
  
Abstract—Statistical process control (SPC) techniques are 

applied to monitor a process. The control chart is a valuable 
tool in SPC. the shewhart control chart was the first chart 
proposed in the literature of SPC and it is still used in process 
monitoring in today's manufacturing and service industries. 
both the exponentially weighted moving average (EWMA) and 
synthetic charts outperform the shewhart control chart for 
detecting shifts in the process mean. Since both the EWMA 
and synthetic charts provide better process mean shifts 
detection performance, a study on which chart to use in 
process monitoring under different situations is the aim of this 
work. this paper compares the average run length (ARL) and 
standard deviation of the run length (SDRL) profiles of the 
EWMA and synthetic charts. comparisons are made based on 
the normality assumption. The mathematica programs are 
used to compute the ARLs and SDRLs of the EWMA and 
synthetic charts. the ARL results indicate that the EWMA 
chart is superior to the synthetic chart for detecting small 
mean shifts, but the latter prevails for detecting moderate and 
large shifts. however, in terms of the SDRL, the EWMA chart 
surpasses the synthetic chart for small and moderate shifts. 
 

Index Terms—Average run length (ARL), exponentially 
weighted moving average (EWMA) chart, synthetic chart, 
standard deviation of the run length (SDRL).  
 

I. INTRODUCTION 
The control chart which was originally developed at the 

Bell Laboratories by Dr Walter Shewhart [1] in 1924 is one 
of the primary tools in SPC. Since then, numerous research 
works were made on various types of control charts which 
include univariateand multivariate charts [2]. Two of the 
univariate charts considered in this paper are the EWMA 
and synthetic charts. The performance of a control chart is 
typically measured in terms of the ARL and SDRL. The 
ARL is the average number of sample points that is plotted 
on a chart before the first out-of-control signal is detected 
whereas the SDRL measures the spread of the run length 
distribution. When a process is out-of-control, it is desirable 
to have small values of ARL and SDRL. Sections II and III 
review the EWMA and synthetic charts, respectively. 
Sections IV and V studies the ARL and SDRL performances 
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of the EWMA and synthetic charts, respectively, whereas 
Section VI compares the ARL and SDRL performances of 
these two charts. Finally, conclusions are drawn in Section 
VII. 

 

II. EWMA CHART 
The EWMA chart was introduced by Roberts [3] and 

further studied by Crowder [4]-[6], and Lucas and Saccucci 
[7]. The EWMA chart is a good alternative to the Shewhart
X chart for detecting small shifts [2], [3]. The EWMA 

statistic is defined as follows: 
 

( ) 11λ λ −= + −i i iZ X Z                 (1) 
 
where 0 1λ< ≤ is thesmoothing constant.The starting value 
is the process target, i.e. ܼ ൌ ߤ	 . The control limits 
(UCL/LCL) and center line (CL) for the EWMA chart are 
defined as follows [2], [3]: 
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where the factor L	 controls the width of the control limits. 
An out-of-control is signaled by the EWMA chart when iZ  
plots beyond the limits UCL/LCL .In this paper, the ARL of 
the EWMA chart is computed using the Markov chain 
approach presented in Zhang et al. [8]. The Markov chain 
procedure involves dividing the interval between the UCL 
and LCL into 2 1t m= +  subintervals, each of width 2d . The 
EWMA statistic, iZ is said to be in a transient state j  at 
time i if − < < +j i jS d Z S d , for , 1,...,0,j m m= − − +
..., 1,m m− , where jS represents the midpoint of the jth 

subinterval. The run length of the EWMA chart is 
represented by its initial probability vector and transition 
probability matrix. The initial probability vector is 
 

( )0,...,0,1,0,...0 ′=u ,              (3) 
 

Here, the entry having the value unity corresponds to the 
initial state of the Markov chain, where the ( )th+1m entry of 
u  has the value unity. 

The ARL of the EWMA chart is computed as [8] 
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( )ARL −′= − 1I 1u R ,             (4) 
 

while its SDRL is obtained using the following formula: 
 

SDRL = ( ) ( )2 22 ARL ARL−′ − ⋅ − +u R RI 1 ,      (5) 
 
where denotes a vector of ones, I  represents the identity 
matrix whereas R  is the transition probability matrix for the 
transient states. The details for computing R  is given in 
Zhang et al. [8]. 
 

III. SYNTHETIC CHART 

The synthetic chart which comprises the /X S  and
CRL/S  sub-charts was suggested by Wu and Spedding [9]. 
The implementation of the synthetic chart is as follows: 

Step 1: Compute the /X S  sub-chart's upper and lower 
control limits as follows: ܷܠܮܥത/ܛ ൌ ߤ   ത,             (6a)ܠߪ݇

and ܠܮܥܮത/ܛ ൌ ߤ െ  ത,             (6b)ܠߪ݇

where µ and σ X  are the in-control mean and standard 

deviation of the sample mean X , respectively. The factor k 
controls the width of the control limits. 

Step 2: Compute the /SCRL sub-chart's lower control limit,
′L . 
Step 3: At each inspection point, take a random sample of 

n observations, iX , for = 1, 2, ..., ,i n  and calculate the 

sample mean, X . 
Step 4: If / / < <X S X SLCL X UCL , the sample is 

conforming and the control flow returns to Step 3. 
Otherwise, the sample is non-conforming and the control 
flow goes to the next step. 

Step 5: Count the number of samples between the current 
and the last non-conforming samples. This number is taken 
as the CRL value of the CRL/S sub-chart. 

Step 6: If > 'CRL L , the process is in-control and the 
control flow goes back to Step 3. Otherwise, the synthetic 
chart signals an out-of-control condition. Corrective actions 
are taken to identify and remove the assignable cause(s). 
Then the control flow returns to Step 3. 

The ARL of the synthetic chart is computed as follows: 

( )
1 1ARL

1 1
′= ×

− − LP P
,            (7a) 

where 

( ) ( )1 δ δ⎡ ⎤= − − − − −⎣ ⎦P k n k n .       (7b) 

Here, δ  is the size of the standardized mean shift, i.e. 

1 0μ μ
δ

σ
−

= , where 1μ  is the out-of-control mean and 0μ

is the in-control mean. When 0δ = , the process is in-
control. 

IV. ARL AND SDRL PERFORMANCES OF THE EWMA 
CHART 

The optimal parameters λ and L are obtained by 
minimizing the out-of-control ARL for a desired shift of 
interest optδ  = 1 so that an in-control ARL ( )0ARL  of 370 
is attained, based on the sample sizes n  = 3, 5, 7, and 10. 
The optimal design procedure is based on the Markov chain 
approach described in Zhang et al. [8]. From these optimal 
λ  and L  values obtained, the ARL profiles for the entire 
magnitude of shifts can be computed.  

 
TABLE I: ARLS AND SDRLS OF THE EWMA CHART FOR n  = 3, 5, 7, AND 

10, WHEN optδ = 1, BASED ON 0ARL 370=  

 
 

Table I shows the ARL and SDRL profiles for 0 4δ≤ ≤ . 
It is obvious that both ARL and SDRL decrease as δ  
increases. This indicates that larger shifts can be detected 
quicker and will result in smaller spread in the run length 
distribution. The results also show that as the sample size 
increases from n  = 3 to n  = 10, the ARLs and SDRLs of 
the EWMA chart reduce, for the same size of a mean shift, 
δ .  

 

V. ARL AND SDRL PERFORMANCES OF THE SYNTHETIC 
CHART 

 
TABLE II: ARLS AND SDRLS OF THE SYNTHETIC CHART FOR n  = 3, 5, 7, 

AND 10, WHEN optδ = 1, BASED ON 0ARL 370=  

 
 

To ensure a fair comparison, the optimal ′L  and k  
values of the synthetic chart are determined so that 0ARL  = 
370, opt 1δ =  and n  = 3, 5, 7, and 10. The optimization 
procedure given in Wu and Spedding [9] is used to compute 
the optimal parameters L′ and k . Then using the optimal 
parameters ′L  and k , the ARL of the synthetic chart is 
computed using (7a) and (7b), while its SDRL is obtained 
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using (5) but by substituting u , R , and ARL with that 
corresponding to the synthetic chart [10]. 

For example, for 0ARL 370= , opt 1δ = , and 3n = , the 
optimal parameters of the synthetic chart are computed as 

′L  = 6 and k = 2.294. Table II indicates that as δ
increases (size of a mean shift increases), the ARLs and 
SDRLs decrease. The findings also show that as the sample 
size, n , increases, the ARLs and SDRLs decrease for the 
same magnitude of a mean shift, δ .  
 

VI. A COMPARISON OF THE ARL AND SDRL 

PERFORMANCES OF THE EWMA AND SYNTHETIC CHARTS 
 

TABLE III: ARLS OF THE EWMA AND SYNTHETIC CHARTS, WHERE n  = 3, 
5, 7, AND 10, opt 1δ = , AND 0ARL 370=  

 
 
TABLE IV: SDRLS OF THE EWMA AND SYNTHETIC CHARTS, WHERE n  = 

3, 5, 7, AND 10, opt 1δ = , AND 0ARL 370=  

 
 

Combining the ARLs and SDRLs in Table I and Table II 
give the results in Table III and Table IV. Table III clearly 
shows that the ARL produced by the EWMA chart is 
smaller than that of the synthetic chart when 0 0.75δ< ≤ . 
However, the synthetic chart gives smaller ARL than the 
EWMA chart when 1δ ≥ . Table IV shows that the EWMA 
chart outperforms the synthetic chart for 1.5δ ≤ , in terms 
of the SDRL. The ARL results show that the EWMAchart is 
superior to the synthetic chart for detecting small mean 
shifts, but the latter prevails for detecting moderate and 
large shifts. However, in terms of the SDRL, the EWMA 
chart surpasses the synthetic chart for small and moderate 
δ values. This study guides industrial practitioners to 
choose between the EWMA and synthetic charts. For 
example, if past experience indicates that a small mean shift 
is likely to occur, then the EWMA chart should be used to 
monitor the process. However, if historical data show that a 
moderate or large shift usually happens, then the synthetic 
chart should be employed in process monitoring. Overall, 
similar trends are observed for n  = 3, 5, 7, and 10, as 
displayed in Table III to Table IV, respectively. It should be 

noted that considering other combinations of optδ  and 

0ARL  will give similar outcomes. Therefore, it suffices to 
only discuss the results for optδ  = 1, 0ARL  = 370, and n  = 

3, 5, 7 and 10. The results for optδ  = 1, 0ARL  = 250, and n 
= 3, 5, 7 and 10 which correspond to Tables I to IV are 
given in the Appendix (see Tables A.I to A.IV). 

 

VII. CONCLUSION 
In this paper, the ARLs and SDRLs of the EWMA and 

synthetic charts are compared for a process having a normal 
distribution. This preliminary study provides some insight 
on EWMA and synthetic charts to practitioners to facilitate 
process monitoring, where a proper and careful selection of 
the correct chart to use is of utmost importance so that a 
delay in detecting process shifts will not happen. Further 
research should compare the EWMA and synthetic charts 
using other performance criteria, such as the median run 
length (MRL) and percentiles of the run length distribution. 
It is also interesting to compare these charts when process 
parameters, i.e. the target mean and standard deviation are 
estimated from a Phase-I dataset. In most real situations, 
process parameters have to be estimated as they are rarely 
known. Another topic for future work involves comparing 
the multivariate synthetic and multivariate EWMA 
(MEWMA) charts when the process parameters are both 
known and unknown. Research can also be made when the 
underlying process has a skewed distribution or when the 
independence assumption of the data is violated.  

APPENDIX 
TABLE A.I: ARLS AND SDRLS OF THE EWMA CHART FOR n  = 3, 5, 7, 

AND 10, WHEN opt 1δ = , BASED ON 0ARL = 250  

 
 

TABLE A.II: ARLS AND SDRLS OF THE SYNTHETIC CHART FOR n  = 3, 5, 
7, AND 10, WHEN opt 1δ = , BASED ON 0ARL = 250  
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TABLE A.III: ARLS OF THE EWMA AND SYNTHETIC CHARTS, WHERE n  

= 3, 5, 7, AND 10, opt 1δ = , AND 0ARL = 250
 

 
 

TABLE A.IV: SDRLS OF THE EWMA AND SYNTHETIC CHARTS, WHERE n  

= 3, 5, 7, AND 10, opt 1δ = , AND 0ARL = 250  
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