

Abstract—String matching algorithms are essential for

network application devices that filter packets and flows based
on their payload. Applications like intrusion detection/
prevention, web filtering, anti-virus, and anti-spam all raise the
demand for efficient algorithms dealing with string matching.
In this paper, we present a new algorithm for multiple-pattern
exact matching. Our approach reduces character comparisons
and memory space based on graph transition structure and
search technique using dynamic linked list. Theoretical analysis
and experimental results, when compared with previously
known pattern-matching algorithms, show that our algorithm is
highly efficient in both space and time.

Index Terms—Pattern matching, multi-pattern matching,

network intrusion detection system.

 I.

INTRODUCTION

String matching algorithms in software applications like

virus scanners (anti-virus) or intrusion detection systems are
commonly used for improving data security over the internet
[1]. String-matching techniques are used for sequence
analysis, gene finding, evolutionary biology studies and
analysis of protein expression. Other fields, such as music
technology, computational linguistics, artificial intelligence,
artificial vision, have been using string matching algorithms
as their integral part of theoretical and practical tools. There
are various problems in string matching appeared as a result
of such continuous, exhaustive use, which in turn were
promptly solved by the computer scientists.

There are many good solutions have been presented for
exact string matching of multiple patterns, such as:
Aho-Corasick, Commentz-Walte, Navarro and Raffinot,
Rabin Karp, Muth and Manber algorithms with their
variations [2]. However, almost of the earlier algorithms have
been designed for pattern sets of moderate size, i.e. a few
dozens, and they unfortunately do not scale very well to
larger pattern sets. The multi-pattern matching problem has
many applications. It is used in data filtering (data mining) to
find selected patterns, for example, anti-virus scanning,
intrusion detection, content scanning and filtering, and
specific data

mining problems.

A.

Multiple Pattern Matching Problem
String matching is a technique to find out a pattern from

given text. Let P = {p1, p2, ..., pm} be a set of patterns, which
are strings of characters from a fixed alphabet. Let T ={t1,

the above alphabet. The problem is to find all occurrences of
all the patterns of P in T. Given a pattern set P and a text T,
report all occurrences of all the patterns in the text. The text T is a string of n characters drawn from the alphabet Σ (of size
σ). The pattern set P is a set of m patterns each of which is a
string of characters over the alphabet Σ. For simplicity we
assume that all patterns have the same length m. We are
especially interested in searching for large pattern sets. For
example, the UNIX fgrep and egrep programs support
multi-pattern matching through the -f option [3]-[6].

Pattern matching algorithms have two main objectives:
reduce the number of character comparisons and reduce the
time requirement in the worst and average case analysis.
Most of the algorithms operate in two stages. The first stage
is a preprocessing of the set of patterns. Applications that use
a fixed set of patterns for many searches may benefit from
saving the preprocessing results in a file (or even in memory).
This step is quite efficient and in most cases it can be done on
the fly. The second stage is searching phase to find the
pattern by the information collected in the pre-processing
stage.

B. Single and Multiple Pattern Matching
In a standard problem, we are required to find all

occurrences of a pattern in a given input text, known as single
pattern matching. Suppose, if more than one pattern are
matched against the given input text simultaneously, then it is
known as, multiple pattern matching. Whereas single pattern
matching is widely used in network security environments.
Multiple pattern matching algorithms can search multiple
patterns in a text at the same time. They have a high
performance and good practicability, and are more useful
than the single pattern matching algorithms.

C. Exact and Inexact Pattern Matching
Exact pattern matching algorithms will lead to either

successful or unsuccessful search. The problem can be stated
as: Given a pattern P of length m and a string/text T of length
n (m ≤ n). Find all the occurrences of P in T. The matching is
to be exact, which means that the exact word or pattern needs
to be found. Some exact matching algorithms are Naïve
Brute-force, Boyer-Moore, KMP [1]. Approximate (Inexact)
pattern matching is sometimes referred as approximate
pattern matching or matches with k mismatches/ differences.
This problem in general can be stated as: Given a pattern P of
length m and a string/text T of length n (m ≤ n). Find all the
occurrences of sub string X in T that are similar to P, allowing
a limited number, say k different characters in similar
matches. The edit/transformation operations are insertion,

A New Multiple-Pattern Matching Algorithm for the
Network Intrusion Detection System

Nguyen Le Dang, Dac-Nhuong Le, and Vinh Trong Le

94DOI: 10.7763/IJET.2016.V8.865

Manuscript received August 18, 2014; revised October 30, 2014.
Dac-Nhuong Le and Nguyen Le Dang are with Haiphong University,

Haiphong, Vietnam (e-mail: Nhuongld@hus.edu.vn)
Vinh Trong Le is with the Hanoi University of Science, Vietnam National

University, Hanoi, Vietnam.

t2, ..., tn} be a large text, again consisting of characters from

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

deletion and substitution. Approximate string matching
algorithms are classified into: Dynamic programming
approach, Automata approach, Bit-parallelism approach,
Filtering and Automation Algorithms. Inexact sequence data
arises in various fields and applications such as
computational biology, signal processing and text
processing, etc.

D. Pattern Matching for NIDS
Matching patterns in a NIDS (Network Intrusion Detection

System) is a problem more specialized than the general
patterns matching problem. In the context of signature
matching in a NIDS the signature database corresponds to the
pattern set and the network packets, which the system scans,
correspond to the text input for a pattern matching algorithm.
Pattern-matching problems in NIDS have several different
forms as follows:

1) Searching for Large Sets of Patterns: the number of
known intrusions is growing and is almost surely to
continue to do so. This growth was observed in the past
in the rapid expansion of the size of the signature
database for the Snort NIDS [16].

2) Searching With a Large Alphabet Size: NIDSs’ input
and signatures have no restrictions on the alphabet. In
short, any byte of input can contain any of the 256
possible values, and hence we are dealing with an
alphabet of size 256. With respect to most string
matching literature this is a large alphabet. Typical
alphabet sizes considered in string matching literature
are: 4, for DNA/RNA sequences; 52, for the English
dictionary; or 128 for ASCII. However, it may be used
to search for binary patterns in network packets
resulting in requiring them to work on a larger alphabet
of size 256.

3) Searching With a Wide Range of Pattern Lengths: The
lengths of individual keywords within a keyword set
can have great consequences on the performance and
memory requirements of an algorithm used for
matching. A requirement of a NIDS signature matching
is that the algorithm must be capable of handling
patterns of various lengths.

In this paper, we present a new algorithm for
multiple-pattern exact matching. The paper is organized as
follows. Section II surveys on the most significant algorithms
for multiple pattern matching algorithms like Aho-Corasick,
Commentz Walter, and Wu Manber. Section III presents our
proposed algorithm. In Section IV, a comparative study of
various algorithms is described. Finally, Section V is for
conclusion and our further works.

II. RELATED WORKS

A. Aho-Corasick Algorithm (AC)
The Aho-Corasick [2] algorithm was proposed in 1975 at

Bell Labs by Alfred Aho and Corasick is an extension of the
KMP algorithm and remains, to this day, one of the most
effective pattern matching algorithms when matching pattern
sets. The idea of AC algorithm is that a finite automaton is
constructed using a set of keywords during the

pre-computation phase of the algorithm and the matching
involves the automaton scanning the input text string, reading
every character in input string exactly once and taking
constant time for each read of a character.

Initially, the AC algorithm combines all the patterns in a
set into a syntax tree which is then converted into a
non-deterministic automaton (NFA) and, finally, into a
deterministic automaton (DFA). The resulting finite state
machine is then used to process the text one character at a
time, performing one state transition for every text character.
A pattern in patterns set P has matched whenever the finite
state machine reaches designated "final" states. The
pseudo-code for the matching phase of the AC algorithm is
given by Algorithm 1.

Building the AC automaton takes running time linear in
the sum of the lengths of all keywords. This involves
constructing a keyword tree for the set of keywords and then
converting the tree to an automaton by defining the functions
g and f and labeling states in A with the keyword(s) matched.
The space or memory requirements of the AC algorithm can
be taken directly from the automaton built during the
pre-computation because it is the only structure used in the
matching. Unfortunately the space can be quite large
depending on the alphabet and keyword set. In the worst case
it would be O (M|Σ|) where |Σ| is the size of the alphabet Σ.

Once the automaton is built, the matching is
straightforward and simply involves stepping through the
input characters one at a time and changing the state of the
automaton- which happens in constant time. At every step we
check if there’s a match by observing if the current state is an
accepting state. Using this simple functionality the AC
matcher always operates in O(n) running time, where n is the
length of the text, regardless of the number of patterns or
their length. The AC algorithm has a significant advantage
that every text character is examined only once. A major
disadvantage of the AC algorithm is the high memory cost
required to store the transition rules of the underlying DFA.

B. Commentz Walter Algorithm (CW)
The popular GNU fgrep utility uses the CW [3] algorithm

for multiple string search. CW algorithm combines the
Boyer-Moore technique with the AC algorithm. In
preprocessing stage, differing from AC algorithm, CW
algorithm constructs a converse state machine from the
patterns to be matched. Each pattern to be matched adds
states to the machine, starting from the right side and going to

95

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

the first character of the pattern, and combining the same
node. In searching stage, CW algorithm uses the idea of
Boyer-Moore algorithm. The length of matching window is
the minimum pattern length. In matching window, CW scans
the characters of the pattern from right to left beginning with
the rightmost one. In case of a mismatch (or a complete
match of the whole pattern) it uses a recomputed shift table to
shift the window to the right. A multiple string matching
algorithm is used to compare from the end of the pattern, like
Boyer-Moore, using a finite state machine, like AC. In
computer science, the CW algorithm is a string searching
algorithm invented by Beate CW. Like the AC string
matching algorithm, it can search for multiple patterns at
once. The pseudo-code for the CW algorithm is given below:

CW also noted that the quadratic (O(n*m)) worst-case
running time behavior of the Boyer-Moore algorithm could
be improved upon to be linear in n. As such, CW derived two
different algorithms called B and B1 which have quadratic
(O(n×max{m[0], m[1],..., m[p−1]})) and linear (O(n))
worst-case running times respectively. Algorithm B is the
main work of the simpler of CW’s literature and has a simpler
pre-computation phase than B1. Furthermore, B1 takes more
memory during the pre-computation and search than B by
remembering the input text bytes that were already scanned.
Both algorithms maintain a pre-computation phase that is
linear in the total length of all keywords or O(M), and both
achieve slightly sub linear (in n) matching-phase running
times on average which could be as good as O (n/min{m[0],
m[1], ..., m[p −1]}) in the best case. Algorithm B will be
described first starting with the functions created during the
pre-computation phase [3], [4]. In CW’s algorithm B [3]
some substrings of the input text y are scanned over and over
in the worst case which leads to the quadratic behavior of the
running time during the matching phase. In algorithm B1 [4]
we have the exact same tire as for algorithm B; however, in
order to reduce the worst case matching phase running time
to linear in n, we use a stack that remembers the characters of
the input that have just been scanned. The size of the stack
could, in theory, grow as large as n, the length of y, but
fortunately only the last wmax (where wmax is the length of

the longest pattern in x) entries of the stack are needed. This
means the memory or space requirement during matching is
still proportional to the pattern set or M in particular.

C. Wu-Manber Algorithm (WM)
Wu and Manber created the UNIX tool agrep [5] to search

for many patterns in files. Wu-Manber algorithm extended
BM to concurrently search multiple strings. Instead of using
bad character heuristic to compute the shift value, WM uses a
character block including 2 or 3 characters. WMstores the
shift values of these blocks in SHIFT table and builds HASH
table to link the blocks and the related patterns. The SHIFT
table and the HASH table are both hash tables which enable
efficient search. Moreover, in order to further speed up the
algorithm, WM also builds another hash table, the PREFIX
table, with the two-byte prefixes of the patterns. This
algorithm has excellent average time performance in
practical usage. But, its performance is limited by minimum
pattern length m since the maximum shift value in SHIFT
table equals to m-1 [6]. However, when the pattern set is
comparatively large, the average shift value in WM algorithm
will decrease and thus the searching performance will be
compromised.

The pseudo-code for the matching phase of the WM
algorithm is given below:

This algorithm uses three tables built during the
pre-computation phase: a SHIFT table, a HASH table, and a
PREFIX table. The SHIFT table is similar to the
Boyer-Moore bad character skip table, and the other two
tables are only used when the SHIFT table indicates not to
shift-with a shift value of zero because there’s a potential
match at the current position under examination in the input.
As with the Boyer-Moore shifting, the size of the shift is

96

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

limited to the length of the pattern and in this case, the length
of the minimum length pattern (call it minlen). Therefore,
short patterns in the keyword set inherently make this
algorithm less efficient [6]. The analysis of the expected
running-time complexity of the main matching phase is
shown by WM to be slightly less than linear in n, the length
of the input text. This analysis assumes both an input text and
pattern that are random byte strings with uniform
distribution.

D. Other Algorithms
In [7], Michael O. Rabin and Richard M. Karp proposed

the Rabin–Karp algorithm is a string searching algorithm in
1987 that uses hashing to find any one of a set of pattern
strings in a text. The Rabin-Karp string searching algorithm
calculates a hash value for the pattern, and for each
M-character subsequence of text to be compared. If the hash
values are unequal, the algorithm will calculate the hash
value for next M-character sequence. If the hash values are
equal, the algorithm will do a Brute Force comparison
between the pattern and the M-character sequence. In this
way, there is only one comparison per text subsequence, and
Brute Force is only needed when hash values match. In [8], J.
Kytojoki, L. Salmela, and J. Tarhioin also presented a
q-Grams based BoyerMoore-Horspool algorithm (BMH).
This algorithm cuts a pattern into several q-length blocks and
builds q-Grams tables to calculate the shift value of the text
window. This algorithm shows excellent performance on
moderate size of pattern set. However, when coming into
large-scale scope, it is not good enough both in searching
time and memory requirement. Here are also some other
popular Backward algorithms which combine the BM
heuristic idea and AC automaton idea. In [9], C. Coit, S.
Staniford, and J. McAlerney proposed AC_BM algorithm.
This algorithm constructs a prefix tree of all patterns in
preprocessing stage, and then takes both BM bad character
and good suffix heuristics in shift value computation. A
similar algorithm called Setwise Boyer Moore Horspool
(SBMH) [10] is proposed by M. Fisk and G. Varghese. It
utilizes a tire structure according to suffixes of all patterns
and compute shift value only using the bad character
heuristic. However, these two algorithms are also limited by
the memory consumption when the pattern set is large. In
[11], C. Allauzen and M. Raffinot introduced Set Backward
Oracle Matching Algorithm (SBOM). Its basic idea is to
construct a more lightweight data structure called factor
oracle, which is built only on all reverse suffixes of minimum
pattern length m window in every pattern. It consumes
reasonable memory when pattern set is comparatively large.
In [12], B. Xu and J. Li proposed the Recursive Shift
Indexing (RSI) algorithm for this problem. RSI engages a
heuristic with a combination of the two neighboring suffix
character blocks in the window. It also uses bitmaps and
recursive tables to enhance matching efficiency. These ideas
are enlightening for large-scale string matching algorithms.
In [13], Zhou proposed MDH algorithm which optimized
WM algorithm with multi-phase hash and dynamic-cut
heuristics strategies. According to Zhou’s experiments, the
performance of MDH is superior to WM and some other
algorithms. In 2010, Baeza-Yates and Gonnet introduced the

Bit-parallelism technique [14]. In which takes advantage of
the intrinsic parallelism of the bit operations inside a
computer word, allowing cutting down the number of
operations that an algorithm performs by a factor up to w,
where w is the number of bits in the computer word. Bit
parallelism is particularly suitable for the efficient simulation
of nondeterministic (suffix) automata. In 2013, Zhenlong
Yuan et al propose a multi-pattern matching algorithm named
TFD for large-scale and high-speed URL filtering [15]. TFD
employs Two-phase hash, Finite state machine and
Double-array storage to eliminate the performance
bottleneck of blacklist filter.

III. OUR PROPOSED ALGORITHM
Our work is different from these previous efforts as it

focuses on building a graph transition structure and dynamic
linked list search technique for multipattern matching that
can handle a large number of patterns, and can easily be
combined with any existing multi-pattern matching
application.

To illustrate the process of the algorithm, we consider the
following example:

Patterns set P = {"search", "ear", "arch", "chart"}
T= “strcmatecadnsearchof”.

A. Preprocessing stage
According to AC algorithm approach, we will build an

automaton as follows Fig. 1.

Fig. 1. Preprocessing stage of AC algorithm.

State machine and goto function.

Output function.

CW Shift table.

 Fig. 2. Preprocessing stage of CW algorithm.

The CW algorithm creates a basic tire data structure using
the reversed keywords. Each node v, except the root node, is

97

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

labeled with a character (byte) from a pattern. A basic CW
style tire for pattern set P shown in Fig. 2. The output
receives a tire node v and returns whether or not the path to
the root from node v represents a keyword. If so, out returns
the keyword. Otherwise it returns nothing (the empty set is
denoted ∅), and the path from v to the root is simply a proper
suffix of one or more pattern in P.

In preprocessing stage, the WM algorithm builds three
tables, a SHIFT table, a HASH table, and a PREFIX table.
The HASH and PREFIX tables are used when the shift value
is 0. Fig. 3 shows the SHIFT table and HASH table for B=2.

WM Shift table.

WM Hash table.

Fig. 3. Preprocessing stage of WM algorithm.

In preprocessing stage, we create a graph transition
structure representing pattern set P. Our graph G has n levels
(n is the maximum length of patterns in P), at every level we
just have to keep the different characters in each patterns. Our
graph structure for patterns set P = {"search", "ear", "arch",
"chart"} shows in Fig. 4 bellows:

Fig. 4. Preprocessing stage of our algorithm.

Fig. 5. Searching stage of CW and WM algorithms.

First, following our approach, the storage space is reduced

by just storing the different characters at each level. This

memory requirements equal to or less than the storage space
of DFA matching and state machine and goto function of the
AC, WM, CW algorithm. Second, as our algorithm does not
use the SHIFT and HASH table, it should reduce the
construction time tables and table storage space.

B. Searching Stage
To analyze the search process, we assume the input string

is T= “strcmatecadnsearchof”. The searching stage of Aho
Corasick is to walk through the automata for any transition; if
so, the transition takes place, otherwise check the failure
function. The CW algorithm use 15 steps to detect three
patterns output= {ear, arch, search}, as seen in Fig. 5. While,
the CW algorithm use 9 steps to detect two patterns output=
{ear, search}.

Fig. 6. Searching stage of our algorithms.

In the searching stage, we use a list of pointers for

searching to minimize the memory space. The maximum
number of element in the pointer is equal the number of
patterns. We initialize the pointer value by the length of each
pattern. The structure of pointer is shown below:

While browsing on the input string, at every step we

initialize pointer Pi (i corresponds to the current character
position). If the current character matches the character of
any pattern Pi then the pointer value will be reduced by 1,
otherwise the value will be removed. If the current character
does not match in graph G then remove Pi, we continue to
maintain the operation of the Pi. The operation of searching
stage of our algorithms is illustrated in Fig. 6.

The number of steps in our algorithm is the length of the
input string T. For a text of length n, maximum length of the
pattern is L, and m is number of patterns. The worst-case
running time is O (n×m×L), though the average case is often
much better as we do not always maintain all m pointers Pi at
the same time.

98

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

C. Our Proposed Algorithm
The pseudo-code for our algorithm is given below:

Fig. 7. Time with fixed pattern number.

IV. EXPERIMENT AND RESULT
Experiments are designed to verify the performance of our

proposed algorithm both on searching time and space
occupation, and to compare it with AC, CW and WM
algorithms. We have implemented in pure C source code of
AC, CW and WM excerpted from Snort version 2.8.3.1 [16].
All the experimental results reported were obtained on PC
with Intel Pentium 3 GHz CPU Dual Core and 2 GB memory.
Comparisons are done from two aspects that complement
each other: one with fixed number of patterns and varying
pattern lengths; the other with fixed pattern length and
varying pattern numbers. All patterns are generated randomly
with equal length, but the text is self-correlated, which means
part of the text is generated randomly but the rest is generated
according to that part. For instance, if we need a text of the
length 10,000, we generate the first 500 characters randomly,
and the rest of the text is generated like this: each time we
pick out several characters from the first 500 characters and
append them to the end of the text until the length arrives at
10,000; the position and the length of each pick are both
random. The aim to derive such text is to guarantee that there
exist a number of matches, as we know random patterns and
text will result in few matches. Thus we can better simulate
the patterns and traffic in real network. Though these are only

meaningless characters, they provide a meaningful reference
of the performance. Fig. 7 shows the total searching time for
a text with 50,000 characters and 500 patterns with a varying
length.

The time in Fig. 8 is the accumulative time of 1,000
repeated times of lookup.

Fig. 8. Space with fixed pattern number.

V. CONCLUSION
In this paper, we have presented a new algorithm for

multiple pattern exact matching. Our approach reduces
character comparisons and memory space based on graph
transition structure and search technique using dynamic
linked list. Theoretical analysis and experimental results,
when compared with previously known pattern-matching
algorithms, shows that our algorithm is highly efficient in
both space and time.

ACKNOWLEDGMENT
This research is partly supported by the QG.12.21 project

of Vietnam National University, Hanoi

REFERENCES
[1] A. Apostolico and Z. Galil, Pattern Matching Algorithms, Oxford

University Press, New York, USA, 1997.
[2] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to

bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[3] B. C. Walter, “A string matching algorithm fast on the average,” in
Proc. the 6th Colloquium on Automata, Languages and Programming,
pp. 118–132, London, UK, Springer-Verlag, 1979.

[4] B. C. Walter, “A string matching algorithm fast on the average,”
Technical Report, IBM Heidelberg Scientific Center, 1979.

[5] S. Wu and U. Manber, “Agrep – A fast approximate pattern-matching
tool,” in Proc. USENIX Winter 1992 Technical Conference, 1992, pp.
153–162, San Francisco, CA.

[6] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Technical Report TR-94-17, Department of Computer Science,
Chung-Cheng University, 1994.

[7] H. C. Thoma, E. L. Charles, L. R. Ronald, and S. Clifford, The
Rabin–Karp Algorithm, Introduction to Algorithms, Cambridge,
Massachusetts: MIT Press, pp. 911–916, 2001.

[8] J. Kytojoki, L. Salmela, and J. Tarhio, Tuningstring Matching for Huge
Pattern Set? vol. 2676, pp. 211–224, 2003.

[9] C. Coit, S. Staniford, and J. McAlerney, “Towards faster string
matching for intrusion detection or exceeding the speed of snort,”
DARPA Information Survivability Conference and Exposition, pp.
367–373, 2001.

[10] M. Fisk and G. Varghese, “An analysis of fast string matching applied
to content-based forwarding and intrusion detection,” Technical Report
CS2001-0607 (updated version), University of California-San Diego,
2002.

99

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

[11] C. Allauzen and M. Raffinot, “Factor oracle of a set of words,”
Technical report 99-11, Institut Gaspard-Monge, Universite De
Marne-la-Vallee, 1999.

[12] B. Xu, X. Zhou, and J. Li, “Recursive shift indexing: a fast
multi-pattern string matching Algorithm,” Applied Cryptography and
Network Security, vol. 3989, 2006.

[13] Z. Zhou, Y. Xue, J. Liu, W. Zhang, and J. Li, “Mdh: A high speed
multiphase dynamic hash string matching algorithm for large-scale
pattern set,” Information and Communications Security, pp. 201–215,
2007

[14] M. O. Kulekci, “BLIM: a new bit-parallel pattern matching algorithm
overcoming computer word size limitation,” Mathematics in Computer
Science, vol. 3, no. 4, pp. 407-420, 2010.

[15] Z. L. Yuan, B. H. Yang, X. Q. Ren, and Y. B. Xue, “A multi-pattern
matching algorithm for large-scale URL filtering,” in Proc. the 2013
International Conference on omputing, Networking and
Communications, Communications and Information Security
Symposium, pp. 359-363, 2013.

[16] M. R. Snort, “Lightweight intrusion detection for networks,” in Proc.
of the 1999 USENIX LISA Systems Administration Conference, pp.
229-238, 1999.

Dac-Nhuong Le received the BSc degree in computer
science and the MSc degree in information technology
from College of Technology, Vietnam National
University, Vietnam, in 2005 and 2009, respectively. He
is currently a lecture at the Faculty of information
technology in Haiphong University, Vietnam. His
research interests include algorithm theory, computer

network and networks security.

Nguyen Dang Le received the BSc degree in computer
science and the MSc degree in information technology
from College of technology, Vietnam National
University in Hanoi, Vietnam, in 1996 and 2005,
respectively. He currently works in Haiphong University,
Vietnam. His research interests include algorithm theory,
network and wireless security.

Vinh Trong Le received the MSc degree in information
technology from Faculty of Mathematics, Mechanics
and Informatics, Hanoi University of Science, Vietnam
National University in 1997, PhD degree in computer
science from Japan Advanced Institute of Science and
Technology in 2006, respectively. He is currently on
associate professor at the Faculty of Mathematics,
Mechanics and Informatics, Hanoi University of

Science, Vietnam National University. His research interests include
algorithm theory, network and wireless security.

100

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

