set data for 

analysis. 

The final filtered sample set consisted of a combined 612 

pipeline incidents between the years 1986 to 2012 divided in 

three periods as 1986-2001, 2002-2009 and 2010-2012 [5]. 

Another critical factor to be noted is the role of missing data 

in the process of sampling. This factor will be discussed in 

the next section of this paper. 

The first step in filtering the data was based on the reason 
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for failure of the pipelines. Based on the report published by 

a European Gas Pipeline Incident Data Group (EGIG) on the 

study of pipeline failures, the two most common and 

significant reasons of pipeline failure, namely corrosion 

(internal and external) and excavation damage were 

considered for this study [7]. These two causes accounted 

for nearly 50% of the accidents occurring in the pipeline 

industry and hence it was deemed reasonable to omit the 

other caused for the purpose of this study [8]. 

Next, the data was filtered based on the type of material 

involved in the incident. Since failure due to corrosion is 

one of the two major factors in analysis and based on a 

reasonable assumption that excavation damage would be 

independent of the type of material involved, only steel 

pipes were considered as they would be most vulnerable to 

corrosion. In this process, incidents reported resulting from 

aluminum and carbon pipes were ignored [9], [10]. 

The two steps discussed thus far were the only filter 

implemented based on logical inferences to reduce the 

original data set. The rest of the elimination process was due 

to missing data, accounting for close to 20% of the data with 

certain exceptions which will be discussed. 

The other important phase of sampling was to decide the 

set of independent variables to be considered for the 

statistical model. This was done on the basis of two reasons. 

The first was to eliminate the parameters with no useful 

information about the failure of pipelines and the second 

was filtering the parameters that could have been useful and 

relevant but conveyed incomplete and unclear information 

through the data presented. The first category included 

variables like area of incident, pipeline facility type, 

function of the pipeline, seam type, release type, leak type 

etc. which were deemed inappropriate to this study. 

The second basis is quite an unfortunate loss since 

parameters such as cost and pressure data had to be ignored. 

In the case of cost data, it is unclear whether the number 

presented in millions of dollars is a result of cost spent on 

repairing the pipeline or if it was the cost incurred due to 

damage of the pipeline with variables such as cost involved 

in compensation of property and lives of people, thereby 

making it an unusable but critical variable. The pressure 

data provided also had similar ambiguities with several 

unanswered questions regarding whether the pressure 

reported was the maximum recommended pressure for the 

pipeline or if it was the pressure at the time of failure, 

thereby making it unfit to use. 

The final independent variables considered for the model 

were the ‘depth of cover’ provided for the pipelines, the 

characteristic wall thickness and diameter of the pipes 

merged into a single component named the ‘critical surface’, 

and the ‘age’ of the pipelines calculated based on the year of 

installation.  

 

V. DEALING WITH MISSING DATA 

A common problem that arises with a large data set is 

missing data. There are many reasons for this. Different 

pipeline operators have different ways of collecting and 

reporting data and in the process, while most of the essential 

and critical parameters would be considered, some 

variations in reporting methodology is bound to exist. Also, 

in some cases a record could be lost or unavailable 

pertaining to several variables at the incident site. However, 

it is extremely important to deal with missing data the right 

way in order to arrive at sensible conclusions. 

While elimination is one of the options and the most ideal 

one, it is impractical to eliminate all the data points with 

missing components, for it would result in loss of valuable 

data that can contribute and impact the final conclusions and 

could also leave very little data to analyze which becomes 

insignificant and could result in high degree of inaccuracy 

and uncertainty. 

In the pipeline data set, for example, nearly 2200 of the 

2600 odd incidents had at least one component missing and 

eliminating all of the 2200 would leave us with only 400 

incidents to further filter and reduce to the meaningful 

sample desired. Hence, a need arises to develop a proper 

basis to deal with the missing data to be able to use it in 

statistical modeling. 

A two-step process was adopted to fix the problem of 

missing data. First, the data points with more than one 

missing component were completely deleted, as previously 

mentioned, accounting for nearly 20% of the 2625 incidents 

reports. Once this was done and the data set was narrowed 

based on cause of failure and type of material involved, the 

remaining points were carefully screened for missing data. 

The period-wise mean of the available data points of the 

respective independent variables was then substituted in 

place of the missing data. The data points were checked for 

reasonable correlation with neighboring data points after 

implementing this approach and were found to correlate 

satisfactorily. 

 

VI. MULTIVARIATE STATISTICAL MODEL 

A.  Purpose of the Model 

The proposed statistical model is intended to predict the 

probability of survival of the pipeline given its 

characteristics, namely age, diameter, wall thickness, and 

depth of cover. The survival analysis and predicting the 

odds of failure/survival is based on the number of incidents 

reported in the 612 data point sample set, during each 10-

year increment phase of the pipeline life cycle, i.e. the 

number of pipeline incidents during the years 0-10, 11-20, 

21-30… and so on till the span covering the maximum life 

reported. 

B.   Model Description 

The multivariate model has three independent variables, 

namely age of the pipe in years, critical surface of the pipe 

in in.2 and the depth of cover, in inches. While age and 

depth of cover are direct input parameters, the critical 

surface component is a term that is calculated with the 

diameter and wall thickness of the pipes. The critical surface 

is so defined to get a more meaningful term that contributes 

to the failure of the pipeline, in specific failure due to 

corrosion. Exposure surface is an alternate term that can be 

used to better understand the idea behind the critical surface 

definition. The critical surface would account for the 

exposed surface of the pipeline to internal and external 

corrosion [11]. 
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The pipelines, assumed to be circular in cross-section 

would have a critical surface defined in Eq. (1) 

 2 (  )Critical Surface Diameter Wall Thickness   (1) 

The dependent parameter in the model, which is the 

probability of survival of the pipeline over the next ten years, 

is expressed in percentage and calculated by counting the 

frequency of incidents per decade increment of pipeline age. 

This would however result in a case where pipelines within 

a 10-year age interval would have the same probability to 

fail based on age and the particular survival odds would 

depend only on the other characteristics of the pipeline. To 

account for this, the failure rate parameter is weighted with 

respect to the maximum pipeline age in the data set. 

The set of independent variables and the dependent 

variable are fed into the statistical analysis software ‘JMP’ 

to screen the parameters [12]. JMP runs a variety of 

combinations of independent parameters and presents the 

combinations that are expected to have the most significant 

impact on the dependent variable in question, the failure 

frequency. 

The set of significant combinations are then used to make 

a multivariate model to predict the survival probability of 

the pipelines. The general form of the model is in Eq. (2). 

 1 2(%) 100 ...
 

n

Probability Age
A BX CX NX

of  Survival Maximum Age

  
       

  

 
(2) 

  

where: X1, X2, Xn = combinations of the independent 

variables (age, depth of cover and critical surface) that are 

significant as reported by JMP; A, B, …N = corresponding 

coefficients generated upon running the regression. The 

maximum age of the pipeline in the sample set is 84 years. 

 

VII. DATA ANALYSIS METHODOLOGY 

A. JMP Software 

JMP software is used to perform simple and complex 

statistical analyses. It connects statistics with graphics to 

interactively explore, understand and visualize data. For 

example, this feature allows tracking any point in a graph 

and its corresponding data. It provides a comprehensive set 

of statistical tools and statistical quality control techniques 

in a single package. Therefore, JMP has been chosen in this 

particular study to analyze and illustrate the data. Data 

analysis process is explained in the next section. 

B. Data Processing in JMP  

Step-wise Procedure to perform Data Analysis in JMP: 

 Go to JMP software and open a New Data Table. 

 Place your data into the table as each column represents 

a set of data and then name each of columns 

accordingly. In this project columns are named as 

“Age”, “Depth of Cover”, “Exposer Surface” and” 

Incident”. 

 Next, go to Analyze tab and select Modeling and then 

select Screening. The screening is shown in Fig. 7. 

 A new small window will open, cast select “Y” and “X” 

columns into roles. The columns of Age, Depth of 

Cover and Exposer Surface are selected as “X” 

parameters, and Incident is selected as single “Y” 

parameter.  

 Click on the OK button to start running the analysis. A 

screening window is shown in Fig. 8. 

 
Fig. 7. Path used to perform screening in JMP. 

 

 
Fig. 8. Snapshot of JMP Screening input. 

 

 
Fig. 9. Snapshot of JMP Screening output. 

 

The purpose of the screening is that analysis will search 

to determine significant weight of each parameter. Also, the 

analysis matches the parameters with different combination 

and significant combinations will be determined and 

screened. In the result window, parameters are shown as 

histograms in which the darker pink colored parameters are 

more significant than lighter colors. This analysis helps to 

eliminate some of the insignificant parameters. 

Initially, the analysis process starts with a multi-variable 

parameter as mentioned earlier, and based on the analysis 

results, the lesser significant parameters have been 

eliminated and the subsequent analysis has been performed 

with higher significant parameters. Thus this process will be 

iterated with the significant parameters again thereby more 

than repeated analyze may be required for more accuracy.  

A set of screening results which are color coded to mark 

significant variables are shown in Fig. 9. 

Once the screening analysis gives a significant correlation, 
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those parameters are utilized for modeling. The next phase 

is to determine a best representative mathematical model 

and correlation based on the selected parameters. Modeling 

tool is utilized for this purpose which is under analysis tab 

and select a “Fit Model”. Once it is selected a new window 

will open. Fit model path is shown in Fig. 10. 

 

 
Fig. 10. Snapshot of JMP ‘Fit model’. 

 

Pick the role of the selected parameters as “Y” and select 

the construct model effects as “X” parameters.  Modeling 

type can be selected from drop down menu and then model 

will start by clicking on Run button.  Fit model window is 

show in Fig. 11. 

The analysis results will be shown in a new window as 

plotted graph along with a summary of fitting data including 

R
2
, mean, error, and coefficient of parameters. 

 

 
Fig. 11. Fit model window along with added X and Y parameters. 

 

VIII. MODEL DERIVATION 

A relation for the Failure index and subsequently the 

Probability of Survival was established from the JMP results, 

giving birth to our statistical model. The model includes 

independently, age pipeline cover and critical surface and 

combinations of exposure surface and depth of cover, all of 

which are parameters used in the model because they have 

significant contribution effect on the   failure prediction [1], 

[2]. 

Mathematical form of the derived model is given in Eq. 3 

and Eq. 4; 

 
 

 

2

2
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(3) 

 FProbabilty of Survival= (100- I ) ageA M     (4)
 

where IF= Failure Index; A= Age of pipe line as year; Es= 

Exposure surface of pipe include inside and outside surface 

(in); Dc= Depth of cover (in.); and Mage= Maximum survival 

age. A summary of the statistical analysis results of the 

model are tabulated in Table I. 

TABLE I: SUMMARY OF FIT MODEL 

R-Square 0.7385 

R-Square Adj. 0.7346 

Root Mean Square Error 17.77 

Mean of Response 86.225 

Observations 612 

 

IX. CORRELATION PLOTS 

Fig. 12 shows the effect of ageing on the probability of 

survival of the pipelines. This representation of the survival 

analysis with the model follows an inverse ‘bathtub’ 

relationship which has been validated by a shape factor β of 

greater than 1.0 upon applying the Weibull distribution to 

the data set in consideration supporting the theory that the 

new product performs better than the used version [13], [14]. 

This result is debatable since there is expected to be some 

wear-in at the time of installation of the pipelines due to the 

conditions, compatibility issues and various other factors. 

However, the results in the present study point to an 

idealistic case where the pipeline has been designed taking 

into consideration all uncertainties and variability making 

the newly designed pipeline least susceptible to failure. The 

other scientific reason supporting the trend is the fact that 

corrosion/ chloride ingress takes significant time to 

penetrate the ground and affect the pipe, thereby resulting in 

gradual decline in survival rates as observed [15], [16]. 

 

 
Fig. 12. Correlation graph representing the relationship between age and 

probability of survival. 

TABLE II: PARAMETRIC ANALYSIS PERFORMED ON THE MODEL 

Variable 

Value 
% Probability of Survival for next 10 

years 

Age (years) 

5 97.1 

20 78.3 
35 56.4 

65 68.3 

Depth of Cover (in.) 

20 74.1 

35 78.3 
60 81.1 

Critical surface (in.) 

50 80.3 

80 78.3 
100 75.7 

 

X. DISCUSSION OF THE RESULTS:PARAMETRIC ANALYSIS 

The results of the parametric study on the model are 
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presented in Table II shown below. It is to be noted that the 

baseline values for the variables are set at Age of 20 years, 

Depth of cover of 35 inches and a Critical surface of 80 

inches. All the variation in each of the variables is 

performed with the other independent variables set at the 

baseline values.  

 

XI. CONCLUSIONS 

Corrosion has been identified in previous studies as the 

most common cause of pipeline incidents and often leads to 

openings (pinholes and cracks) resulting in leaks and in 

more severe cases, rupture of the pipeline. The monetary 

loss incurred as a result of the damage is significant. 

The high contribution of external interference emphasizes 

its importance to the pipeline operators and authorities. 

External interference operations are characterized by 

potentially severe consequences. 

It is obvious from the trend that depth of cover is an 

important consideration in the design of pipelines and the 

odds of survival of the pipeline significantly increases with 

more depth of cover. This can be attributed to the fact that 

with a greater depth of cover, the chance of external 

interference is expected to be lesser as a result of difficulty 

to access. 

The physical characteristics of the pipeline, namely the 

diameter and the wall thickness of the pipelines are partially 

dependent on each other and have a role to play in 

predicting failure. In general, it is expected that smaller 

diameter pipelines are more likely to be affected by third 

party damage since they can be easily hooked up during 

ground works compared to larger and bigger pipelines. Also 

the fact that smaller diameter pipes are associated with 

smaller wall thickness makes them less resistant to failure. 

As a corollary, wall thickness can be said to be an 

extremely effective protective measure against external 

interference. The failure point of a thinner pipeline is 

reached more quickly. Corrosion in thicker pipelines takes 

longer before resulting in an incident and therefore there is 

more time to detect and resolve the issue. 

Hence, the exposure or the critical surface, which is a 

function of the diameter and wall thickness of the pipeline, 

obviously plays a role in the failure of the pipe. It can be 

observed from the parametric study that with greater 

exposure, the pipeline is more prone to failure. This trend is 

along expected lines since greater the length of pipeline 

exposed to environmental changes (moisture, temperature), 

greater is the susceptibility to corrode. 

On the whole, it can be concluded that major failures like 

leaks and ruptures are more likely to occur in pipelines with 

smaller diameters, a small depth of cover and less wall 

thickness. 

It can be observed from the proposed model that the 

chance of survival of the pipe, according to the data 

evaluated, decreases gradually with age for the initial 40 

years of the pipeline life and remains within acceptable 

limits till its nominal expected life.  Between years 40 and 

60, the survival rate is almost constant and just about at the 

threshold level, if one assumes a threshold of about 50% 

survival odds for the forthcoming ten years. The interesting 

take away from the trend observed is the increase in survival 

odds beyond the age of 60. This leads us to believe that the 

pipeline, once past its expected life of about 50 years, the 

operators inspect the pipe and perform the required 

maintenance on the pipeline or dig out and replace the 

pipeline depending on the condition of the pipe and also the 

availability of funds. 

The age at which the survival rate reaches a constant and 

no longer decreases with time can be said to be the nominal 

expected age of the pipeline. This age is about 40 years for 

the data set analyzed. It is hence recommended that beyond 

the age of 40, inspection/monitoring of the pipeline is 

required and maintenance or replacement of the pipe is 

needed depending on the desired threshold set. 

The prediction of the survival analysis with the model 

follows an inverse ‘bathtub’ relationship which has been 

validated by a shape factor β of greater than 1.0 upon 

applying the Weibull distribution to the data set in 

consideration supporting the theory that the new product 

performs better than the used version. This result is 

debatable since there is expected to be some wear-in at the 

time of installation of the pipelines due to the conditions, 

compatibility issues and various other factors. However, the 

results in the present study point to an idealistic case where 

the pipeline has been designed taking into consideration all 

uncertainties and variability making the newly designed 

pipeline least susceptible to failure. The other scientific 

reason supporting the trend is the fact that corrosion/ 

chloride ingress takes significant time to penetrate the 

ground and affect the pipe, thereby resulting in gradual 

decline in survival rates as observed. 

 

XII. RECOMMENDATIONS 

For a more comprehensive understanding of failure of 

pipelines due to corrosion, data regarding the temperature, 

humidity and other site conditions and also the type of 

coating, if any involved need to be considered. 

Incorporating these factors into the model is expected to 

improve predictions. 

Several protective measures have been taken by pipeline 

operators to try and prevent corrosion. These measures 

include cathode protections and the use of protective 

coatings. Inline inspections and pipeline surveys also help 

detecting corrosion at an early age. 

Improvements in the prevention of external interference 

incidents calls for more stringent enforcements of land use 

planning, the application of one-call systems for the digging 

activities of external parties by the adoption of appropriate 

actions by the gas companies like supervision or marking 

the pipeline in the direct neighborhood of the pipeline 

digging activity. 

The proposed model does not have the capacity to predict 

the time when the necessity of maintenance needs to be 

initiated and it is left for the user to decide this based on the 

desired minimum probability of survival for the next ten 

years. 

More information regarding the nature and extent of 

damage due to corrosion and other external intrusions and 

also about the site conditions is needed for a better 

prediction of failure. 

The model can be improved and have a much more 
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meaningful representation with incorporating the above said 

factors. Another critical variable that has been ignored due 

to lack of availability of sufficient information is the 

cost/budget required to maintain or replace the pipes. This 

factor is expected to have a significant bearing on the 

decision making process 
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