
  

  
Abstract—In this paper Friction Pendulum Damper (FPD), 

as an innovative friction damper, has been studied, evaluated 
and compared with Pall friction damper. At first FPD is 
introduced and then its modeling and effect on seismic behavior 
of braced frame structures are studied. To evaluate the effects 
of radius of curvature and slip-load on structural responses, 
nonlinear time history analysis of two, three and eight storey 
steel braced frames with FPD dampers have been conducted 
under two different earthquakes. Finally, the behavior of steel 
braced frames equipped with FPD and Pall friction damper are 
compared. The results show that while some members are 
damaged in frames without dampers, the FPD and Pall friction 
damper have dissipated a lot of energy, so that no damage is 
observed in structural members. Increasing the radius of 
curvature, leads to more maximum roof displacement but 
decreases both base shear and roof acceleration. However, 
increasing the slip load leads to less displacement while base 
shear and roof acceleration increase. Within the optimum slip 
load the maximum roof displacement, base shear and 
acceleration under two earthquakes are approximately reduced 
25%, 60% and 25% respectively. The results show that the FPD 
is more effective than Pall friction damper, so that FPD can 
reduces the maximum roof displacement 15% more than Pall 
friction damper. However, the base shear is increased about 
20%. 
 

Index Terms—Braced frame, friction pendulum damper 
(FPD), friction pendulum system (FPS), optimum slip load. 
 

I. INTRODUCTION 
In the conventional methods, structures resist against 

earthquakes via stiffness, ductility and dissipation of energy. 
Dissipated energy is minor in elastic range due to low 
damping in structures. The most dissipated energy develops 
during strong earthquakes after the elastic range behavior. 
The potential of inelastic displacement makes these 
structures to be stable. These inelastic displacements cause 
formation of plastic hinges at some points of structures. As it 
is known, plastic hinges cause ductility and dissipation of 
energy to increase. Ultimately, a lot of earthquake energy is 
dissipated due to local damages in lateral resistant system of 
structure [1]. 

Nowadays, another way has been concerned in the world 
in order to reduce earthquake effects with regard to how 
energy is distributed in structures. During an earthquake, a lot 
of energy is imposed to the structure. This energy enters the 
structure in both kinematic and potential forms absorbed or 
 

dissipated to some degrees. As it is known, structural 
vibrations will approach infinity without damping, but there 
is always damping in structures because of structural 
properties. Also, it is possible to develop efficiency of 
structure by adding dampers [2]. 

As mentioned, Structures can dissipate a lot of energy 
during earthquake via ductility, but the incidence of much 
ductility will be accompanied by formation of plastic hinges 
at some elements of structure [3]. Energy dissipation systems 
in buildings cause reduction of damage in structural elements 
during earthquake and as a result they prevent buildings from 
demolishing. Generally, Structural protective systems can be 
divided into three groups of active, semi-active and passive 
systems (seismic isolation is included in the passive systems). 
Structural protective systems have been shown in Fig. 1 [4], 
[5]. 

 

 
Fig. 1. Structural protective systems of structure. 

 

II. FRICTION PENDULUM DAMPER (FPD) 
Friction Pendulum Damper has an initial slip-load (μW) 

and a lateral restoring stiffness (W/R) with regard to its 
special geometry same as Friction Pendulum System (FPS) in 
base isolation, where W is supported weight, μ is coefficient 
friction and R is the radius of curvature of concave surface 
[6]-[9]. 

Difference between FPD and Pall friction damper is due to 
lateral restoring stiffness of FPD. This damper can be 
designed not to slide under weak earthquake or wind load, but 
it begins to slide during strong earthquakes under a 
predetermined force. This slide dissipates the input energy to 
the structure and prevents braces and other structural 
elements to yield. The special configuration of FPD dampers 
should be used in chevron and inverted chevron (V) braces. 
Fig. 2 indicates this special configuration [10]-[12]. 
 

III. MODELING  
Models used in this paper for studying Pall friction and 

Friction Pendulum Dampers have been adopted from 
Montgomery and Hall researches, in 1979. They evaluated a 
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Fiig. 3. Low-rise stteel industrial struucture. 



  

in the range of 160 kN to 220 kN for 3-storey frame and 120 kN to 180 kN for 8-storey frame. 
 

  
Fig. 6. Top floor lateral deflection for different radiuses of curvature under the El centro earthquake, Slip-Load = 140 kN, 3-storey frame. 

 
Fig. 8. Top Floor lateral deflection for different radiuses of curvature under the El centro earthquake, Slip-Load = 100 kN, 8-storey frame. 

 

 
Fig. 9. Top floor deflection for different radiuses of curvature under the tabas earthquake, Slip-Load = 100 kN, 8-storey frame. 

 
The results of maximum top floor deflection, maximum 

base shear and maximum top floor acceleration for the frames 
with and without FPD and Pall friction dampers for various 
radiuses of curvature and slip-loads of 200 kN (3-storey) and 
160 kN (8-storey) are shown in Fig. 14-Fig. 25. 

As seen in the figures, the amounts of maximum base shear 
and maximum top floor displacement are reduced and 
increased respectively by increasing R of FPD. Also, amount 
of maximum top floor acceleration is reduced by increasing R 
but this reduction is not considerable. 

Maximum top floor deflection, maximum base shear and 
maximum top floor acceleration of 3-storey frame equipped 
with FPD have been reduced 30%, 60% and 24% 

respectively in comparison with the 3-storey frame without 
damper. Also, Maximum top floor deflection of the frame 
equipped with FPD has been reduced 15% more compared to 
the frame equipped with Pall friction damper while base 
shear has increased 20% approximately. 

Maximum top floor deflection, maximum base shear and 
maximum top floor acceleration of 8-storey frame equipped 
with FPD have been reduced 25%,70% and 35% respectively 
in comparison with the 3-storey frame without damper. Also, 
Maximum top floor deflection of the frame equipped with 
FPD has been reduced 13% more compared to the frame 
equipped with Pall friction damper while base shear has 
increased 20% approximately. 
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Fig. 10. Changes in maximum top floor of deflection for different 

slip-loads, El centro earthquake, 3-storey. 
 

 
Fig. 11. Changes in maximum top floor of deflection for different slip-loads, 

El centro earthquake, 8-storey. 
 

 
Fig. 12. Changes in maximum base shear for different slip-loads, El centro 

earthquake, 3-storey. 
 

 
Fig. 13. Changes in maximum base shear for different slip-loads, El centro 

earthquake, 8-storey. 

 
Fig. 14. Maximum top floor deflection (mm), El centro earthquake, 

3-storey. 

 
Fig. 15. Maximum top floor deflection (mm), tabas earthquake, 3-storey. 

 
Fig. 16. Maximum Base Shear (kN), El centro earthquake, 3-storey. 

 
Fig. 17. Maximum base shear (kN), tabas earthquake, 3-storey. 

 
Fig. 18. Maxi mum top floor acceleration (mm/s2), El centro earthquake, 

3-storey. 
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Fig. 19. Maximum top floor acceleration (mm/s2), tabas earthquake, 

3-storey. 
 

 
Fig. 20. Maximum top floor deflection (mm), El centro earthquake, 8-storey. 

 

 
Fig. 21. Maximum top floor deflection (mm), tabas earthquake, 8-storey. 

 

 
Fig. 22. Maximum base shear (kN), El centro 1942 earthquake, 8-storey. 

 

 
Fig. 23. Maximum base shear (kN), tabas earthquake, 3-storey. 

 

Fig. 24. Maximum top floor acceleration (mm/s2),
 
El centro 1942 earthquake, 

8-storey.  

 

Fig. 25. Maximum top floor acceleration (mm/s2), tabas earthquake, 
8-storey. 

 

V.
 

CONCLUSION 

 

1)
 

Results of analyses of the frames equipped with FPD 
indicates that this damper dissipates considerable energy 
because no braces equipped with FPD yields while some 
of elements yield in the brace of frames without damper. 

2)
 

Some residual deformations are seen in the structure 
equipped with Pall friction damper at the end of 
earthquake because this type of damper does not have 
restoring stiffness while, this residual deformation is 
greatly reduced in the structures equipped with FPD 
because of restoring stiffness. 

3)
 

Radius of curvature (R) is one of the most important 
parameters on behavior of FPD. If radius of curvature 
increases, maximum top floor deflection will increase, 
while base shear and top floor acceleration will be 
reduced. When R increases, behavior of FPD is quite 
similar to Pall friction damper. 

4)
 

 Rise in slip-load of FPD and Pall friction damper is 
accompanied with reduction of maximum lateral top 
floor deflection and increase in base shear. There is a 
range of optimum slip-load for each of these dampers 
that rise in it will not have substantial effect on reduction 
of deflection.  
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5) Friction pendulum damper (FPD) through restoring 
stiffness (W/R) behaves better than Pall friction damper 
responses in ordinary braced frames and it has been 15% 
more effective than Pall in reduction maximum lateral 
top floor deflection, while base shear has increase quite 
20% in FPD against Pall for different radiuses of 
curvature. 
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