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Abstract—When taking into account the quantum effects, a 

black hole can emit the so-called Hawking radiation. This 

Hawking radiation propagates in a curved spacetime due to the 

presence of a black hole. In this paper, the Myers-Perry black 

hole is considered, which is an uncharged, rotating black hole 

occurring in higher dimensions. Scalar Hawking radiation 

emitted from the Myers-Perry black hole is studied. The 

rigorous bounds on the greybody factors for massless scalar 

field of negative-angular-momentum modes are also derived. 

 
Index Terms—Greybody factor, hawking radiation, 

myers-perry black hole, rigorous bound. 

 

I. INTRODUCTION 

The existence of black holes has been predicted by 

Einstein's general theory of relativity. The first solutions of 

the Einstein's field equation were discovered by Karl 

Schwarzschild. His solutions predicted the presence of 

Schwarzschild black holes, which are the uncharged, 

non-rotating black holes. The second type of black hole was 

obtained by solving the Einstein's field equation in 

conjunction with Maxwell's equation. This was done by Hans 

Reissner and Gunnar Nordstrom . Their solutions represented 

the Reissner- Nordstrom  black holes, which are the charged, 

non-rotating black holes. The third set of solutions of the 

Einstein's field equation was discovered by Roy Kerr [1]. His 

solutions described the Kerr black holes, which are the 

uncharged, rotating black holes. The Kerr solutions were 

generalized to higher dimensions by Myers and Perry [2], [3]. 

Their results led to the prediction of Myers-Perry black holes, 

which are the uncharged, rotating black holes in higher 

dimensions. 

When studying the quantum effects of black holes, 

Stephen Hawking showed that black holes can emit thermal 

radiation which became known as Hawking radiation [4]. 

The curvature of spacetime due to the presence of a black 

hole acts as the gravitational potential barrier. The scattering 

of Hawking radiation from this potential can be viewed as 
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one-dimensional scattering problem in quantum mechanics. 

The term ‘greybody factor’ can be defined as the 

transmission probability. 

In this paper, the rigorous bounds on the greybody factors 

for massless scalar field of negative-angular-momentum 

modes emitted from a Myers-Perry black hole will be 

derived. 

 

II. MYERS-PERRY SPACETIME 

The Myers-Perry spacetime can be described by the metric 

[2], [3], [5] 
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Here 2
nd  is the metric on the unit n-sphere nS  which is 

given by 
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The solutions of ( ) 0r   provide the location of the 

black hole event horizons. In this paper, we focus on 

massless scalar field emitted from the Myers-Perry black hole. 

The equation of motion of this scalar field can be described 

by the Klein-Gordon equation 
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This Klein-Gordon equation governs how the scalar field 

  propagates in the Myers-Perry background. We use the 

separation of variables in this form 
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where ( ) im
mS e   are the spheroidal harmonics and 

1( , , )jn nY    are the hyper-spherical harmonics. The 

spheroidal harmonics satisfy 
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while the hyper-spherical harmonics satisfy 
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where  nS
 is the Laplacian. Then, the radial Teukolsky 

equation is obtained [6]-[8] 
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where the tortoise coordinate 
*r  is defined by 
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The relationship between the tortoise coordinate and the 

ordinary coordinate is plotted as shown in Fig. 1. 

 
Fig. 1. Tortoise coordinate as a function of ordinary coordinate. 

 

 

Here the Teukolsky potential ( )j mU r  is given by [5] 
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This Teukolsky potential can be expressed in another form 

as 
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The potential ( )j mV r  is plotted as shown in Fig. 2 for five 

and six dimensions which correspond to n = 1 and n = 2, 

respectively. 

 
 

Fig. 2. The potential ( )j mV r  for n = 1 and n = 2. 

 

III. RIGOROUS BOUNDS ON GREYBODY FACTORS 

We can model the scattering of the massless scalar field 

from the Teukolsky potential as one-dimensional scattering 

problem in quantum mechanics. The term ‘greybody factor’ 

in black hole systems can be defined as the ‘transmission 

probability’. In general situations, finding exact greybody 

factors is difficult due to complicated potentials. Therefore, 

in this paper, some rigorous bounds will be placed on 

greybody factors. These bounds were first developed in [9]. 

Their further developments can be found in [10]-[13] and 

their applications can be found in [14]-[19]. For the radial 

Teukolsky equation in (9), the rigorous bounds on the 

greybody factors are given by 
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for any positive functions 
*( )h r . In this paper, we choose 

 

*( ) ( ) ( )h r h r m r    ,                    (16) 
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where m < 0. In this case, we obtain 
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and rH is the event horizon radius Since    Hm  

( )h r , we have an inequality 
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Using (14), we can write 
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Using (10), we can change the variable 
*r  to r 
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The above equation can be simplified to 
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Here the hypergeometric function 2F1(a, b, c, z) is defined 

by 
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The bounds on the greybody factors are plotted as shown 

in Fig. 3. 

 

 
 

Fig. 3. The bounds on the greybody factors for n = 1 and n = 2. 

 

In the limit 0a  and  0n j , the quantity 
0j mI  

reduces to 
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which is the result for the Schwarzschild black hole [14]. 

 

IV. CONCLUSION 

In this paper, the rigorous bounds on the greybody factors 

for massless scalar field of negative-angular-momentum 

modes emitted from the Myers-Perry black hole have been 

established. To obtain these bounds, the appropriate function 

h(r*) has been chosen. The number of dimensions of 

spacetime, the angular momentum of the black holes, and the 

mass of the black hole have been determined to have effects 

on these bounds. Note that for n = 0, these bounds reduce to 

bounds for Kerr black holes. For outlook, we can choose 

other forms of h(r*) in order to derive better bounds. 
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