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Abstract—The performance of the S-Box represents an 

important factor in the overall performance of the AES 

cryptography systems. It affects the speed, area, and the power 

consumption of the AES. In attempts to improve the 

performance of the S-box byte substitution a number of 

techniques were presented in the literature. In this paper, we 

classify the S-box byte substitution optimization techniques as 

those based on hardware, software, and combined 

hardware/software. We then move on to propose a new highly 

parallel and area-efficient S-box architecture for AES byte 

substitution. We also conduct a performance analysis and 

comparison of the proposed architecture with those achieved by 

existing techniques. The comparison shows that the proposed 

architecture outperforms the existing techniques in terms of 

speed and area. 

 
Index Terms—Cryptography, advanced encryption standard 

(AES), s-box byte substitution, parallel s-box architecture, 

efficient s-box.  

 

I. INTRODUCTION 

According to the AES data to be encrypted is divided into 

equally sized blocks each is called a state. The algorithm 

performs a series of mathematical operations on each state 

based on the Substitution-Permutation Network principle to 

produce the cipher text. The algorithm starts with an initial 

step to add the round key to the state. After that, the state 

enters the main loop which includes four repeated operations: 

sub bytes, shift rows, mix columns, and add round key. This is 

followed by a final iteration that excludes mix columns. There 

have been a number of improvements to enhance efficiency of 

the original AES in terms of area, delay, and power 

consumption [2]-[4]. Fig. 1 provides a simple illustration of 

the AES encryption process. 

Among the four loop operations, the substitution of bytes is 

performed in what is known as the substitution box (S-Box). 

The S-Box performs a non-linear transformation on data by 
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replacing each individual byte by a different byte. The main 

purpose of the byte substitution is to bring confusion to the 

data to be encrypted using the AES [5]. The replacement 

bytes can be obtained on the fly by determining the 

multiplicative inverse of a given state in finite field GF (256) 

followed by affine transformation in GF 2). Alternatively, the 

replacement bytes can be pre-calculated and stored in a 

look-up table (LUT) in the S-Box. It should be noted that the 

replacement bytes for encryption are different than the ones 

used for decryption.  

 
Fig. 1. AES iterative architecture. 

 

Byte substitution is considered one of the most complex 

loop operations. Hence, a number of research efforts were 

devoted to the optimization of the byte substitution both in 

time, hardware complexity, and power consumption [6]-[15]. 

The research work reported in this paper concentrates on 

proposing a new method for designing a highly parallel 

area-efficient S-Box architecture for the AES cryptosystem.  

The paper is organized as follows. In Section II, we provide 

some background material. In Section III, we provide a brief 

summary of the existing S-Box realization techniques. In 

Section IV, we preview the related work reported in the 

literature. In Section V, we introduce the proposed S-Box 

architecture and algorithm. In Section VI, we illustrate the 

CMOS implementation of the proposed architecture. In 

Section VII, we provide estimation of the delay and area 

needed for the proposed architecture. In Section VIII, we 

provide a comparison with existing techniques. Section VIX 

provides a number of concluding remarks. 

 

II.  EXISTING S-BOX REALIZATION TECHNIQUES 

Fig. 2 illustrates our classification of the S-Box byte 

substitution realization techniques. 

A. Hardware Techniques 

Hardware techniques are the ones that compute substitution 
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The National Institute of Standards and Technology (NIST) 

organized an open competition in 1997 to find a replacement 

for DES cryptosystem. The Rijndael cryptosystem, submitted 

by Joan Daemen and Vincent Rijmen was one such system [1]. 

The NIST adopted a slightly modified version of Rijndael as 

the new security standard. This standard is now known as the 

Advanced Encryption Standard (AES). It is a symmetric-key 

block cipher algorithm used to encrypt/decrypt data 

worldwide. 



values rather than reading them from a memory. The 

representation of the finite field elements has an impact on the 

hardware in terms of gates count and chip area. Polynomial 

and normal bases are the two popular representations. The 

most compact implementation known is the one proposed by 

Canright [9] in normal bases, which used sub-field arithmetic 

to compute AES S-Box. Canright has examined all possible 

choices of representations in each sub-field including purely 

polynomial, purely normal basis, and a combination of both. 

The total number of isomorphisms was found to be 432 

different choices. The case that uses polynomial basis for all 

sub-fields is the one proposed by Satoh et al., [7]. The optimal 

representation, which has the minimum gate count, was 

obtained using an exhaustive tree-search algorithm. In each 

sub-field both inverse and multiplication operations are 

required. These mathematical operations were discussed in 

details for the most compact case. Further optimization was 

done by calculating a merged S-Box for both encryption and 

decryption. The merged S-Box is 20% more compact than 

separate computations of S-Box and its inverse. Canright's 

implementation is best suited for limited space applications, 

e.g. mobile applications. The technique can also be 

parallelized and pipelined for high throughput applications. 

The main drawback of this implementation is its relatively 

long critical path and high power consumption [10]. 

Alternatively, Nikova et al., [11] proposed an implementation 

using normal bases that differs in the level of decomposition. 

Both normal bases implementations [9] and [11] are compact, 

however the choice of which to use depends on the 

application and hardware technology. The polynomial 

representations by Satoh et al., [7], Rijmen [12], and 

Wolkerstorfer et al., [13] were less efficient compared to 

normal bases representations in terms of chip area.  

The implementation that resulted in least power 

consumption according to [10] is the one proposed by Bertoni 

et al., [14]. The proposed solution uses a synthesis 

methodology composed of three main blocks: a multi-level 

decoder followed by a permutation block, which does the 

S-Box computation, and finally an encoder.  

 

 
Fig. 2. Classification of s-box realization techniques. 

B. Software Techniques 

Software implementation is based on using a look up table 

(LUT). In this case a RAM is used to store pre-calculated 

S-Box values. Techniques that are included under such 

approach vary from the totally serial (slow) to the totally 

parallel (fast) ones. In the totally serial approach each byte of 

the State is substituted by the corresponding S-Box byte one 

at a time in a serial manner. Consider, for example, the 128 bit 

AES case. In this case each of the 16 State bytes is replaced by 

the corresponding S-Box byte. Assume that the area required 

for the LUT is A, and the time needed to substitute one byte is 

T, then the total time needed to substitute all sixteen State 

bytes is 16T. The other extreme is the totally parallel 

approach. In this case there are 16 S-Boxes each consists of 

16 bytes such that all of the 16 bytes of the State are 

substituted by their respective corresponding S-Box bytes 

simultaneously. The total time needed to substitute all sixteen 

State bytes is T, while the area required is 16A.  

The two extreme cases: the most restricted serial and the 

most flexible parallel ones are illustrated in Fig. 3. In between, 

there exist a number of possible intermediate cases. These 

intermediate cases exhibit tradeoffs between area and 

throughput. 

C. Hardware/Software Techniques 

In this case use is made of pipelining (hardware technique) 

in building the S-box employing small substitution tables 

constructed using LUTs (software technique) [15]. The basic 

idea of the approach is that the original large truth-table of say 

8-varaible function is broken down into a set of smaller size 

multiplexer-switched truth-table of say 4-variable functions 

using the Shannon expansion. The smaller tables were then 

mapped into 4-LUT of Xilinx FPGA. The approach shows 

significant improvement in the overall throughput. 

 

III.  RELATED WORK 

The traditional basic lookup table implementations (hw-lut) 

are relatively fast and can achieve better performance with 

some modifications [10]. One way to reduce power 

consumption is to divide the 256 bytes S-Box into smaller 

tables with the aim being to reduce the switching activities. 

The use of smaller LUTs of different sizes ranging from 16 to 

128 bytes was examined in [10]. However, only the result for 

the 16 bytes size was reported (sub16-lut). The solution 

proposed in [8] not only uses small LUTs, but also reduces 

execution time at the expense of doubling the chip area 

required.   

Unlike the serial approach reported in [10], the approach in 

[8] explored the use of 32 parallel small S-Boxes of size 16 

bytes each. The first group of LUT (16 LUTs) use the 

left-most 4 bits of the state byte to distinguish among16 tables 

(Table 0 to Table F) and the right-most 4 bits of the state byte 

as the address to obtain the value in a given table. This is done 

in parallel for all the bytes of a state. If the four left most bits 

of two or more bytes were identical then a conflict occurs. 

Conflict is resolved by using the second group of 16 S-Box 

tables indexed by the right-most 4 bits of the State byte (tables 

0’ to Table F’). In that case, the left-most 4 bits of the byte are 

used as the address to obtain the value in a given table. These 

steps are repeated until all bytes are substituted. Based on this 

approach the average expected speed up is 8 times faster than 

the classical serial implementation.  
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The main drawback of the approach in [8] is the possibility 

of conflict in accessing a given table. In this case, the author 

suggested using a busy bit with each table such that if the busy 

bit is ON, then it means that the table is currently in use and 

cannot be accessed in the current cycle. This will lead to a 

slowdown in the rate at which the S-Box substitution is 

performed. In the next Section, we propose an S-Box 

architecture which overcomes the conflict problem in 

addition to achieving higher throughput. 

 

 
(a) Totally serial s-box architecture. 

 

 
(b) Totally parallel s-box architecture 

Fig. 3. Serial versus parallel s-box architecture. 

 

IV. PROPOSED S-BOX ARCHITECTURE 

The basic idea of the proposed scheme is to perform byte 

substitution of an AES state using a number of 2×2 tables that 

are organized in groups. Each group has 16 small s-boxes of 

size 2×2 organized in a bigger table of four rows and four 

columns. The small tables are selected based on row and 

column values. The size of each group is 64 bytes, which is 

one fourth the regular S-box size (Refer to Fig. 4). Each byte 

needs a minimum of four groups to cover all values of the 

original S-box. More groups that are multiples of four can be 

used to achieve parallelism. If we consider the use of 16 

groups, then 16 bytes can be processed simultaneously.  

The advantage of using groups of small tables is two-fold. 

On one hand it simplifies table indexing and on the other hand 

it leads to reduced power consumption. These are achieved at 

the expense of size (area) increase 4 times the original S-box 

size. 

The required algorithm for byte substitution is as follows: 

For each byte in a state do:  

 

 

 

 

 

V. PROPOSED S-BOX CMOS IMPLEMENTATION 

 In order to choose one group out of four, a 2-to-4 

decoder is used. Two more 2-to-4 decoders are required to 

choose the row and column within the selected group. We 

choose to use NAND decoders to comply with CMOS 

technology. The decoder circuit is shown in Fig. 5(a). Once 

decoding is done, the LUT to be used is known. The two right 

most bits of the byte processed are used as an index to the 2×2 

LUT. These two bits are connected to the select lines of a 

4-to-1 multiplexer having the table data as inputs and the 

S-Box substitution value as the output. All the 4-to-1 

multiplexers implemented are constructed by three 2-to-1 

multiplexers for simplicity (Refer to Fig. 5(b)). The following 

is an illustration of three different ways to implement 2-to-1 

multiplexers: 

A. Gate-Level Implementation (NAND-NAND) CMOS 

Implementation 

Each CMOS NAND gate consists of four transistors. Three 

NAND gates and an inverter can be used as shown in Fig. 5(c) 

to perform the operation of a 2-to1 MUX. For our 2×2 LUT 

we need a 4-to-1 MUX which can be constructed using three 

2-to-1 MUX as shown in Fig. 5(b). 

B. Gate-Level Implementation (NAND-NAND) CMOS 

Implementation 

Pass transistor logic can be used as shown in Fig. 5(d) to 

implement a 2-to-1 multiplexer. The inverter added at the 

output to retain logic level. The 4-to-1 multiplexer needed for 

S-Box LUT is constructed using three 2-to-1 multiplexers. 

C. Transmission Gates Implementation 

Transmission gates are simply switches which can act as a 

two-to-one multiplexer as shown in Fig. 5(e). In this case the 

number of transistors required is less than the former 

implementations. Again, 4-to-1 multiplexers are constructed 

out of 2-to-1 ones. 

 

VI.  DELAY AND AREA ESTIMATION 

All results reported in this paper are based on using 0.35 

μm CMOS technology of AMS Corp. [16]. Since the 

decoding part for our three proposed solutions is the same, the 

associated delay and area are consequently identical. 

Remember that four bytes of a state are processed in parallel. 

This implies that 72 NAND gates are required, as every byte 

needs three 2-to-4 decoders. Each 2-to-4 decoders requires 

six NAND gates assuming that inverters in implemented using 

NAND gates. Area is measured using gate equivalents (GE), 

where one gate equivalent corresponds to one NAND2 gate. 
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1) Use the left-most two bits to select a group of four, 

2) Use the next left-most bits to select a row within a group, 

3) Use the next left-most bits to select a column—The 

selected column and the row identified in steps 2 above 

intersect at a point that identifies a specific 2×2 table, 

4) Use the two right-most bits to lookup the table and obtain 

substitution value. 



According to the CMOS library used one NAND2 gate has 

0.1 ns delay. Given that decoding of the row and column are 

done in parallel, the total decoding time is 1.6 ns for one AES 

state. 

 
(a) The first four bytes of a given state are processed. 

 

 
(b) Selecting a group. 

 

 
(c) Identifying the row, the column, and the LUT containing the 

substitution value 

Fig.  4. An illustrative example of the proposed S-Box architecture. 

 

(a) 2-to-4 Decoder logic circuit. 

 

(b) 4-to-1 MUX using three 2-to-1 MUX. 

 

(c) NAND-based realization of 2-to-1 MUX. 

 
 

(d) Pass transistor based realization of 

2-to-1 MUX. 

(e) Transmission gate based 

realization of 2-to-1 MUX. 

 

Fig. 5. The CMOS gate-level realization. 

For the first proposed implementation, three 2-to-1 

multiplexers are needed for each byte. This means that we 

need twelve 2-to-1 multiplexers to process four bytes of a 

state, that is 48 GEs given that each 2-to-1 multiplexer is 4 

GEs. The delay for multiplexing is four times the delay of one 

4-to-1 multiplexer, that is 2.4 ns.  

For the second proposed implementation, two pass 

transistors which construct a 2-to-1 multiplexer can be 

estimated to consume an area equivalent to ½ of a NAND2 

area. We need an inverter for the selector which has a size of 1 

GE. In addition to two cascaded inverters at the output to 

retain the logic value. The two inverters consume the area of 2 

GEs. The sum is 3.5 GEs for each 2-to-1 multiplexer yielding 

a total of 42 GEs (12×3.5). The delay of one 2-to-1 

multiplexer is the delay of the transistors plus the delay of the 

two inverters, that is 0.25 ns. Therefore, the total delay can be 

estimated as 2 ns (8×0.25).  

In the third proposed implementation, each transmission 

gate consumes an area equivalent to ½ of a NAND2. The 

inverter for the selector consumes 1 GE. The sum is 2 GEs per 

2-to-1 multiplexer. This gives a total area of 24 GEs (12×2). 

The critical path delay for the data of the 2-to-1 multiplexer is 

estimated as the delay of one two input NAND gate yielding a 

total of 0.8 ns (8×0.1). The delay and area estimations of the 

three possible implementations are summarized in Table I. 

 
TABLE I: DELAY AND AREA ESTIMATION OF THE PROPOSED SOLUTIONS 

Implementation 

First 

Propose

d 

Solution  

(NAND) 

Second 

Proposed 

Solution 

(Pass 

Transistor) 

 Third 

Proposed 

Solution 

(Transmission 

Gate) 

Decoders Delay (ns) 1.6 1.6 1.6 

Multiplexers Delay (ns) 2.4 2 0.8 

Total Delay (ns) 4 3.6 2.4 

Decoders Area (GE) 72 72 72 

Multiplexers Area (GE) 48 42 24 

Total Area (GE) 120 114 96 
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VII. COMPARISON

Based on the minimum values of area and delay obtained 

from [10], a comparison is made between various AES S-Box 

techniques (Refer to Table II).

TABLE II: DELAY AND AREA COMPARISONS

Implementation Critical Path Delay (ns)
Area 

(GE)

Satoh [4] 9 360

Wolkerstorfer [11] 8 382.5

Canright [3] 8 281.3

hw_lut [5] 3 1203.8

sub16_lut [5] 4 1912.5

Bertoni [12] 3 1608.8

Our Proposed 1 4 120

Our Proposed 2 3.6 114

Our Proposed 3 2.4 96

As can be seen from the table, when it comes to critical path 

delay, the third proposed implementation (using 

Transmission Gates) outperforms Bertoni's [12] and hw_lut 

[5] approaches by 20%. And when it comes to gate equivalent 

(GE) the third proposed implementation requires about one 

third the gate equivalent (GE) used by Canright's [3] compact 

implementation.

VIII. CONCLUSION

A highly parallel area efficient S-Box Architecture for AES 

Byte-Substitution is introduced in this paper. The proposed is 

modular, compact, and is efficient in terms of time and area. 

The design uses parallelism and can be pipelined to maximize 

throughput and reduce delay. The authors are currently 

exploring those objectives as future work.
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