
  

  
Abstract—String matching algorithms are essential for 

network application devices that filter packets and flows based 
on their payload. Applications like intrusion detection/ 
prevention, web filtering, anti-virus, and anti-spam all raise the 
demand for efficient algorithms dealing with string matching. 
In this paper, we present a new algorithm for multiple-pattern 
exact matching. Our approach reduces character comparisons 
and memory space based on graph transition structure and 
search technique using dynamic linked list. Theoretical analysis 
and experimental results, when compared with previously 
known pattern-matching algorithms, show that our algorithm is 
highly efficient in both space and time. 

 
Index Terms—Pattern matching, multi-pattern matching, 

network intrusion detection system. 

 I.

 

INTRODUCTION

 
String matching algorithms in software applications like 

virus scanners (anti-virus) or intrusion detection systems are 
commonly used for improving data security over the internet 
[1]. String-matching techniques are used for sequence 
analysis, gene finding, evolutionary biology studies and 
analysis of protein expression. Other fields, such as music 
technology, computational linguistics, artificial intelligence, 
artificial vision, have been using string matching algorithms 
as their integral part of theoretical and practical tools. There 
are various problems in string matching appeared as a result 
of such continuous, exhaustive use, which in turn were 
promptly solved by the computer scientists. 

There are many good solutions have been presented for 
exact string matching of multiple patterns, such as: 
Aho-Corasick, Commentz-Walte, Navarro and Raffinot, 
Rabin Karp, Muth and Manber algorithms with their 
variations [2]. However, almost of the earlier algorithms have 
been designed for pattern sets of moderate size, i.e. a few 
dozens, and they unfortunately do not scale very well to 
larger pattern sets. The multi-pattern matching problem has 
many applications. It is used in data filtering (data mining) to 
find selected patterns, for example, anti-virus scanning, 
intrusion detection, content scanning and filtering, and 
specific data

 

mining problems. 

A.

 

Multiple Pattern Matching Problem  
String matching is a technique to find out a pattern from 

given text. Let P = {p1, p2, ..., pm} be a set of patterns, which 
are strings of characters from a fixed alphabet. Let T ={t1, 

 

the above alphabet. The problem is to find all occurrences of 
all the patterns of P in T. Given a pattern set P and a text T, 
report all occurrences of all the patterns in the text. The text T is a string of n characters drawn from the alphabet Σ (of size 
σ). The pattern set P is a set of m patterns each of which is a 
string of characters over the alphabet Σ. For simplicity we 
assume that all patterns have the same length m. We are 
especially interested in searching for large pattern sets. For 
example, the UNIX fgrep and egrep programs support 
multi-pattern matching through the -f option [3]-[6]. 

Pattern matching algorithms have two main objectives: 
reduce the number of character comparisons and reduce the 
time requirement in the worst and average case analysis. 
Most of the algorithms operate in two stages. The first stage 
is a preprocessing of the set of patterns. Applications that use 
a fixed set of patterns for many searches may benefit from 
saving the preprocessing results in a file (or even in memory). 
This step is quite efficient and in most cases it can be done on 
the fly. The second stage is searching phase to find the 
pattern by the information collected in the pre-processing 
stage. 

B. Single and Multiple Pattern Matching 
In a standard problem, we are required to find all 

occurrences of a pattern in a given input text, known as single 
pattern matching. Suppose, if more than one pattern are 
matched against the given input text simultaneously, then it is 
known as, multiple pattern matching. Whereas single pattern 
matching is widely used in network security environments. 
Multiple pattern matching algorithms can search multiple 
patterns in a text at the same time. They have a high 
performance and good practicability, and are more useful 
than the single pattern matching algorithms.   

C. Exact and Inexact Pattern Matching 
Exact pattern matching algorithms will lead to either 

successful or unsuccessful search. The problem can be stated 
as: Given a pattern P of length m and a string/text T of length 
n (m ≤ n). Find all the occurrences of P in T. The matching is 
to be exact, which means that the exact word or pattern needs 
to be found. Some exact matching algorithms are Naïve 
Brute-force, Boyer-Moore, KMP [1]. Approximate (Inexact) 
pattern matching is sometimes referred as approximate 
pattern matching or matches with k mismatches/ differences.        
This problem in general can be stated as: Given a pattern P of 
length m and a string/text T of length n (m ≤ n). Find all the 
occurrences of sub string X in T that are similar to P, allowing 
a limited number, say k different characters in similar 
matches. The edit/transformation operations are insertion, 
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deletion and substitution. Approximate string matching 
algorithms are classified into: Dynamic programming 
approach, Automata approach, Bit-parallelism approach, 
Filtering and Automation Algorithms. Inexact sequence data 
arises in various fields and applications such as 
computational biology, signal processing and text 
processing, etc. 

D. Pattern Matching for NIDS 
Matching patterns in a NIDS (Network Intrusion Detection 

System) is a problem more specialized than the general 
patterns matching problem. In the context of signature 
matching in a NIDS the signature database corresponds to the 
pattern set and the network packets, which the system scans, 
correspond to the text input for a pattern matching algorithm. 
Pattern-matching problems in NIDS have several different 
forms as follows: 

1) Searching for Large Sets of Patterns: the number of 
known intrusions is growing and is almost surely to 
continue to do so. This growth was observed in the past 
in the rapid expansion of the size of the signature 
database for the Snort NIDS [16]. 

2) Searching With a Large Alphabet Size: NIDSs’ input 
and signatures have no restrictions on the alphabet. In 
short, any byte of input can contain any of the 256 
possible values, and hence we are dealing with an 
alphabet of size 256. With respect to most string 
matching literature this is a large alphabet. Typical 
alphabet sizes considered in string matching literature 
are: 4, for DNA/RNA sequences; 52, for the English 
dictionary; or 128 for ASCII. However, it may be used 
to search for binary patterns in network packets 
resulting in requiring them to work on a larger alphabet 
of size 256.  

3) Searching With a Wide Range of Pattern Lengths: The 
lengths of individual keywords within a keyword set 
can have great consequences on the performance and 
memory requirements of an algorithm used for 
matching. A requirement of a NIDS signature matching 
is that the algorithm must be capable of handling 
patterns of various lengths. 

In this paper, we present a new algorithm for 
multiple-pattern exact matching. The paper is organized as 
follows. Section II surveys on the most significant algorithms 
for multiple pattern matching algorithms like Aho-Corasick, 
Commentz Walter, and Wu Manber. Section III presents our 
proposed algorithm. In Section IV, a comparative study of 
various algorithms is described. Finally, Section V is for 
conclusion and our further works. 

 

II. RELATED WORKS 

A. Aho-Corasick Algorithm (AC) 
The Aho-Corasick [2] algorithm was proposed in 1975 at 

Bell Labs by Alfred Aho and Corasick is an extension of the 
KMP algorithm and remains, to this day, one of the most 
effective pattern matching algorithms when matching pattern 
sets. The idea of AC algorithm is that a finite automaton is 
constructed using a set of keywords during the 

pre-computation phase of the algorithm and the matching 
involves the automaton scanning the input text string, reading 
every character in input string exactly once and taking 
constant time for each read of a character. 

Initially, the AC algorithm combines all the patterns in a 
set into a syntax tree which is then converted into a 
non-deterministic automaton (NFA) and, finally, into a 
deterministic automaton (DFA). The resulting finite state 
machine is then used to process the text one character at a 
time, performing one state transition for every text character. 
A pattern in patterns set P has matched whenever the finite 
state machine reaches designated "final" states. The 
pseudo-code for the matching phase of the AC algorithm is 
given by Algorithm 1. 

Building the AC automaton takes running time linear in 
the sum of the lengths of all keywords. This involves 
constructing a keyword tree for the set of keywords and then 
converting the tree to an automaton by defining the functions 
g and f and labeling states in A with the keyword(s) matched. 
The space or memory requirements of the AC algorithm can 
be taken directly from the automaton built during the 
pre-computation because it is the only structure used in the 
matching. Unfortunately the space can be quite large 
depending on the alphabet and keyword set. In the worst case 
it would be O (M|Σ|) where |Σ| is the size of the alphabet Σ. 
 

 
 

Once the automaton is built, the matching is 
straightforward and simply involves stepping through the 
input characters one at a time and changing the state of the 
automaton- which happens in constant time. At every step we 
check if there’s a match by observing if the current state is an 
accepting state. Using this simple functionality the AC 
matcher always operates in O(n) running time, where n is the 
length of the text, regardless of the number of patterns or 
their length. The AC algorithm has a significant advantage 
that every text character is examined only once. A major 
disadvantage of the AC algorithm is the high memory cost 
required to store the transition rules of the underlying DFA. 

B. Commentz Walter Algorithm (CW) 
The popular GNU fgrep utility uses the CW [3] algorithm 

for multiple string search. CW algorithm combines the 
Boyer-Moore technique with the AC algorithm. In 
preprocessing stage, differing from AC algorithm, CW 
algorithm constructs a converse state machine from the 
patterns to be matched. Each pattern to be matched adds 
states to the machine, starting from the right side and going to 
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the first character of the pattern, and combining the same 
node. In searching stage, CW algorithm uses the idea of 
Boyer-Moore algorithm. The length of matching window is 
the minimum pattern length. In matching window, CW scans 
the characters of the pattern from right to left beginning with 
the rightmost one.  In case of a mismatch (or a complete 
match of the whole pattern) it uses a recomputed shift table to 
shift the window to the right. A multiple string matching 
algorithm is used to compare from the end of the pattern, like 
Boyer-Moore, using a finite state machine, like AC. In 
computer science, the CW algorithm is a string searching 
algorithm invented by Beate CW.  Like the AC string 
matching algorithm, it can search for multiple patterns at 
once. The pseudo-code for the CW algorithm is given below: 
 

 
 

CW also noted that the quadratic (O(n*m)) worst-case 
running time behavior of the Boyer-Moore algorithm could 
be improved upon to be linear in n. As such, CW derived two 
different algorithms called B and B1 which have quadratic 
(O(n×max{m[0], m[1],..., m[p−1]})) and linear (O(n)) 
worst-case running times respectively. Algorithm B is the 
main work of the simpler of CW’s literature and has a simpler 
pre-computation phase than B1. Furthermore, B1 takes more 
memory during the pre-computation and search than B by 
remembering the input text bytes that were already scanned. 
Both algorithms maintain a pre-computation phase that is 
linear in the total length of all keywords or O(M), and both 
achieve slightly sub linear (in n) matching-phase running 
times on average which could be as good as O (n/min{m[0], 
m[1], ..., m[p −1]}) in the best case. Algorithm B will be 
described first starting with the functions created during the 
pre-computation phase [3], [4]. In CW’s algorithm B [3] 
some substrings of the input text y are scanned over and over 
in the worst case which leads to the quadratic behavior of the 
running time during the matching phase. In algorithm B1 [4] 
we have the exact same tire as for algorithm B; however, in 
order to reduce the worst case matching phase running time 
to linear in n, we use a stack that remembers the characters of 
the input that have just been scanned. The size of the stack 
could, in theory, grow as large as n, the length of y, but 
fortunately only the last wmax (where wmax is the length of 

the longest pattern in x) entries of the stack are needed. This 
means the memory or space requirement during matching is 
still proportional to the pattern set or M in particular. 

C. Wu-Manber Algorithm (WM) 
Wu and Manber created the UNIX tool agrep [5] to search 

for many patterns in files. Wu-Manber algorithm extended 
BM to concurrently search multiple strings. Instead of using 
bad character heuristic to compute the shift value, WM uses a 
character block including 2 or 3 characters. WMstores the 
shift values of these blocks in SHIFT table and builds HASH 
table to link the blocks and the related patterns. The SHIFT 
table and the HASH table are both hash tables which enable 
efficient search. Moreover, in order to further speed up the 
algorithm, WM also builds another hash table, the PREFIX 
table, with the two-byte prefixes of the patterns. This 
algorithm has excellent average time performance in 
practical usage. But, its performance is limited by minimum 
pattern length m since the maximum shift value in SHIFT 
table equals to m-1 [6]. However, when the pattern set is 
comparatively large, the average shift value in WM algorithm 
will decrease and thus the searching performance will be 
compromised. 

The pseudo-code for the matching phase of the WM 
algorithm is given below: 
 

 
 

This algorithm uses three tables built during the 
pre-computation phase: a SHIFT table, a HASH table, and a 
PREFIX table. The SHIFT table is similar to the 
Boyer-Moore bad character skip table, and the other two 
tables are only used when the SHIFT table indicates not to 
shift-with a shift value of zero because there’s a potential 
match at the current position under examination in the input. 
As with the Boyer-Moore shifting, the size of the shift is 
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limited to the length of the pattern and in this case, the length 
of the minimum length pattern (call it minlen). Therefore, 
short patterns in the keyword set inherently make this 
algorithm less efficient [6]. The analysis of the expected 
running-time complexity of the main matching phase is 
shown by WM to be slightly less than linear in n, the length 
of the input text. This analysis assumes both an input text and 
pattern that are random byte strings with uniform 
distribution.  

D. Other Algorithms 
In [7], Michael O. Rabin and Richard M. Karp proposed 

the Rabin–Karp algorithm is a string searching algorithm in 
1987 that uses hashing to find any one of a set of pattern 
strings in a text. The Rabin-Karp string searching algorithm 
calculates a hash value for the pattern, and for each 
M-character subsequence of text to be compared. If the hash 
values are unequal, the algorithm will calculate the hash 
value for next M-character sequence. If the hash values are 
equal, the algorithm will do a Brute Force comparison 
between the pattern and the M-character sequence. In this 
way, there is only one comparison per text subsequence, and 
Brute Force is only needed when hash values match. In [8], J. 
Kytojoki, L. Salmela, and J. Tarhioin also presented a 
q-Grams based BoyerMoore-Horspool algorithm (BMH). 
This algorithm cuts a pattern into several q-length blocks and 
builds q-Grams tables to calculate the shift value of the text 
window. This algorithm shows excellent performance on 
moderate size of pattern set. However, when coming into 
large-scale scope, it is not good enough both in searching 
time and memory requirement. Here are also some other 
popular Backward algorithms which combine the BM 
heuristic idea and AC automaton idea. In [9], C. Coit, S. 
Staniford, and J. McAlerney proposed AC_BM algorithm. 
This algorithm constructs a prefix tree of all patterns in 
preprocessing stage, and then takes both BM bad character 
and good suffix heuristics in shift value computation. A 
similar algorithm called Setwise Boyer Moore Horspool 
(SBMH) [10] is proposed by M. Fisk and G. Varghese. It 
utilizes a tire structure according to suffixes of all patterns 
and compute shift value only using the bad character 
heuristic. However, these two algorithms are also limited by 
the memory consumption when the pattern set is large. In 
[11], C. Allauzen and M. Raffinot introduced Set Backward 
Oracle Matching Algorithm (SBOM). Its basic idea is to 
construct a more lightweight data structure called factor 
oracle, which is built only on all reverse suffixes of minimum 
pattern length m window in every pattern. It consumes 
reasonable memory when pattern set is comparatively large. 
In [12], B. Xu and J. Li proposed the Recursive Shift 
Indexing (RSI) algorithm for this problem. RSI engages a 
heuristic with a combination of the two neighboring suffix 
character blocks in the window. It also uses bitmaps and 
recursive tables to enhance matching efficiency. These ideas 
are enlightening for large-scale string matching algorithms. 
In [13], Zhou proposed MDH algorithm which optimized 
WM algorithm with multi-phase hash and dynamic-cut 
heuristics strategies. According to Zhou’s experiments, the 
performance of MDH is superior to WM and some other 
algorithms. In 2010, Baeza-Yates and Gonnet introduced the 

Bit-parallelism   technique [14]. In which takes advantage of 
the intrinsic parallelism of the bit operations inside a 
computer word, allowing cutting down the number of 
operations that an algorithm performs by a factor up to w, 
where w is the number of bits in the computer word. Bit 
parallelism is particularly suitable for the efficient simulation 
of nondeterministic (suffix) automata. In 2013, Zhenlong 
Yuan et al propose a multi-pattern matching algorithm named 
TFD for large-scale and high-speed URL filtering [15]. TFD 
employs Two-phase hash, Finite state machine and 
Double-array storage to eliminate the performance 
bottleneck of blacklist filter. 

 

III. OUR PROPOSED ALGORITHM 
Our work is different from these previous efforts as it 

focuses on building a graph transition structure and dynamic 
linked list search technique for multipattern matching that 
can handle a large number of patterns, and can easily be 
combined with any existing multi-pattern matching 
application.  

To illustrate the process of the algorithm, we consider the 
following example: 

Patterns set P = {"search", "ear", "arch", "chart"}  
T= “strcmatecadnsearchof”. 

A. Preprocessing stage 
According to AC algorithm approach, we will build an 

automaton as follows Fig. 1. 
 

 
Fig. 1. Preprocessing stage of AC algorithm. 

 

 
State machine and goto function. 

 
Output function. 

 

 
CW Shift table. 

   Fig. 2. Preprocessing stage of CW algorithm. 
 

The CW algorithm creates a basic tire data structure using 
the reversed keywords. Each node v, except the root node, is 
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labeled with a character (byte) from a pattern. A basic CW 
style tire for pattern set P shown in Fig. 2. The output 
receives a tire node v and returns whether or not the path to 
the root from node v represents a keyword. If so, out returns 
the keyword. Otherwise it returns nothing (the empty set is 
denoted ∅), and the path from v to the root is simply a proper 
suffix of one or more pattern in P. 

In preprocessing stage, the WM algorithm builds three 
tables, a SHIFT table, a HASH table, and a PREFIX table. 
The HASH and PREFIX tables are used when the shift value 
is 0. Fig. 3 shows the SHIFT table and HASH table for B=2. 

 

 
WM Shift table. 

 
WM Hash table. 

Fig. 3. Preprocessing stage of WM algorithm. 
 

In preprocessing stage, we create a graph transition 
structure representing pattern set P. Our graph G has n levels 
(n is the maximum length of patterns in P), at every level we 
just have to keep the different characters in each patterns. Our 
graph structure for patterns set P = {"search", "ear", "arch", 
"chart"} shows in Fig. 4 bellows: 

 

 
Fig. 4. Preprocessing stage of our algorithm. 

 

 
Fig. 5. Searching stage of CW and WM algorithms. 

 
First, following our approach, the storage space is reduced 

by just storing the different characters at each level. This 

memory requirements equal to or less than the storage space 
of DFA matching and state machine and goto function of the 
AC, WM, CW algorithm. Second, as our algorithm does not 
use the SHIFT and HASH table, it should reduce the 
construction time tables and table storage space. 

B. Searching Stage 
To analyze the search process, we assume the input string 

is T= “strcmatecadnsearchof”. The searching stage of Aho 
Corasick is to walk through the automata for any transition; if 
so, the transition takes place, otherwise check the failure 
function. The CW algorithm use 15 steps to detect three 
patterns output= {ear, arch, search}, as seen in Fig. 5. While, 
the CW algorithm use 9 steps to detect two patterns output= 
{ear, search}. 

 
Fig. 6. Searching stage of our algorithms. 

 
In the searching stage, we use a list of pointers for 

searching to minimize the memory space. The maximum 
number of element in the pointer is equal the number of 
patterns. We initialize the pointer value by the length of each 
pattern. The structure of pointer is shown below: 

 
While browsing on the input string, at every step we 

initialize pointer Pi (i corresponds to the current character 
position). If the current character matches the character of 
any pattern Pi then the pointer value will be reduced by 1, 
otherwise the value will be removed. If the current character 
does not match in graph G then remove Pi, we continue to 
maintain the operation of the Pi. The operation of searching 
stage of our algorithms is illustrated in Fig. 6. 

The number of steps in our algorithm is the length of the 
input string T. For a text of length n, maximum length of the 
pattern is L, and m is number of patterns. The worst-case 
running time is O (n×m×L), though the average case is often 
much better as we do not always maintain all m pointers Pi at 
the same time. 
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C. Our Proposed Algorithm 
The pseudo-code for our algorithm is given below: 

 

 
Fig. 7. Time with fixed pattern number. 

 

IV. EXPERIMENT AND RESULT 
Experiments are designed to verify the performance of our 

proposed algorithm both on searching time and space 
occupation, and to compare it with AC, CW and WM 
algorithms. We have implemented in pure C source code of 
AC, CW and WM excerpted from Snort version 2.8.3.1 [16]. 
All the experimental results reported were obtained on PC 
with Intel Pentium 3 GHz CPU Dual Core and 2 GB memory. 
Comparisons are done from two aspects that complement 
each other: one with fixed number of patterns and varying 
pattern lengths; the other with fixed pattern length and 
varying pattern numbers. All patterns are generated randomly 
with equal length, but the text is self-correlated, which means 
part of the text is generated randomly but the rest is generated 
according to that part. For instance, if we need a text of the 
length 10,000, we generate the first 500 characters randomly, 
and the rest of the text is generated like this: each time we 
pick out several characters from the first 500 characters and 
append them to the end of the text until the length arrives at 
10,000; the position and the length of each pick are both 
random. The aim to derive such text is to guarantee that there 
exist a number of matches, as we know random patterns and 
text will result in few matches. Thus we can better simulate 
the patterns and traffic in real network. Though these are only 

meaningless characters, they provide a meaningful reference 
of the performance. Fig. 7 shows the total searching time for 
a text with 50,000 characters and 500 patterns with a varying 
length.  

The time in Fig. 8 is the accumulative time of 1,000 
repeated times of lookup. 
 

 
Fig. 8. Space with fixed pattern number. 

 

V. CONCLUSION 
In this paper, we have presented a new algorithm for 

multiple pattern exact matching. Our approach reduces 
character comparisons and memory space based on graph 
transition structure and search technique using dynamic 
linked list. Theoretical analysis and experimental results, 
when compared with previously known pattern-matching 
algorithms, shows that our algorithm is highly efficient in 
both space and time.  
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