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Abstract—To reduce the overall time of structural 

optimization for earthquake loads two strategies are adopted. 

In the first strategy, a neural system consisting self-organizing 

map and radial basis function neural networks, is utilized to 

predict the time history responses. In this case, the input space 

is classified by employing a self-organizing map neural 

network. Then a distinct RBF neural network is trained in 

each class. In the second strategy, an improved genetic 

algorithm is employed to find the optimum design. A 72-bar 

space truss is designed for optimal weight using exact and 

approximate analysis for the El Centro (S-E 1940) earthquake 

loading. The numerical results demonstrate the computational 

advantages and effectiveness of the proposed method.   

 

Index Terms—Optimization, genetic algorithm, earthquake, 

neural networks, self-organizing map, radial basis function.  

 

I. INTRODUCTION 

Optimum design of structures is usually achieved by 

selecting the design variables such that an objective function 

is minimised while all of the design constraints are satisfied. 

Structural optimization requires that the structural analysis 

to be performed many times for the specified external loads. 

This makes the optimal design process inefficient, especially 

when a time history analysis is considered. This difficulty 

will be resonated when the employed optimization method 

has the stochastic nature such as evolutionary algorithms.  

In the recent years, traditional and evolutionary search 

techniques were employed to optimal design of structures 

subjected to response spectrum and earthquake loadings. 

Salajegheh and Heidari [1] incorporated neural network 

techniques in the optimization process to predict structural 

time history responses. They employed wavelet back 

propagation neural network. In the recent years, neural 

networks are broadly utilized in civil and structural 

engineering applications.  

In this investigation, in order to eliminate the drawback, 

the dynamic responses of the structures have been 

approximated using a self-organizing neural system.  

S. Gholizadeh and E. Salajegheh introduced an intelligent 

neural system (INS) for efficient approximation of time 

history structural responses in Ref. [2]. In INS, the input and 

target spaces are divided into some subspaces as the data 

located in each subspace have similar properties. These 

properties are taken as significant natural periods of the 

structures. Classification of input space is achieved by using 

competitive neural networks. Then a distinct radial basis 

function (RBF) neural network is trained for each subspace 

 
Manuscript received October 30, 2014; revised February 27, 2015.  

Alireza Lavaei and Alireza Lohrasbi are with Department of Civil 

engineering, College of engineering, Boroujerd Branch, Islamic Azad 

University, Iran (e-mail: Shetab@gmail.com, Ar_lohrasbi@yahoo.com). 

using its assigned training data. Also, the authors 

incorporated the INS in the optimization process in Ref. [3]. 

The numerical results showed great computational 

efficiency with a main limitation of difficulties for 

determining the number of data clusters. 

In the present study, self-organizing map (SOM) neural 

networks are used to classification of the input space. The 

numerical examples show that by using SOM neural 

networks the mentioned limitation of determining data 

clusters is completely vanished. The SOM is a neural 

network algorithm developed by Kohonen [4] that forms a 

two dimensional presentation from multi dimensional data. 

The SOM neural networks learn to classify input vectors 

according to how they are grouped in the input space. They 

differ from competitive neural networks in that 

neighbouring neurons in the SOM learn to recognize 

neighbouring sections of the input space. Thus, SOM learn 

both the distribution (as do competitive layers) and topology 

of the input vectors they are trained on.  

The main aim of this paper is to improve the INS by 

substituting the competitive network with self-organizing 

map neural networks. The resulted neural system is called 

self-organizing neural system (SONS). Therefore, SONS 

consists of an intelligent classifying unit and a set of parallel 

RBF neural networks which are locally trained on the input 

space. Illustrative example shows the computational 

advantages of SONS comparing with single RBF neural 

network. 

In the computer implementation phase of SONS, the input 

space includes natural periods of the structures and target 

space consists of corresponding responses of selected node 

displacements and element stresses against the specified 

earthquakes.  

To provide training data and to design the neural 

networks ANSYS [5] and MATLAB [6] are utilized. 

The employed evolutionary algorithm is virtual sub 

population (VSP) method [7].  

In the present work, a 72-bar space truss structure 

subjected to the El Centro (S-E 1940) earthquake is 

designed for optimal weight. The numerical results of 

optimization show that incorporating of SONS in the 

framework of VSP creates a powerful tool for optimum 

design of structures against the earthquake by spending low 

computational efforts. 

 

II. FORMULATION OF OPTIMIZATION  

In sizing optimization problems the aim is usually to 

minimize the weight of the structure, under some constraints 

on stresses and displacements. Due to the practical demands 

the cross-sections are selected from the sections available in 
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the profile lists. Therefore, the design variables are discrete.  

A discrete structural optimization problem can be 

formulated in the following form that Minimize f(Z) Subject 

to: 

│S│≤│Sa│                               (2) 

where S is the maximum stress in each element group for all 

loading cases and Sa is the allowable stress.  

Similarly, the displacement constraints can be written as 

│U│≤│Ua│                              (3) 

where Ua is the limiting value of the displacement at a 

certain node. 

When the structure is subjected to the dynamic excitation, 

the constraints must be treated as the time functions:  

1,2, ,i m                 ( , ) 0ig Z t               (4) 

 

III. STRUCTURAL TIME HISTORY ANALYSIS 

The dynamic analysis considered here is the time history 

method. The procedure involves a step-by-step solution 

through a time domain to yield the dynamic response of a 

structure to a given earthquake. The equations of 

equilibrium for a finite element system subjected to the 

earthquake may be written in the usual form: 

 ( ) ( ) ( ) ( )gMU t CU t KU t MIU t                (5) 

where M, C, K and I are the mass, damping, stiffness and 

identity matrices; ( ),U t ( )U t  and ( )U t are the 

acceleration, velocity and displacement vectors, respectively.  

For analysis of the structures subjected to earthquake 

loading, ANSYS is used. The theory and solution 

procedures are based on the finite-element formulation of 

the displacement method with the nodal displacements as 

the unknown variables. It uses a step-by-step implicit 

numerical integration procedure based on Newmark’s 

method to solve the resulting equations. 

 

IV. DYNAMIC CONSTRAINTS TREATMENT  

All of the stress and displacement constraints are time 

dependent. These constraints need to be imposed at each 

point in the desired time interval. The consideration of all 

the constraints requires an enormous amount of 

computational effort and, therefore, treatment with a vast 

number of time history responses is a challenging problem 

for most numerical optimization algorithms [8]. Various 

numerical techniques exist for treating such time-dependent 

constraints [9]. The basic idea of these methods is to 

eliminate somehow the time parameter from the 

optimization problem. In other words, a time-dependent 

problem is transformed into a time-independent one. In the 

present study, the conventional method [9] is employed. 

This method is quite simple and convenient to implement 

where the time interval is divided into p subintervals and the 

time-dependent constraints are imposed at each time grid 

point. Let the ith time-dependent constraint (stress or 

displacement) be written as: 

0 t T                 ( , ) 0ig Z t             (6) 

where T is time interval over which the constraints need to 

be imposed.  

Because the total time interval is divided into p 

subintervals, the constraint (6) is replaced by the constraints 

at the p+1 time grid points as: 

0,1, ,j p                ( , ) 0ig Z t           (7) 

The constraint function gi(Z, t) can be evaluated at each 

time grid point after the structure has been analyzed and 

stresses and displacements have been evaluated at each time 

point. If fewer grid points are used, the time-dependent 

constraints may be violated between the grid points. Use of 

a finer grid can capture these points. 

 

V. OPTIMIZATION METHOD  

There are two major steps in computer implementation of 

the optimal design process of structures: the analysis step 

and the optimization step. As mentioned previously, the 

time history dynamic analysis of structures is performed 

using Newmark’s method. The optimization method 

employed here is an improved genetic algorithm (GA). GA 

has been quite popular and has been applied to a variety of 

engineering problems [10]-[13]. 

The stochastic nature of GA makes the convergence of 

the method slow. Specially, employing GA to find optimum 

design of structures with many degrees of freedom leads to 

the time consuming cycles. In this paper, to reduce the 

computational burden of the optimization process, VSP is 

employed. In this method all the necessary mathematical 

models of the natural evolution operations are implemented 

on the small initial population to access optimal solution on 

iterative basis. As shown in Ref. [7] the computational work 

by VSP is less than the standard GA. Despite the serious 

reducing effects of VSP on the optimization time, the 

computational burden of the process due to implementing 

the time history dynamic analysis is very high. Therefore, 

using neural networks to reduce the computer effort is very 

effective.  

 

VI. SELF-ORGANIZING NEURAL NETWORKS  

The self-organizing map (SOM) is a neural network 

228

1,2, ,i m       ( ) 0ig Z          

1,2, ,j n              
d

jZ R                     (1)

where f(Z) represents objective function, g(Z) is the 

behavioral constraint, m and n are the number of constraints 

and design variables, respectively. A given set of discrete 

values is expressed by Rd and design variables Zj can take 

values only from this set. In the optimal design of structures 

the constraints are the member stresses, nodal displacements, 

or frequencies. The stress constraints can be written as

where ( , )ig Z t is the behavioural constraint evaluated at the 

time of t.
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algorithm developed by Kohonen [4] that forms a two 

dimensional presentation from multi dimensional data. In 

other words, the SOM is non linear projection methods from 

a high dimensional input space to a low (two or one) 

dimensional grid space, where it is easier to classify and 

visualize the data. The SOM neural networks learn to 

classify input vectors according to how they are grouped in 

the input space. They differ from competitive neural 

networks in that neighboring neurons in the SOM learn to 

recognize neighboring sections of the input space. Thus, 

SOM learn both the distribution (as do competitive layers) 

and topology of the input vectors they are trained on. The 

topology of the data is kept in the presentation such that data 

vectors, which closely resemble one another, are located 

next to each other on the map. This kind of neural networks 

has been found very useful for the understanding of the 

mutual dependencies between the variables, as well as of the 

structures of the data set. In contrast to traditional methods, 

such as principal component analysis, the SOM grid can 

also be created from highly deviating, nonlinear data. 

The neurons in the layer of an SOM are arranged 

originally in physical positions according to a specific 

topology such as grid, hexagonal, or random topology. A 

typical structure of SOM networks is shown in Fig. 1. 

 
Fig. 1. A typical structure of SOM networks. 

 

Training of SOM networks is based on Kohonen self-

organization algorithm. 

A SOM network identifies a winning neuron using the 

same procedure as employed by a competitive layer. 

However, instead of updating only the winning neuron, all 

neurons within a certain neighborhood Ni(d) of the winning 

neuron are updated, using the Kohonen rule. Specifically, all 

such neurons iNi(d) are adjusted as follows: 

( 1) ( ) [ ( ) ( )]ij ij j ijw k w k α v k w k                   (8) 

where Wij is the weight of SOM layer from input i to neuron 

j, vj is jth component of the input vector, α is learning rate 

and k is discrete time. 

Here the neighborhood Ni(d) contains the indices for all 

of the neurons that lie within a radius d of the winning 

neuron i. Thus, when an input vector is presented, the 

weights of the winning neuron and its close neighbors move 

toward the vector. Consequently, after many presentations, 

neighboring neurons have learned vectors similar to each 

other. 
 

VII. DETAILS OF SELF-ORGANIZING NEURAL SYSTEM  

Details of SONS and INS are similar. The main 

difference between SONS and INS lies in their classifying 

unit. The details of SONS are explained as follows:  

Firstly, the generated input-target training pairs are 

classified based on the natural periods of the structures. 

Input space classification is implemented by using a SOM 

neural network. Now it is possible to train an RBF network 

for each subspace using its training data. By considering the 

mentioned strategy, the single RBF network trained to cover 

all the input space is substituted with a set of some parallel 

RBF networks as each of them is trained to cover one 

specific part of the classified input space. A simple schema 

of SONS training flow is shown in Fig. 2. 

 

 
Fig. 2. The flow of self-organizing RBF (SONS) training. 

 

One of the most important difficulties of INS 

implementation is the determination of the number of data 

clusters. This difficulty is alleviated by using SOM neural 

network in the framework of SONS. In order to train the 

classifying unit of SONS a general grid of SOM neurons 

with random topology is considered. After training, the 

configuration of initial grid captures the shape of 

distribution of data in the input space. In this regard, the 

neurons tend to clustering and therefore the number of 

clusters can be simply determined mean of exact vectors 

component. 

 

VIII. ERROR MONITORING  

In order to evaluate the accuracy of approximate 

structural responses predicted by neural networks, two 

evaluation metrics are used: the relative root mean 

square (RRMS) error and R-square (R2) statistic 

measurement [14]. 

The RRMS error between the exact and predicted 

responses is defined as follows: 
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where, λi and i
~

are the ith component of the exact and 

predicted responses, respectively. The vectors dimension is 

expressed by r.  
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To measure how successful fitting is achieved between 

exact and approximate time history responses, the R-square 

statistic measurement is employed. Statistically, the R2 is the 

square of the correlation between the predicted and the exact 

responses. It is defined as follows: 
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where,   is the mean of exact vectors component. 

 

IX.     APPROXIMATION OF TIME HISTORY RESPONSES BY 

SONS  

The input space consists of some natural periods of the 

selected structures and the corresponding time history 

responses of nodal displacements and element internal 

stresses against earthquake are considered as the target 

space components. At first, a SOM network is trained to 

classify the input space based on the natural periods. To 

approximate time history responses of structures located in 

each subspace, a distinct RBF network is trained using the 

data located in it.  

 

X. MAIN STEPS OF OPTIMIZATION  

The fundamental steps in the optimization process by 

VSP using SONS for earthquake loading are as follows: 

1) Selecting some parent vectors from the design 

variables space.  

2) Evaluating the time history responses of the structure 

employing SONS.  

3) Evaluating the objective function. 

4) Checking the constraints at grid points for feasibility of 

parent vectors. 

5) Generating offspring vectors using crossover and 

mutation operators.  

6) Predicting the structural time history responses for the 

offspring population using trained SONS. 

7) Evaluating the objective function. 

8) Checking the constraints at grid points; if satisfied 

continue, else change the vector and go to step (f). 

9) Checking convergence; if satisfied stop, else go to step 

(e). - Selecting the majority parent vectors from the 

previous solution and some random design variables as 

a VSP. 

Repeating steps (e) to (k) until the proper solution is met. 

As the size of populations in VSP is small the method is 

rapidly converged. It can be observed that during the 

optimization, the dynamic analysis of the structures is not 

needed. In fact, the necessary responses are found by the 

trained SONS. 

 

XI. NUMERICAL EXAMPLE  

One illustrative example is optimized for minimum 

weight. The time of optimization is computed in clock time 

by a personal Pentium IV 2000MHz. The earthquake 

records are applied in x direction. Young’s modulus is 

2.1×1010 kg/m2, weight density is 7850 kg/m3. Cross-

sectional area of the members are selected from the pipe, 

with radius to thickness less than 50, sections available in 

European profile list. The optimization is carried out by the 

VSP using following structural analysis methods: 

1) Exact Analysis (EA). 

2) Approximate analysis by a single RBF neural network 

(RBF). 

 

TABLE I: SPECIFICATIONS OF VSP METHOD 

Population size 30 

Crossover method One, two and three points crossover 

Crossover rate 0.9 

Mutation rate 0.001 

Maximum generation 15 

 

The 72-bar truss is shown in Fig. 3. The mass of 10000 kg 

is lumped at nodes of 1 to 4. The truss is subjected to 15 s of 

the earthquake record, shown in Fig. 4. 

 

 
Fig. 3. 72-Bar space steel truss. 

 

 
Fig. 4. The El Centro earthquake records (S-E 1940). 

 

Due to simplicity and practical demands, the truss 

members are divided into 9 groups based on cross-sectional 

areas, shown in Table II. 
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TABLE II: ELEMENT GROUPS OF THE 72-BAR TRUSS 

Group No. Elements 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1-4 

5-12 

13-16 

17-24 

25-28 

29-36 

37-40 

41-48 

42-72 

 

Because of the insignificant internal stresses of elements 

of group 9 under the earthquake excitation, a minimum 

cross-sectional area of 2.54 cm2 is assigned to them. For all 

the element groups, allowable stress is chosen to be 1200 

kg/cm2. Also, for the top node of the structure, the 

allowable horizontal displacement is chosen to be 2 cm. In 

order to satisfy the practical demands, 8 types of cross-

sectional areas are considered for the truss elements which 

are displayed in Table III. 
 

TABLE III: AVAILABLE CROSS-SECTIONAL AREAS 

No. Area (cm2) 

1 

2 

3 

4 

5 

6 

7 

8 

11.2 

12.3 

13.9 

15.2 

17.2 

18.9 

21.4 

25.7 

 

In the beginning, 300 structures are randomly generated 

based on cross-sectional areas and are subjected to the 

earthquake record. Their first, third and fifth natural periods 

are selected to be input space components. The 

corresponding node 1 displacement and axial stresses of 

element groups 1 to 8 are chosen as target space components. 

From which 220 and 80 samples are employed to train and 

to test the performance generality of the networks, 

respectively. A single RBF network is trained for predicting 

node 1 displacement and axial stress of each element groups. 

The first step in designing SONS is to classify the input 

space. At first, a 5×3×2 grid of SOM neurons with random 

topology is considered. After training the SOM networks, as 

shown in Fig. 5, it is observed that the neurons are grouped 

in three main clusters. 

 
Fig. 5. Input data distribution on input space and a 5×3×2 grid of SOM 

neurons. 

 

To eliminate redundant computations, a grid of 3×1×1 

SOM neurons with random topology is adopted for this 

example. Thus, all the input data is divided into three 

clusters. Input data distribution and centre of clusters is 

shown in Fig. 6. 

 
Fig. 6. Input data distribution on input space and centre of clusters. 

 

The results of testing the single RBF and SONS neural 

networks are only shown for node 1 displacement and axial 

stress of group 7 elements in Figs. 7 to 10. 

 
Fig. 7. 7: R-square of approximate displacement of node 1. 

 

 
Fig. 8. RRMSE of approximate displacement of node 1. 

 

 
Fig. 9. R-square of approximate stress of group 7 elements. 

 

 
Fig. 10. RRMSE of approximate stress of group 7 elements. 

 

It is simple to find out from Figs. 7 to 10 that SONS 

possesses the better performance generality comparing with 

the single RBF network. The average R-square and RRMSE 

for single RBF and SONS for all training samples are 

0.8956, 0.3207 and 0.9469, 0.1873, respectively. Mean R-

square and mean RRMSE of predicted structural responses 

in all the clusters are displayed in Table IV. In this example, 

the total time spending to data generation and neural 

networks training is equal to 460 min. 

Now employing the single RBF and SONS networks, the 

72-bar truss is designed for optimal weight. The results of 

optimization using exact and approximate analysis are 

displayed in Table V. As shown in this table, the optimum 

design obtained using exact analysis in better than other 
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solutions but it is very extensive in terms of the optimization 

over all time. Time history responses of optimum designs 

obtained using approximate analysis are compared with their 

corresponding actual ones. A brief summery is displayed in 

Table VI. The comparisons reveal the appropriate 

conformance between all of the approximate and 

corresponding actual responses. But the performance of 

SONS is better than that of the single RBF network.  

 
TABLE IV: MEAN R-SQUARE AND RRMSE OF TEST DATA FOR THREE 

MAIN CLUSTERS 

Structura

l 

response 

Cluster 1 Cluster 2 Cluster 3 

R-square RRMSE Rsquare RRMSE R-square RRMSE 

Node 1 

disp. 
0.9940 0.0336 0.9996 0.0146 0.9969 0.0346 

Group 1 

elements 
0.9614 0.1517 0.9554 0.1825 0.9414 0.2045 

Group 2 

elements 
0.9323 0.2265 0.9374 0.2068 0.9310 0.2284 

Group 3 

elements 
0.9362 0.2142 0.9000 0.2499 0.9341 0.2281 

Group 4 

elements 
0.9535 0.1863 0.9350 0.2107 0.8902 0.2796 

Group 5 

elements 
0.9433 0.1998 0.9539 0.1805 0.9206 0.2776 

Group 6 

elements 
0.9589 0.1794 0.9310 0.2379 0.9302 0.2357 

Group 7 

elements 
0.9783 0.1177 0.9874 0.1029 0.9604 0.1705 

Group 8 

elements 
0.9355 0.2473 0.9398 0.2302 0.9339 0.2249 

Avr. 0.9548 0.1729 0.9488 0.1796 0.9376 0.2093 

 
TABLE V: OPTIMUM DESIGNS OBTAINED BY VSP USING EXACT AND 

APPROXIMATE ANALYSIS 

Element Groups No. 
Optimum areas (cm2) 

EA RBF SONS 

1 11.20 11.20 15.20 

2 11.20 15.20 12.30 

3 17.20 21.40 15.20 

4 11.20 11.20 11.20 

5 25.70 21.40 25.70 

6 11.20 11.20 12.30 

7 25.70 25.70 25.70 

8 11.20 11.20 12.30 

9   2.54   2.54   2.54 

Weight (kg) 1506.60 1591.73 1586.79 

Generations 57 62 60 

Time (min) 2538.0 11.6 7.0 

 
TABLE VI: MEAN R-SQUARE AND MEAN RRMSE OF OPTIMUM DESIGNS 

Structural parameters 
SONS RBF 

R-square RRMSE R-square RRMSE 

Node 1 displacement 0.9837 0.1277 0.9513 0.2206 

Group 1 elements 0.9851 0.1223 0.8893 0.3327 

Group 2 elements 0.9415 0.2419 0.8531 0.3832 

Group 3 elements 0.9967 0.0576 0.7614 0.4885 

Group 4 elements 0.9675 0.1973 0.9583 0.2041 

Group 5 elements 0.9434 0.2379 0.8151 0.4300 

Group 6 elements 0.9581 0.2046 0.9484 0.2272 

Group 7 elements 0.9397 0.2235 0.9141 0.2856 

Group 8 elements 0.9640 0.1897 0.9578 0.2053 

Average. 0.9644 0.1781 0.8943 0.3086 

 

The optimum design attained using SONS is better than 

that of the obtained using the single RBF network. It is 

important to note that, in this example the time of 

optimization employing neural networks, including data 

generation and training the neural networks is about 0.18 

time of exact optimization. 

 

XII. CONCLUSIONS 

A robust optimization procedure has been developed for 

the optimal design of structures subjected to earthquake 

using discrete design variables. In the procedure, a 

combination of the evolutionary algorithm and neural 

networks has been utilized. The employed evolutionary 

algorithm is virtual sub population (VSP) method. The VSP 

method has eliminated the shortcomings of the standard GA 

such as trapping into local optima and much effort in the 

phase of computer implementation. Moreover, performing 

the structural optimization using the exact time history 

analysis for earthquake induced loads imposes a huge 

computational burden to the optimization process. That is, in 

each design point of the desired earthquake the structure 

should be analyzed to evaluate the necessary responses. To 

reduce the computer effort of the optimization process due 

to the performing time history analysis, a new neural system 

is employed. In the neural system, a specific combination of 

self-organizing map (SOM) and radial basis function (RBF) 

neural networks is employed to access high quality 

approximation of structural time history responses. The 

neural system is called self-organizing neural system 

(SONS). In fact, SONS includes two operational phases; 

classification and parallelization. In the classification phase 

the input space is classified employing a SOM neural 

network. In the parallelization phase, a distinct RBF neural 

network is trained for each class. In the present paper, RBF 

neural network and SONS is employed to approximate the 

necessary time history responses of structures. A simple 

method is employed to treat with dynamic constraints. In 

this method the time interval is divided into some 

subintervals and the constraints are imposed at each time 

grid points. The numerical results of optimization show that 

in the proposed methods, the time of optimization including 

training time is reduced to about 0.2 of the time required for 

exact optimization; however, the errors are small. Finally, it 

is demonstrated that the best solution has been attained by 

VSP method using SONS. 
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