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Application of Friction Pendulum Damper in Braced
Frames and Its Effects on Structural Response

S. M. Zahrai, M. S. Bozorgvar, and M. H. Bozorgvar

Abstract—In this paper Friction Pendulum Damper (FPD),
as an innovative friction damper, has been studied, evaluated
and compared with Pall friction damper. At first FPD is
introduced and then its modeling and effect on seismic behavior
of braced frame structures are studied. To evaluate the effects
of radius of curvature and dip-load on structural responses,
nonlinear time history analysis of two, three and eight storey
steel braced frames with FPD dampers have been conducted
under two different earthquakes. Finally, the behavior of steel
braced frames equipped with FPD and Pall friction damper are
compared. The results show that while some members are
damaged in frames without dampers, the FPD and Pall friction
damper have dissipated a lot of energy, so that no damage is
observed in structural members. Increasing the radius of
curvature, leads to more maximum roof displacement but
decreases both base shear and roof acceleration. However,
increasing the dip load leads to less displacement while base
shear and roof acceleration increase. Within the optimum dlip
load the maximum roof displacement, base shear and
acceleration under two earthquakes ar e appr oximately reduced
25%, 60% and 25% respectively. Theresults show that the FPD
is more effective than Pall friction damper, so that FPD can
reduces the maximum roof displacement 15% more than Pall
friction damper. However, the base shear is increased about
20%.

Index Terms—Braced frame, friction pendulum damper
(FPD), friction pendulum system (FPS), optimum dlip load.

I. INTRODUCTION

In the conventional methods, structures resist against
earthquakes via stiffness, ductility and dissipation of energy.
Dissipated energy is minor in elastic range due to low
damping in structures. The most dissipated energy develops
during strong earthquakes after the elastic range behavior.
The potential of inelastic displacement makes these
structures to be stable. These inelastic displacements cause
formation of plastic hinges at some points of structures. As it
is known, plastic hinges cause ductility and dissipation of
energy to increase. Ultimately, a lot of earthquake energy is
dissipated due to local damages in lateral resistant system of
structure [1].

Nowadays, another way has been concerned in the world
in order to reduce earthquake effects with regard to how
energy is distributed in structures. During an earthquake, a lot
of energy is imposed to the structure. This energy enters the
structure in both kinematic and potential forms absorbed or
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dissipated to some degrees. As it is known, structural
vibrations will approach infinity without damping, but there
is always damping in structures because of structural
properties. Also, it is possible to develop efficiency of
structure by adding dampers [2].

As mentioned, Structures can dissipate a lot of energy
during earthquake via ductility, but the incidence of much
ductility will be accompanied by formation of plastic hinges
at some elements of structure [3]. Energy dissipation systems
in buildings cause reduction of damage in structural elements
during earthquake and as a result they prevent buildings from
demolishing. Generally, Structural protective systems can be
divided into three groups of active, semi-active and passive
systems (seismic isolation is included in the passive systems).
Structural protective systems have been shown in Fig. 1 [4],

[5].
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Fig. 1. Structural protective systems of structure.

II. FRICTION PENDULUM DAMPER (FPD)

Friction Pendulum Damper has an initial slip-load (u#)
and a lateral restoring stiffness (W/R) with regard to its
special geometry same as Friction Pendulum System (FPS) in
base isolation, where W is supported weight, u is coefficient
friction and R is the radius of curvature of concave surface
[6]-[9].

Difference between FPD and Pall friction damper is due to
lateral restoring stiffness of FPD. This damper can be
designed not to slide under weak earthquake or wind load, but
it begins to slide during strong earthquakes under a
predetermined force. This slide dissipates the input energy to
the structure and prevents braces and other structural
elements to yield. The special configuration of FPD dampers
should be used in chevron and inverted chevron (V) braces.
Fig. 2 indicates this special configuration [10]-[12].

III. MODELING

Models used in this paper for studying Pall friction and
Friction Pendulum Dampers have been adopted from
Montgomery and Hall researches, in 1979. They evaluated a
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low-rise steel industrial structure equipped with Pall friction
damper by DRAIN-2D program. Fig. 3 shows properties of
the low-rise industrial moment frame. All floors are rigid and
the structural elements are modeled nonlinearly. In order to
observe the effect of lateral restoring stiffness of FPD on the
structure, simple braced frame has been modeled [13]-[15].
An 8-story braced structure has been evaluated in addition
to the 3-story structure. The 8-story braced frame has been
designed following the requirements of AISC specification
and criterions of National seismic code of Iran (2800). Type
of soil material is IT and structure has been located in a high
seismic region. Yield strength (Fy) and ultimate strength (Fy;)
are 24000 ton/m”2 and 37000 ton/m”2 .Span length of the
bays is 5 meters and height of the stories is 3.2 meters. All
floors are rigid and weight of each floor is 45 ton. System of
lateral bearing of the 8-storey braced structure has been
designed without damper and 20 percent weaker initially to
highlight the role of FPD in reduction of damage and
absorbing earthquake energy. 3-storeyand 8-storey braced
frames have been shown in Fig. 4 and Fig. 5 respectively.

{

Fig. 2. FPD in chevron braced frame.
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Fig. 3. Low-rise steel industrial structure.
W14x30 Widx34 W14x30
\:‘V \\%
B
Wi16x36 W18x64 W16x36
[l %
AW
»” &3
Wi16x40 WIQ@'QS W16x40
0 \\%
A &
P
A A \ A

All Columns: W14x68

Fig. 4. 3-storey braced frame.
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Fig. 5. 8-storey braced frame.

IV. NUMERICAL RESULTS

To evaluate the effects of FPD on structural response,
nonlinear time history analyses of 3 and 8 story structure with
and without FPD and Pall dampers have been conducted
under the El Centro and Tabas earthquakes. The two
earthquakes have been normalized for maximum ground
acceleration of 0.36g.

The results show that when the structures are not equipped
with dampers some braces in both 3 and8-storey are damaged
under both earthquakes. However the braces of the frames
equipped with FPD are not damaged. This indicates that FPD
as a friction damper can dissipate considerable amount of
energy.

The main difference of FPD with Pall damper is the
restoring force of FPD that can be adjusted by its radius of
curvature, R. To conduct the effect of R on structural
response, the structures have been analyzed for different
values of R (0.5 to 2 m) and the results have been compared
with the results of Pall damper. The time histories of top
floors are shown for different cases in Fig. 6-Fig. 9.

As seen in Fig. 6-Fig. 9, maximum displacement increases
when radius of curvature (R) goes up. It is because, lateral
restoring stiffness (W/R) reduces as R increases. An
important point seen in the figures is the residual
displacement at the end of earthquake for the structures
equipped with Pall friction damper. This residual
displacement decreases with reducing R for structures with
FPD damper.

To capture the optimum slip load for Pall and FPD
dampers different nonlinear time history analyses have been
conducted for 3 and S8-storey frames under different
slip-loads and radiuses of curvature. Results are shown in Fig.
10-Fig. 13.

When slip-load in FPD and Pall friction damper increases,
maximum top floor lateral displacement reduces and base
shear increases. The optimum slip load can be considered as
the slip load that its increasing will not cause considerable
reduction in displacements. This slip load can be considered
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in the range of 160 kN to 220 kN for 3-storey frame and 120

kN to 180 kN for 8-storey frame.
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Fig. 6. Top floor lateral deflection for different radiuses of curvature under the E centro earthquake, Slip-Load = 140 kN, 3-storey frame.
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Fig. 8. Top Floor lateral deflection for different radiuses of curvature under the £ centro earthquake, Slip-Load = 100 kN, 8-storey frame.
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Fig. 9. Top floor deflection for different radiuses of curvature under the tabas earthquake, Slip-Load = 100 kN, 8-storey frame.

The results of maximum top floor deflection, maximum
base shear and maximum top floor acceleration for the frames
with and without FPD and Pall friction dampers for various
radiuses of curvature and slip-loads of 200 kN (3-storey) and
160 kN (8-storey) are shown in Fig. 14-Fig. 25.

As seen in the figures, the amounts of maximum base shear
and maximum top floor displacement are reduced and
increased respectively by increasing R of FPD. Also, amount
of maximum top floor acceleration is reduced by increasing R
but this reduction is not considerable.

Maximum top floor deflection, maximum base shear and
maximum top floor acceleration of 3-storey frame equipped
with FPD have been reduced 30%, 60% and 24%

respectively in comparison with the 3-storey frame without
damper. Also, Maximum top floor deflection of the frame
equipped with FPD has been reduced 15% more compared to
the frame equipped with Pall friction damper while base
shear has increased 20% approximately.

Maximum top floor deflection, maximum base shear and
maximum top floor acceleration of 8-storey frame equipped
with FPD have been reduced 25%,70% and 35% respectively
in comparison with the 3-storey frame without damper. Also,
Maximum top floor deflection of the frame equipped with
FPD has been reduced 13% more compared to the frame
equipped with Pall friction damper while base shear has
increased 20% approximately.
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Fig. 19. Maximum top floor acceleration (mm/s2), tabas earthquake,
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Fig. 20. Maximum top floor deflection (mm), £ centro earthquake, 8-storey.
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Fig. 23. Maximum base shear (kN), tabas earthquake, 3-storey.
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V. CONCLUSION

Results of analyses of the frames equipped with FPD
indicates that this damper dissipates considerable energy
because no braces equipped with FPD yields while some
of elements yield in the brace of frames without damper.
Some residual deformations are seen in the structure
equipped with Pall friction damper at the end of
earthquake because this type of damper does not have
restoring stiffness while, this residual deformation is
greatly reduced in the structures equipped with FPD
because of restoring stiffness.

Radius of curvature (R) is one of the most important
parameters on behavior of FPD. If radius of curvature
increases, maximum top floor deflection will increase,
while base shear and top floor acceleration will be
reduced. When R increases, behavior of FPD is quite
similar to Pall friction damper.

Rise in slip-load of FPD and Pall friction damper is
accompanied with reduction of maximum lateral top
floor deflection and increase in base shear. There is a
range of optimum slip-load for each of these dampers
that rise in it will not have substantial effect on reduction
of deflection.

Friction pendulum damper (FPD) through restoring
stiffness (W/R) behaves better than Pall friction damper
responses in ordinary braced frames and it has been 15%
more effective than Pall in reduction maximum lateral
top floor deflection, while base shear has increase quite
20% in FPD against Pall for different radiuses of
curvature.
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