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Abstract—This study proposes an improved immune 

algorithm (IIA) with multiplier updating (MU) for power 

economic dispatch (PED) considering units with both of 

prohibited operating zones (POZ) and spinning reserve. The IIA 

equipped with an accelerated operation and a migration 

operation can efficiently search and actively explore solutions. 

The MU is introduced to handle the equality and inequality 

constraints of the power system. To show the advantages of the 

proposed algorithm, three realistic examples are investigated, 

and computational results of the proposed method are compared 

with that of previous methods. The proposed approach (IIA-MU) 

integrates the IIA and the MU, revealing that the proposed 

approach has the following merits - ease of implementation; 

applicability to non-convex fuel cost functions; better 

effectiveness than previous methods; better efficiency than 

immune algorithm with the MU (IA-MU), and the requirement 

for only a small population in applying the optimal PED 

problem of generators with POZ and spinning reserve. 

 
Index Terms—Immune algorithm, Power economic dispatch, 

Prohibited operating zones, Spinning reserve.  

 

I. INTRODUCTION 

The PED problem is one of the most important 

optimization systems in a power system for allocating 

generation among the committed units to satisfy the system 

constraints imposed and minimize the energy requirements 

[1]. Power generators may possess some POZ between their 

minimum and maximum generation limits, because of the 

practical limitations of power plant elements. Operating in 

those zones may cause amplification of vibrations in a shaft 

bearing, which must be avoided in practice. The PED problem 

becomes a non-convex optimization problem because the 

prohibited regions separate the decision space into disjoint 

subsets constituting a non-convex solution space [2]. 

Some approaches have been adopted to resolve such PED 

problems with POZ. Lee et al. [2] decomposed the 

non-convex decision space into a small number of subsets 

such that each of the associated dispatch problems, if feasible, 

was solved via the conventional Lagrangian relaxation 

approach. Fan et al. [3] defined a small and advantageous set 

of decision space with respect to the system demand, used an 

algorithm to determine the most advantageous space, and then 

utilized the λ-δ iterative method to find the feasible optimal 
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dispatch solution. For infeasible solutions, they re-dispatch 

the units using some heuristic rules to probe the neighborhood 

for feasibility. Su et al., [4] employed a linear input-output 

model for neurons, enabling the development of an 

operational model for rapidly resolving the PED problems. 

Yalcinoz et al. [5] proposed an improved Hopfield neural 

network that used a slack variable technique to handle 

inequality constraints by mapping process for obtaining the 

weights and biases. Chiou [6] used a hybrid differential 

evolution (HDE) with variable scaling (VS-HDE) for the PED 

problem with the POZ. 

IIA [7] is inspired by immunology, immune function and 

principles observed in nature. IIA is a very intricate biological 

system which accounts for resistance of a living body against 

harmful foreign entities. It is now interest of many researchers 

and has been successfully used in various areas of research [8], 

[9]. 

 

II.  SYSTEM FORMULATION 

Generally, the PED problem with some units possessing 

POZ can be mathematically stated as follows [10]: 
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where Fi(Pi) is the fuel cost function of the unit i, Pi is the 

power generated by unit i, Np is the number of on-line units, 

and Ω is the set of all on-line units. The PED problem 

subject to the following constraints: 

A. Power Balance Constraint 

The equality constraint of the power balance is given by: 
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where Pd is the system load demand, and PL is the 

transmission loss. 

B. System Limits 

The generating capacity constraints are written as: 

 

piii niPPP ,,1,maxmin                (3) 

 

where Pi
min

 and Pi
max

 are the minimum and maximum power 

outputs of unit i. 

Improved Immune Algorithm for Power Economic 

Dispatch Considering Units with Prohibited Operating 

Zones and Spinning Reserve 

Chao-Lung Chiang 

320

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 4, August 2014

DOI: 10.7763/IJET.2014.V6.720



  

C. System Spinning Reserve Constraints 

Units with spinning reserve can be are given as: 

 

 
i
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 iSi 0                       (6) 

 

where Si is spinning reserve contribution of unit i in MW, SR 

stands system spinning reserve requirement in MW, Pi
max

 is 

maximum generation limit of unit i, Si
max

 denotes maximum 

spinning reserve contribution of unit i, and   is set of all 

on-line units with prohibited zones. Due to a unit with 

prohibited zones may operate into one of its zones while 

system load is regulating, it is shown in (6) that this kind of 

units should not contribute any regulating reserve to the 

system. In other words, system spinning reserve requirement 

must be satisfied by way of regulating the units without 

prohibited zones. 

D. Units with POZ 

The unit operating range denotes the effects of a generator 

with POZ [2]: 
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where Pi
max

 is maximum generation limit of unit i, l

j,iP  and u

j,iP  

respectively are the lower and upper bounds of prohibited 

zone j of unit i, ni is the number of prohibited zones in unit i, 

and   is set of all on-line units with prohibited zones. 

Clearly, the entire operating region of a dispatching unit with 

ni prohibited zones is divided into (ni+1) disjoint operating 

sub-regions. The total number of decision sub-spaces caused 

by that division may be counted as follows: 





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Equation (5) shows that the total number of decision 

sub-spaces rises extremely quickly as the number of units with 

prohibited zones rises. 

 

III. THE PROPOSED IIA-MU 

A. The IIA 

In IA [9], mimics these biological principles of clone 

generation, proliferation and maturation. The main steps of IA 

based on clonal selection principle are activation of 

antibodies, proliferation and differentiation on the encounter 

of cells with antigens, maturation by carrying out affinity 

maturation process, eliminating old antibodies to maintain the 

diversity of antibodies and to avoid premature convergence, 

selection of those antibodies whose affinities with the antigen 

are greater. In order to emulate IA in optimization, the 

antibodies and affinity are taken as the feasible solutions and 

the objective function respectively.  

Generally, the IA involves two critical issues (evolutionary 

direction and population diversity). As the evolutionary 

direction is effective in searching, the strong evolutionary 

direction can reduce the computational burden and increase 

the probability of rapidly finding an (possibly local) optimum. 

As population diversity is increased, the genotype of the 

offspring differs more from the parent. Accordingly, a highly 

diverse population can increase the probability of exploring 

the global optimum and prevent a premature convergence to a 

local optimum. These two important factors are here balanced 

by both employing the accelerated operation and migration 

[11] in the proposed IIA that can determine an efficacious 

direction in which to search for a solution and simultaneously 

maintain an appropriate diversity for a small population.  

B. The MU 

Michalewicz et al., [12] surveyed and compared several 

constraint-handling techniques used in evolutionary 

algorithms. Among these techniques, the penalty function 

method is one of the most popularly used to handle constraints. 

In this method, the objective function includes a penalty 

function that is composed of the squared or absolute 

constraint violation terms. Powell [13] noted that classical 

optimization methods include a penalty function have certain 

weaknesses that become most serious when penalty 

parameters are large. More importantly, large penalty 

parameters ill condition the penalty function so that obtaining 

a good solution is difficult. However, if the penalty 

parameters are too small, the constraint violation does not 

contribute a high cost to the penalty function. Accordingly, 

choosing appropriate penalty parameters is not trivial. Herein, 

the MU [14] is introduced to handle this constrained 

optimization problem. Such a technique can overcome the ill 

conditioned property of the objective function. 

Considering the nonlinear problem with general constraints 

as follows: 
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where hk (x) and gk (x) stand for equality and inequality 

constraints, respectively. 

The augmented Lagrange function (ALF) [13] for 

constrained optimization problems is defined as: 
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where k and k are the positive penalty parameters, and the 

corresponding Lagrange multipliers )( 1 em,,    and 

)( 1 im,,   > 0 are associated with equality and 

inequality constraints, respectively. 

The contour of the ALF does not change shape between 

generations while constraints are linear. Therefore, the 

contour of the ALF is simply shifted or biased in relation to 

the original objective function, f(x). Consequently, small 
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penalty parameters can be used in the MU. However, the 

shape of contour of La is changed by penalty parameters while 

the constraints are nonlinear, demonstrating that large penalty 

parameters still create computational difficulties. Adaptive 

penalty parameters of the MU are employed to alleviate the 

above difficulties, and Table I presents computational 

procedures of the MU. More details of the MU have shown in 

[15]. 

Fig. 1 displays the flow chart of the proposed algorithm, 

which has two iterative loops. The ALF is used to obtain a 

minimum value in the inner loop with the given penalty 

parameters and multipliers, which are then updated in the 

outer loop toward producing an upper limit of La. When both 

inner and outer iterations become sufficiently large, the ALF 

converges to a saddle-point of the dual problem [15]. 

Advantages of the proposed IIA-MU are that the IIA 

efficiently searches the optimal solution in the economic 

dispatch process and the MU effectively tackles system 

constraints. 

 
TABLE I: COMPUTATIONAL PROCEDURES OF THE MU 

Step 1. Set the initial iteration 0l . Set initial multiplier, 

ek
l
k

mk ,...,1,00  , ik
l
k

mk ,...,1,00  , and the initial 

penalty parameters, αk>0, k=1,…,me andβk>0, k=1,…,mi . Set 

tolerance of the maximum constraint violation,εk (e.g. εk =1032), and 

the scalar factors, ω1 >1 andω2 >1 . 

Step 2. Use a minimization solver, e.g. IIA, to solve  ll
a xL  ,, . Let ,l

b
x  be 

a minimum solution to the problem  ll
a xL  ,, . 

Step 3. Evaluate the maximum constraint violation as 

   kk
k

k
k

k gh   ,maxmax,maxmaxˆ , and establish the 

following sets of equality and inequality constraints whose 

violations have not been improved by the factorω1: 
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Step 4. If kk  ˆ , let kk  2 and 2
1 / l

k
l
k

  for all EIk , let 

kk  2 and 2
1 / l

k
l
k

  for all IIk , and go to step7. 

Otherwise, go to step 5. 

Step 5. Update the multipliers as follows:  
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Step 6. If 1/ˆ  kk  , let kk  ˆ and go to step 7. Otherwise, let 

kk  2 and 2
1 / l

k
l
k

  for all EIk , and let kk  2  

and 2
1 / l

k
l
k

  for all IIk . Let kk  ˆ and go to step 7. 

Step 7. If the maximum iteration reaches, stop. Otherwise, repeat steps 2 to 6. 

 

IV. SYSTEM SIMULATIONS 

This section investigates three examples to illustrate the 

effectiveness of the proposed algorithm with respect to the 

quality of the solution obtained. The first example compares 

the proposed IIA-MU with the previous methods and immune 

algorithm with the MU (IA-MU) in terms of production cost 

for a 5-unit system. The second and third examples compare 

the IIA-MU with the previous methods and IA-MU in terms 

of production cost for a 15-unit system, without and with 

transmission loss, in which four units (Units 2, 5, 6 and 12) 

have POZ and spinning Reserve.  

The proposed IIA-MU was directly coded using real values, 

and the computation was implemented on a personal 

computer (P5-3.0 GHz) in FORTRAN-90. Setting factors 

utilized in these examples were as follows: the population size 

Np was set to 5 and 10 for the proposed IIA-MU and IA-MU, 

respectively. Iteration numbers of the outer loop and inner 

loop were set to (outer, inner) as (50, 5000) for the proposed 

IIA-MU in all examples. For most setting of the parameters, 

the proposed method is able to converge satisfactorily. 

 
Fig. 1. The flow chart of the IIA-MU. 

*No: maximum number of iterations of outer loop 

**Ni: maximum number of iterations of inner loop 

 
TABLE II: COMPUTATIONAL RESULTS OF THE PREVIOUS METHODS AND 

THE PROPOSED IGAMUM FOR EXAMPLE 1 

Items 
- Method 

[3] 

EP Method 

[16] 
IIA-MU 

P1 (MW) 

P2 (MW) 

P3 (MW) 

P4 (MW) 

P5 (MW) 

Total power (MW) 

Total cost ($/h) 

238.33 

210.00 

250.00 

238.33 

238.33 

1,174.99 

11,492.51 

240.00 

210.00 

250.00 

223.07 

251.93 

1,175.00 

11,493.23 

238.13 

210.00 

250.00 

238.46 

238.41 

1,175.00 

11,492.50 

 

A. 5-Unit Test System 

This example system has five on-line units with the 

following input-output cost functions: 

   hPPPPF iiiii /$10101.08350 362       (11) 

where i =1, …, 5. The operating limits are 120 MW < Pi < 

450MW for i =1, 2, …, 5. Units 1, 2 and 3 have POZ as 

defined in [3], these zones result in a non-convex decision 

space composed of 27 convex sub-spaces. The system load 

demand PD and spinning reserve SR are 1175 MW and 100 

MW, respectively. 

For comparison, Table II lists the computational results of 

the proposed IIA-MU, the - Method [3], and the EP 

Method [16]. The total cost obtained by the IIA-MU is 

satisfactory compared with that obtained by the - method [3] 

and the EP method [16]. 
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Fan et al., [3] defined a small and advantageous set of 

decision space with respect to the system demand, used an 

algorithm to determine the most advantageous space, and then 

utilized the λ-δ iterative method to find the feasible optimal 

dispatch solution. For infeasible solutions, they re-dispatch 

the units using some heuristic rules to probe the neighborhood 

for feasibility. The IIA-MU combines the IIA and the MU. 

The IIA can efficiently search and actively explore solutions, 

the MU avoids deforming the augmented Lagrange function 

and resulting in difficulty of solution searching. Unlike the 

method [3], it requires neither the decomposition of the 

non-convex decision space nor the determination of the 

advantageous set of decision space before solving via this 

conventional approach. 

B. 15-Unit Test System without Transmission Loss 

To further demonstrate the effectiveness of the proposed 

method, a larger practical system of units with POZ having 

non-convex cost functions and spinning reserve was 

addressed in this example, which is identical to that used by 

Lee et al. [2]. The remaining units will contribute with 

regulating reserves [17]. This system supplies a 2650MW 

load demand with 200MW as spinning reserve. This system 

has 15 on-line units supplying a system demand of 2650MW. 

Among these dispatching generators, units 2, 5 and 6 have 

three POZ, and unit 12 has two POZ, forming 192 decision 

sub-spaces for this realistic system. The implementation of 

this example can be represented as follows: 
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This complex optimization problem contains one objective 

function with fifteen variable parameters, (
1521 P,,P,P  ), one 

equality constraint, (h1) and five inequality constraints, since 

four units have the POZ, (g1 to g4), and the spinning reserve 

constraint (g5).  

Table III lists five algorithms of this problem with POZ and 

spinning reserve constraints obtained by two - methods, 

two Hopfield methods and the proposed IIAE-MU. 

Computational results demonstrate that the proposed method 

is a little better than the two - methods and the Hopfield 

method. Even though the Hopfield method has a little less 

total cost than the proposed method, but its total generated 

power is 2649.3 MW, which is 0.7 MW less than the system 

load demand. In Table III, the sum_Si and CPU_time stand 

the sum of spinning reserve and simulation time obtained 

from the method, respectively. 
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TABLE III: COMPARED RESULTS WITHOUT LOSS OF THE PREVIOUS METHODS, IIA-MU AND THE IIA-MU

Items - [2] -[3] Hopfield[4] Hopfield 

[5]

IA-MU IIA-MU

P1 (MW)

P2 (MW)

P3 (MW)

P4 (MW)

P5 (MW)

P6 (MW)

P7 (MW)

P8 (MW)

P9 (MW)

P10 (MW)

P11 (MW)

P12 (MW)

P13 (MW)

P14 (MW)

P15 (MW)

450

450

130

130

335

455

465

60

25

20

20

55

25

15

15

450.0

450.0

130.0

130.0

335.0

455.0

465.0

60.0

25.0

20.0

20.0

55.0

25.0

15.0

15.0

449.4

450

130

130

335

455

464.9

60

25

20

20

55

25

15

15

454.6976

454.6976

129.3512

129.3512

244.9966

459.6919

464.6916

60.0938

25.0496

89.1023

20.0338

63.1815

25.0527

15.0044

15.0044

449.5282 

450.3446 

130.0000 

130.0000 

335.0000 

455.1289 

464.9983 

60.0000 

25.0000 

20.0000 

20.0000 

55.0000 

25.0000 

15.0000 

15.0000

449.7871 

450.1138 

130.0000 

130.0000 

335.0002 

455.0763 

465.0000 

60.0000 

25.0000 

20.0000 

20.0000 

55.0226 

25.0000 

15.0000 

15.0000

TP (MW) 2650 2650 2649.3 2650.0002 2650.0000 2650.0000

sum_Si 

(MW)

235 235.0 235.7 231.8996 235.4735 235.2129

TC ($/h) 32,549.8 32,544.99 32,538.4 32,568 32,544.991

0

32,544.9820

CPU_time(s) - - - - 9.17 5.24



  

Table III reveals that the proposed IIA-MU not only has the 

lowest total cost (TC) of all methods tested, but also generates 

the exact total power (TP) for the system constraints of (14) 

and (15), showing that the proposed algorithm is more 

effective than other methods for the practical PED problem 

with POZ. 

C. 15-Unit Test System with Transmission Loss 

Moreover, Table IV shows compared results obtained with 

the previous variable scaling HDE (VSHDE) [6], the GA [6], 

simulated annealing (SA) [6] and the propose IIA-MU for the 

system with the transmission loss. The result obtained by the 

VSHDE method is an infeasible solution, because generations 

of Unit 2 and Unit 5, (P2 and P5), are located in POZ, 

respectively. The proposed algorithm also yields better 

solution quality than other methods in the PED problem 

considering both of POZ and spinning reserve. 

TABLE
 
IV:

 
COMPARED RESULTS CONSIDERING LOSS OF THE PREVIOUS METHODS,

 
IIA-MU AND THE IIA-MU

 

Items
 

GA[6]
 

SA[6]
 

HDE[6]
 

VSHDE[6]
 

IA-MU
 

IIA-MU
 

P1
 
(MW)

 

P2
 
(MW)

 

P3
 
(MW)

 

P4
 
(MW)

 

P5
 
(MW)

 

P6
 
(MW)

 

P7
 
(MW)

 

P8
 
(MW)

 

P9
 
(MW)

 

P10
 
(MW)

 

P11
 
(MW)

 

P12
 
(MW)

 

P13
 
(MW)

 

P14
 
(MW)

 

P15
 
(MW)

 

415.85
 

450.00
 

111.87
 

121.46
 

340.84
 

455.00
 

333.78
 

81.84
 

115.48
 

60.59
 

31.78
 

55.00
 

70.39
 

26.22
 

36.34
 

413.22
 

167.67
 

99.91
 

21.36
 

449.20
 

296.28
 

360.15
 

287.99
 

155.27
 

138.81
 

47.85
 

76.97
 

81.91
 

52.94
 

52.95
 

455.00
 

336.16
 

128.39
 

129.92
 

420.00
 

418.73
 

443.03
 

60.00
 

41.42
 

107.17
 

20.00
 

79.59
 

36.98
 

22.02
 

15.00
 

454.74
 

424.96*
 

129.87
 

129.99
 

397.36*
 

500.00
 

464.75
 

60.00
 

25.89
 

20.75
 

20.00
 

75.86
 

25.06
 

15.13
 

15.00
 

454.6601 
 

454.7876 
 

129.8046 
 

129.8046 
 

150.0000 
 

459.7877 
 

378.1636 
 

60.0000 
 

58.0321 
 

159.3928 
 

70.3950 
 

79.7293 
 

51.1945 
 

15.0489 
 

54.7096
 

455.0000 
 

374.9743 
 

130.0000 
 

130.0000 
 

461.3456 
 

460.0000 
 

348.9075 
 

60.0000 
 

25.0000 
 

97.0588 
 

20.0000 
 

80.0000 
 

25.0000 
 

17.4837 
 

28.6025
 

TP
 
(MW)

 

PL(MW)
 

2,704.46
 

56.45
 

2,702.49
 

52.49
 

2,713.40
 

63.41
 

2,719.35
 

69.35
 

2,705.5102
 

55.5102
 

2,713.3724
 

63.3724
 

sum_Si (MW)
 

307.86
 

218.90
 

246.65
 

230.53
 

201.1845
 

263.9138
 

TC
 
($/h)

 
33,538.27

 
34,174.45

 
33,343.37

 
33,282.17# 33,454.3210

 
33,329.5860

 

CPU_time(s)
 

-
 

-
 

-
 

-
 

9.48
 

5.63
 

* An unit loading in a prohibited zone 
# An infeasible result 

V.

 

  CONCLUSION

 

An efficient method for solving the optimal PED problem 

considering both

 

of POZ

 

and spinning reserve has been 

proposed, herein. The proposed approach integrates the IIA

 

and the MU, showing that the proposed algorithm has the 

following merits -

 

1) ease of implementation; 2) applicability 

to non-convex fuel cost functions

 

of the POZ

 

and spinning 

reserve; 3) better effectiveness than the previous method; 4) 

better efficiency than IA-MU,

 

and 5) the need for only a 

small population. System simulations have shown that the 

proposed approach has the advantages

 

mentioned above for 

solving optimal PED problems of the system with POZ

 

and

 

spinning reserve.

   

ACKNOWLEDGMENT

 

Financial support given to this research by the National 

Science Council, Taiwan, ROC. under Grant No. 

NSC100-2632-E-252-001-MY3 is greatly appreciated. 

REFERENCES

 

[1]

 

F. Fang, N. D. Xiao, L. Yan, and Q. Huan, “The study on power 

system load regulation capacity economic analysis,” AISS: Advances 

in Information Sciences and Service Sciences, vol. 4, no. 1, pp. 77 -84, 

2012.

 

[2] F. N. Lee and A. M. Breipohl, “Reserve constrained economic 

dispatch with prohibited operating zones,” IEEE Trans. on Power 

System, vol. 8, no.1, pp. 246-254, 1993. 

[3] J. Y. Fan and J. D. Mcdonald, “A practical approach to real time 

economic dispatch considering unit’s prohibited operating zones,” 

IEEE Trans. on Power System, vol. 9, no. 4, pp. 1737-1743, 1994. 

[4] C. T. Su and G. J. Chiou, “A Hopfield network approach to economic 

dispatch with prohibited operating zones,” in Proc. the IEEE 

International Conf. on Energy Management and Power Delivery, 

1995, pp. 382-387. [5]

 T. Yalcinoz, H. Altun, and U. Hasan, “Constrained economic 

dispatch with prohibited operating zones: A Hopfiled neural network 

approach,” in Proc. IEEE 10th Mediterranean Electro technical Conf. 

MEleCon, 2000, vol. 2, pp. 570-573. 

[6] J. P. Chiou, “Variable scaling hybrid differential evolution for 

large-scale economic dispatch problems,” Electric Power Systems 

Research, vol. 77, pp. 212-218, 2007. 

[7] M Basu, “Hybridization of artificial immune systems and sequential 

quadratic programming for dynamic economic dispatch,” Electric 

Power Components and Systems, vol. 37, pp. 1036-1045, 2009. 

[8] K. M. Woldemariam and G. G. Yen, “Vaccine-Enhanced artificial 

immune system for multimodal function optimization,” IEEE Trans. 

on Man and Cybernetics- Part B: Cybernetics, vol. 40, pp. 218-228, 

2010. 

[9] E. J. Hunt and D. E. Cooke, “Learning using an artificial immune 

system,” Journal of Network and Computer Applications, vol. 19, pp. 

189-212, 1996. 

[10] A. J Wood and B. F. Lenberg, Power Generation Operation, and 

Control, New York, John Wiley & Sons, 1996. 

[11] C. L. Chiang, “Improved genetic algorithm for power economic 

dispatch of units with valve-point effects and multiple fuels,” IEEE 

Trans. on Power Systems, vol. 20, no. 4, pp. 1690-1699, 2005. 

[12] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for 

constrained parameter optimization problems,” Evolutionary 

Computation, vol. 4, no. 1, pp. 1-32, 1996. 

324

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 4, August 2014



  

[13] M. J. D. Powell, “Algorithms for nonlinear constraints that use 

Lagrangian function,” Math. Programming, vol. 14, pp. 224-248, 

1978. 

[14] C. L. Chiang, C. T. Su, and F. S. Wang, “Augmented Lagrangian 

method for evolutionary optimization of mixed-integer nonlinear 

constrained problems,” International Math., vol. 2, no. 2, pp. 

119-154, 2002. 

[15] C. L. Chiang and C. A. Wang, “Hybrid differential evolution for 

cogeneration economic dispatch problem,” in Proc. 2010 

International Conference on Machine Learning and Cybernetics 

(ICMLC 2010), Qingdao, Shandong, China, 2010, vol. 3, pp. 

1560-1565. 

[16] T. Jayabarathi,  G. Sadasivam, and V. Ramachandran, “Evolutionary 

programming based economic dispatch of generators with prohibited 

operating zones,” Electric Power Systems Research, vol. 52, pp. 

261-266, 1999. 

[17] W. M. Lin, F. S. Cheng, and M. T. Tsay, “Nonconvex economic 

dispatch by integrated artificial intelligence,” IEEE Trans. on Power 

System, vol. 16, no. 2, pp. 307-311, 2001. 

 

 

C. L. Chiang received his M.S. degree in automatic 

control engineering, from Feng Chia University, 

Taichung, Taiwan in 1991, and Ph. D. degree from 

institute of electrical engineering, National Chung 

Cheng University, Chia-Yi, Taiwan in 2004. He is 

now a professor of Nan Kai University of 

Technology, Nan-Tou, Taiwan, ROC. His research 

interests are in the control theory, applications of the 

optimization, evolutionary algorithms and power 

economic dispatch 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

325

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 4, August 2014




