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Abstract— Fuzzy data is considered as an imprecise type of 

data with a source of uncertainty. Fuzzy numbers allow us to 

model uncertainty of data in an easy way which justifies the 

increasing interest on theoretical and practical aspects of fuzzy 

arithmetic. This paper presents a Fuzzy Bayesian Classifier 

(FBC) over LR-type fuzzy numbers with unknown conditional 

probability density function. A new version of K-NN method is 

used to estimate conditional probability density function for 

Bayesian classification of fuzzy numbers. 

Fairly good recognition rate has been obtained over fuzzy 

numbers in classification using FBC even in the presence of 

noise. 

Index Terms— fuzzy data, Bayesian classifier, LR-type fuzzy 

numbers.  

 

I. INTRODUCTION 

  In the field of statistical pattern recognition, Bayesian 

decision theory is a basic approach. In many practical 

situations, obtaining density function is fairly difficult. The 

density function is assumed to have a particular type of 

distribution. Complicated testing and advanced statistical 

techniques are employed to estimate the parameters of the 

selected distribution. 

In the statistical learning theory, random samples are 

considered for obtaining statistical information such as mean 

and variance. In the real world, however, we always encounter 

fuzzy information in which probability density functions 

(PDF) parameters are assumed to form fuzzy numbers, as in [1, 

2]. In this group PDF of data has been assumed to have the 

form of: 
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Where  is a fuzzy number which in [2] is assumed to be a 

triangular fuzzy number. In the above works, x is a crisp 

random variable and only its mean value is considered as a 

fuzzy number. In [3] a method for probability density function 

approximation is presented using fuzzy rules for encoding a 

density function of a crisp random variable. As it can be seen, 
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none of the mentioned works use fuzzy random variables. In 

this paper we introduce density estimation of fuzzy number 

based on a new type of k nearest neighbor algorithm. We begin 

with reviewing some approaches about fuzzy Bayesian 

classification in the literature before using the estimated 

density function for Bayesian classification. 

In [4, 5] a fuzzy Bayesian approach provide an alternative 

technique to obtain the conditional density function without 

the assumption on the type of distribution. The likelihood 

density function is estimated based on the likelihood 

conditional probability with fuzzy supported values. In order 

to estimate likelihood conditional density function it uses the 

equation (1): 
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(1) 

 

Where  ieW  refers to the size of interval of ie  and U is the 

size of universe of discourse. The likelihood conditional 

probabilities with fuzzy values  ji HeP  are observed from 

professional experiences. Likelihood density function is 

computed as the weighted sum of the likelihoods for all of 

fuzzy sets. The weight is proportional to the corresponding 

degree of belonging obtained from the membership functions 

and is inversely proportional to the corresponding size of the 

fuzzy set interval. It also imposes a restriction on the 

membership functions so that for any particular value e in the 

universe of discourse, the sum of )(eei  is equal to 1. For a 

given conditional probability of the fuzzy values and the size 

of the fuzzy set intervals, the shape of estimated conditional 

density function depends on the shape of the membership 

functions; if more fuzzy sets of the evidence are available, the 

estimated conditional density function is more accurate. 

In the other work, [6] proposed a fuzzy rule-based classifier 

with Bayesian rule that yields to prune the irrelevant features 

consequently. It has also assumed that discriminant function is 

a Gaussian membership function and has proposed some 

assumptions for avoiding the weak points of Bayesian 

classifier like the singularity of covariance matrix and the 

difficulty of feature selection. It, however, does not use fuzzy 
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data. 

In [7] a generalized Naive Bayesian classifier is proposed that 

uses the fuzzy partition of variables instead of discretizing 

them. It partitions the domain of each continuous variable into 

fuzzy regions. Therefore, each variable is a linguistic variable 

taking linguistic values. The training of Fuzzy Naive Bayesian 

classifier is done by performing an unsupervised fuzzy 

clustering in the feature space to obtain an optimal fuzzy 

partition. The conditional probabilities of each node in Fuzzy 

Naive Bayesian classifier are then estimated. 

In the current work, though, we present Bayesian classifier 

over fuzzy numbers as a quite new approach. In similar works 

with the proposed method [4 and 5], density estimation over 

fuzzy data (both discrete and continuous) have been studied 

with known density function according to following equation: 






I

i

ex

jeji dxHxfxHeP )()()(   
(2) 

Where  jHxf |  is the conditional probability density 

function at value x given jH . But it is assumed that  jHxf |  

is known. This assumption in practical cases in real world is 

not possible. In the present work, we try to find PDF of fuzzy 

numbers using the proposed fuzzy K nearest neighbor (K-NN) 

algorithm that is a well known artificial intelligence algorithm. 

Dominant notes of the proposed Fuzzy Bayesian Classifier 

(FBC) are, 

 Using LR fuzzy numbers in Bayesian Classifier  

 Generation of probability density function using K 

Nearest Neighbor (K-NN) algorithm 

 Flexibility of the proposed classifier over noisy 

data 

 Probability density estimation using various fuzzy 

distance metrics. 
The reminder of this paper is organized as follows: In section 2 

some preliminaries about fuzzy numbers, KNN algorithm and 

Bayesian classification are reviewed. Our proposed approach 

for fuzzy density estimation using KNN method together with 

fuzzy Bayesian classification over LR-type fuzzy numbers is 

discussed in section 3. Section 4 represents experimental 

results of the proposed method. Finally, section 5 represents a 

conclusion of the paper. 

II. PRELIMINARIES 

Some definitions about fuzzy numbers, K-nearest neighbor 

algorithm and Bayesian classification are explained briefly. 

A. Definition of fuzzy numbers 

Consider A
~

 as a fuzzy number, then Alpha-cut of A
~

 is 

shown by   
A

xA ~:
~

 which is a closed interval and 

is denoted to  UL AAA  ,
~

 , where  1,0 .  

In order to compute the distance of two fuzzy numbers, 

several formulas are proposed. One is Hausdorff distance 

described below:  

For any two fuzzy numbers FBA 
~

,
~

, Hausdorff distance 

metric is defined by [8]: 

   UULL

F BABABAd 

~~
,

~~
max

~
,

~
  (3) 

Another metric is Hathaway distance. Let 

 4321 ,,,
~

aaaaA   and  4321 ,,,
~

bbbbB   are two fuzzy 

data, where we refer to 
1a as the center, 

2a  as the inner 

diameter, 3a  as the left outer radius and 
4a  as the right 

outer radius. Then Hathaway distance  BAdh

~
,

~
 is defined 

as [9]: 
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Yang distance is another metric [10] which is defined for all 

LR-type fuzzy numbers by considering a fuzzy number 

X
~

with its membership function )(~ x
X
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This is called an LR-type TFN (Trapezoidal Fuzzy Number). 

In Fig. 1, two types of TFN are shown. 

 
Fig. 1  Two samples of TFN 

 

For any two fuzzy numbers BA
~

,
~

that are shown as fuzzy 

numbers in Hathaway distance, the distance  BAd f

~
,

~
 based 

on Yang definition is: 
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Where    22112 babag 
 

and    22112 babag 
. 

 

B. K nearest neighbor algorithm  

There are several methods to estimate an unknown 

probability density function. The most fundamental 

techniques to estimate )(xp  use the following procedure:  
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Firstly, a sequence of regions ,..., 21 RR  containing x are 

formed so that the first region is used with one sample, the 

second with two, and so on. Also let nV  be a volume of nR , 

nk  be the number of samples falling in nR , and )(xpn be 

the nth estimate for )(xpn , then:  

n

n

n
V

nk
xp )(  (7) 

If the three conditions below are satisfied then )(xpn  

converge to )(xp : 

 0lim 


n
n

V  

 


n
n

klim  

 0lim 


nkn
n

 

With these basics for K-nearest neighbors algorithm, in 

order to estimate )(xpn  from n training samples or 

prototypes one can center a cell about x and let it grow until its 

prototype captures nk  samples. These samples are the 

nk nearest neighbors of x. If the density is high around x; the 

cell then will be relatively small, which leads to a good 

resolution. If the density is low, however, the cell will grow 

fast, but will stop soon after it enters regions of higher density. 

Considering equation (7) and its conditions assures that the 

ratio nkn  is a good estimation of the probability that a point 

fall in the cell of volume nV [11]. 

 

C. Bayesian classification 

For classification of pattern x into classes jw  we use the 

conditional probability  xwp j . Suppose that both the 

prior probabilities  jWP  and the conditional 

densities  jwxp  are known. Bayes definition is then stated 

in equation (8): 

 

 
   

 xp

wPwxp
xwp

jj

j   (8) 

 

If the number of classes is N,  xp  is then obtained 

according to [5] as indicated in equation (9): 
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 xwp j  is posterior probability and is computed using 

likelihood probabilities  jwxp  and prior probability 

 jWP . A Bayesian classifier employs these probabilities 

and then using a decision rule, it classifies samples into 

related classes. Decision rule is defined as follows: 
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So for state of iwx we have, 

   

 

   
 xp

wPwxp

xp

wPwxp jjii
  (11) 

 

As it can be seen in Equation (8), likelihood probability 

must be known. In the practical cases, however, this density 

function is not known and it must be estimated. As it will be 

seen in more detail in the next section, we use K-NN 

approach to estimate this density function.  

In the next section, we develop Bayesian classifier to FBC. 

Practically, data samples are noisy and uncertainty is assumed 

because of outliers in samples. In Bayesian classification of 

fuzzy numbers, calculation of  xwp i
~

with unknown 

 jHxf |  is an open problem in fuzzy mathematics. Fuzzy 

number classification will be seen from viewpoint of K-NN for 

calculation of  jHxf | . 

III. THE PROPOSED METHOD 

The proposed method is based on a Fuzzy Bayesian 

classifier over LR-type fuzzy numbers. Fuzzy Bayes formula 

is introduced with the following equation: 
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(12) 

 

 

In order to use Bayesian classification for fuzzy numbers, it 

is required to compute )()~( ii wPwxp  for each class iw . In 

N-dimensional feature space, samples are in the form 

of )~,...,~,~(~
21 nxxxx  . For instance, in 2-D feature space, 

we have pairs of LR-fuzzy numbers such as )1
~

,2
~

( . Fig. 2 

depicts some samples. 

 

Fig. 2  Two fuzzy numbers in 2-D space 

As the density function )~( iwxp  is unknown, it must be 

then estimated. We use new version of K-NN method to 

estimate this density function in this work. 
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A. Fuzzy number density estimation by new version of K-NN  

In the previous section some details about K-NN method 

were presented stating that its formulation is over crisp 

numbers. In this section, we present a new method for 

estimating probability density function of a fuzzy variable by 

using of K-NN algorithm. We start by formulations of K-NN 

over fuzzy numbers considered as follows: 

n

n
n

V

nk
xp ~

~

)~(  (13) 

In the above equation x~  is a fuzzy variable, 
nk

~
 are the 

nearest neighbors samples of the x~ . 

In the proposed algorithm several fuzzy numbers are created, 

each of which has a different label. Using K-NN method, 

then, we find nearest neighbors of each sample by a distance 

metric like those metrics defined in the previous section. 

Finally the number of each label is counted and its histogram 

is plotted. As we can see in the next section, this histogram 

is reliable density estimation for fuzzy data. Using more and 

more nearest neighbors or alternatively decreasing the radius 

of neighborhood, the density estimation obtains better 

results similar to the discussions about K-NN method in 

section 2. 

The following steps describe the presented method: 

 

KNN Based Density Estimation: 

Step1: Generate some fuzzy numbers with arbitrary 

distribution (e.g. triangular fuzzy numbers with one or two 

Gaussian probability density function, two samples are 

shown  in Fig. 3).  

Step2: Assign a different label to each generated fuzzy 

number for characterizing each fuzzy number as an index 

which are used in the next steps. For example, assign label 

1L  to the first sample, 2L  to the second sample and so on. 

Step3: Apply K-NN algorithm in order to find nearest 

neighbors of each test sample by using a distance metric 

(e.g. Hausdorff, Hathaway and Yang distance). Assume 

that training and testing samples for K-NN algorithm are 

the same and equal to the created fuzzy set in step1, as we 

want to estimate density functions of the created fuzzy 

numbers, such that the training and test samples in K-NN 

algorithm be equal. In order to obtain nearest neighbor 

samples for each test sample we should compute its 

distance with all of the training samples and find labels of 

samples that their distance with test sample is below a 

given threshold (this threshold is the radius of 

neighborhood ).We must keep these labels for each test 

sample. For instance, if one of the created triangular fuzzy 

numbers with one Gaussian PDF is 

 0.3893- 0.4326- 0.4758-  assumed as a test sample, 

calculated nearest neighbors for this test sample with 

radius 0.99 using Yang distance include 294 training 

sample like 1, 8, 11, 13, …, 799. Some of these fuzzy 

numbers are shown in Fig. 3. 

Step4: After we obtain all of the labels of nearest neighbors for 

each sample we generate in the first step, we compute 

histogram of these labels which are the indices of the nearest 

neighbors of each test sample. This histogram, indeed, 

represents the frequency of the occurrence of each label in 

all sets of nearest neighbors per sample. This histogram 

shows estimated PDF of generated fuzzy numbers. 

Step5: Finally, we compute estimation error using equation 

(14). 

 

 
Fig. 3 A number of computed nearest neighbors for 

determined test sample 

 

Distribution of the nearest neighbors of fuzzy numbers 

(with any arbitrary density function) can be encountered as an 

estimator of its probability density function. In the next 

section we show this result with some experiments. The 

proposed method is robust in the presence of different amount 

of noise as well. 

B.  Fuzzy Bayesian classifier 

Now fuzzy Bayesian classifier is applied to assign each test 

sample to the correct class and recognition rate is calculated. 

The following steps show our proposed approach for 2 class 

Bayesian classifier: 

 

Fuzzy Bayesian Classification: 

Step1: Create two classes of LR-type fuzzy numbers with 

arbitrary distribution.  

Step2: Consider test samples from one of the created classes. 

Step3: Apply K-NN algorithm in order to estimate likelihood 

density function by using a distance metric. (e.g. 

Hausdorff, Hathaway and Yang distance). 

Step4: Using the estimated likelihood density function, 

compute a confusion matrix that includes the probability of 

belonging test samples into classes.     

Step5: Finally, the recognition rate is achieved from 

obtained confusion matrix. 

IV. EXPERIMENTAL RESULTS  

The proposed method has been implemented in KNN-based 

density estimation and then fuzzy Bayesian classifier. 

A.  Density estimation using KNN algorithm 

We have implemented density estimation using KNN 

method for triangular fuzzy numbers. Different distance 

metrics are used such as Hausdorff, Hathaway and Yang. We 

created 400 triangular symmetric fuzzy numbers which belong 

to two classes of fuzzy numbers. One is zero mean, one 

Gaussian density function, with a variance of 1 and the other 

has two Gaussian density functions with mean values as 0 and 
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5 and a variance of 1. Fig. 4 shows a typical one and two 

Gaussian PDF with former description. 

 

 

 
(a) 

 

 

 
(b) 

Fig. 4 Typical (a) one and (b) two Gaussian PDF 

 

 

Fig. 5 indicates samples of triangular symmetric and 

asymmetric fuzzy numbers: 

 

 

 
(a) 

 
(b) 

Fig. 5  Triangular (a) symmetric and (b) asymmetric fuzzy 

data 

 

We then ran our method over these numbers. Fig. 6 shows 

the estimated PDF with Hathaway distance and radius of 0.99 

compared to a normal one and two Gaussian PDF: 

 

 
(a) 

 
(b) 

Fig. 6  Density estimation of (a) one and (b) two Gaussian 

PDF of fuzzy numbers with Hathaway's distance metric 

 
It is important to note that the PDF of non-symmetric fuzzy 

numbers is obtained as well.  

Figure 7 represents the result of estimated PDF with Yang 

distance for fuzzy triangular data that are not symmetric. 
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(a) 

 
(b) 

Fig. 7  Density estimation of (a) one and (b) two Gaussian 

PDF of asymmetric fuzzy numbers with Yang distance metric 

 

We now consider our method for LR-type fuzzy numbers 

described in equation (13). A set of 400 LR-type fuzzy 

numbers are created with one and two Gaussian distribution, 

then we ran our method on these data. The result of density 

estimation appears in Fig. 8 as two LR-type triangular fuzzy 

numbers. 

 

 
Fig. 8  LR-type triangular fuzzy numbers 

 

With different distance metrics, the results of PDF 

estimation of LR-type fuzzy data with Hausdorff distance 

metric is shown in figure 9. 

 

 
(a) 

 
(b) 

Fig. 9 Density estimation of (a) one and (b) two Gaussian 

PDF of LR-type fuzzy numbers with Hausdorff distance 

metric 

 

This method can also estimate PDF of noisy data. A 10% 

noise has been added to the training fuzzy data, Fig. 10 

represents the result of density estimation with Yang distance 

metric. 

 

 
(a) 
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(b) 

Fig. 10  Probability density estimation of (a) one and (b) 

two Gaussian PDF LR-type noisy fuzzy numbers with Yang 

distance metric 

 

At this stage, we compare accuracy of PDF estimation by 

different distance metrics. In order to obtain the average 

estimation error of each distance metric, we ran our 

algorithm 100 times both over one and two Gaussian fuzzy 

data and use the following equation for computing 

estimation error: 

  FDOFDE
N

ErrorAverage ....
1

  (14) 

 

Where E.D.F is abbreviate form of estimated density 

function, O.D.F is abbreviation of original density function 

and N is the number of times we run the algorithm, it was set to 

be 100. Estimated density function is proportionate to given 

data and computation defined error. We, however, need the 

difference of estimated and original density function values 

that we considered in this experiment. Table  I summarizes the 

results. 

 

Table I  Average error for each distance metric 

  

Distance 

Metric 

Average error  

(for one Gaussian 

fuzzy data) 

Average error 

(for two Gaussian 

fuzzy data) 

Hausdorff 

distance 
270.5028 74.2085 

Hathaway 

distance 
270.5028 74.2085 

Yang distance 148.1467 38.2023 

 

From the above table one can conclude that Yang distance 

has less average error value than the other metrics. Fig. 11 

shows a plot of average error values for density estimation of 

two Gaussian PDFs over 100 run for different distance 

metrics. 

 

 
Fig. 11  Average error of different distance metrics for 

estimation of a two Gaussian PDF 

 

B. Fuzzy Bayesian Classification 

In this section we discuss the results of implementing the 

proposed method on fuzzy Bayesian Classifier. The method 

was performed on LR-type fuzzy numbers, with one and two 

Gaussian distributions as shown in Fig. 4. Fig. 12 displays 

some LR fuzzy samples of generated training classes. 

 
Fig. 12  LR-type fuzzy numbers from two classes 

Table II also represents the average recognition rate over 100 

runs of the proposed algorithm for three different distance 

metrics i.e. Hausdorff, Hathaway and Yang distance.  

 

Table III.  Average recognition rate for each distance metric 

 

Distance metric Mean recognition rate 

Hausdorff 0.9605 

Hathaway 0.9781 

Yang 0.9153 

 

Confusion matrixes with respect to three distance metrics are 

averaged over 100 runs. Table III indicates the results. 

 

Table III.  Average Confusion Matrix for each distance metric 
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Distance metric Confusion Matrix 

Hausdorff 








0.99460.0735

0.00540.9265
 

Hathaway 








0.99700.0407

0.00300.9593
 

Yang 








0.9928 0.1622

0.00720.8378
 

 

As it can be seen in Table II, Hathaway distance makes 

highest recognition rate and Yang distance has the most 

misclassification. Figure 13 shows the histogram of 

recognition rates of 100 run of the proposed method for 

different distance metrics. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 13 Number of Iterations per Recognition rates for (a) 

Hausdorff (b) Hathaway and (c) Yang distance 

 

Therefore, according to Figure 13, we find that the average 

recognition rate of Bayesian classifier using Hathaway 

distance for density estimation has accurate recognition in 

more iteration. For instance, the number of iterations that 

have recognition rate equal to 1 (the last bar shown in 

histograms), for Hathaway distance is greater than the other 

metrics.  

We now discuss about robustness of our proposed method 

against noise. Experiments are performed in the presence of 

noise both in the center of each training fuzzy number and in 

their left and right outer radius. 

We have also added various values of noise into centers of 

each training fuzzy numbers. Fig. 14 displays recognition 

rate versus noise domain and SNR (Signal to Noise Ratio) 

for different distance metrics introduced in section 2.  

 

 
(a) 
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(b) 

Fig. 14  Recognition rate versus (a) noise variation and (b) 

SNR 

 

Various values of noise were added at this stage into left and 

right outer radius of each training fuzzy data. Recognition 

rate versus noise variations and SNR are plotted in Fig. 15. 

 

 
(a) 

 
(b) 

Fig. 15 Recognition rate versus (a) noise variations and (b) 

SNR 

V. CONCLUSION 

In this paper we have proposed a Fuzzy Bayesian Classifier 

for LR-type fuzzy numbers with unknown density function. In 

order to estimate likelihood density function, a new version of 

KNN method was used. Experimental results indicate good 

estimation accuracy on KNN-based PDF estimation and a 

good recognition rate on Bayesian classifier even in the 

presence of noise variations. 
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