

Abstract—Software testing is an important activity in

software development. Software testing requires design and
creation of test cases for testing the system; therefore, test cases
are important for software testing. Moreover, database
applications become an important part of software and are
increasingly complex. If the database schema is changed,
database schema can affect test cases which are principal of
software testing. It is not easy to specify affected test cases that
are still usable, or unusable. So, if a software tester uses
unusable test cases, this can lead to various troubles such as
wasted effort, as well as wasted time and cost to find affected
test cases for the generation of new test cases. In this paper, we
have presented a framework that is planned to implement tool.
Furthermore, this framework have displayed the method to
support finding impacts on test cases from database schema
changes. The approach of finding impacts on test cases based on
black-box testing by using use cases.

Index Terms—Software testing, test case, use case, database
schema change

I. INTRODUCTION
Software testing [1] is an important activity in the software

development life cycle. It requires a high cost and effort to
perform, because it requires generation of test cases, which
have to show correctness of a system. Therefore, test cases
are one of significant factors in software testing. Moreover,
database applications become popular and an important part
of software, especially database schema, which is a main
component of database. Database scheme changes can
happen all the time. For instance, some attributes in a table
are dropped, or some tables are added into the schema. They
affect other software components, including test cases. Some
affected test cases are still usable, but others are not. If a
software tester uses an unusable test case to test the software,
this can lead to many problems such as wasted effort for the
software testing process, as well as wasted time and cost to
find affected test cases for the generation of new test cases.

From many studies [2]-[4] approaches analysis of impacts
from database schema changes, most analysis processes are
based on source code or white-box testing [5], [6] techniques.
Moreover, they focus on increasing performance and
accuracy of database schema impact analysis. Therefore, this
paper presents a framework of test case impact analysis for
database schema changes, and focuses on black-box testing
[5], [6] techniques by using use cases.

Manuscript received June 14, 2013; revised August 7, 2013.
The authors are with the Software Engineering Laboratory Center of

Excellence in Software Engineering, Faculty of Engineering, Chulalongkorn
University, Bangkok, Thailand (e-mail: jiratchaya.jinae@gmail.com;
Taratip.S@chula.ac.th).

The paper is organized as follows. Section II reviews
related works. Section III describes use case description,
Relational database constraints is defined in Section IV,
while Section V explains the approach of this framework.
Finally, Section VI summarizes conclusions and future work.

II. RELATED WORK
A. Karahasanovic [2] developed a tool called “Schema

Evolution Management Tool” (SEMT) for finding the impact
of schema changes upon object-oriented applications. This
tool displays the components of the database schema as a
graph. Furthermore, this tool identifies impact at the field and
method levels.

A. Maule, W. Emmerich and D. Rosenblum [3] presented
a static program analysis technique to identify the impact of
relational database schema changes on object-oriented
applications. This research developed the Schema Update
Impact Tool (SUITE). The tool uses dataflow analysis to
extract all possible database interactions. The tool then uses
the information to predict the effects of database schema
changes. Furthermore, the program slicing is used for
reducing the size of the original program required for
analysis.

S. Gardikiotis and N. Malevris [4] presented a twofold
database schema change impact analysis, in terms of source
code and in terms of test suite. Also, a software tool called
“DATA” was developed for impact analysis of both the
source code and test cases. The program slicing technique is
used to analyze the source code by displaying it as a control
flow graph, and then test cases are analyzed.

III. USE CASE DESCRIPTION
Cockburn [7], [8] has presented many forms of use case

descriptions, such as the one-column table, which is
recommended for being easy to understand. This use case
description form has a successful scenario and may have
alternative scenarios for explaining unexpected events which
make the use case unsuccessful and not reach the goal.

Moreover, S. Leeraharattanarak [7] created a use case
description form, of which the main content is based on
Cockburn’s form, and is defined more necessary details as
shown in Table I.

IV. RELATIONAL DATABASE CONSTRAINTS
Relational database constraints are identified on database

by user. This paper is interested in entity integrity and
domain constraints [9].

A Framework for Test Case Impact Analysis of Database
Schema Changes Using Use Cases

Jiratchaya Jainae and Taratip Suwannasart

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

186DOI: 10.7763/IJET.2014.V6.693

A. Entity Integrity
Entity integrity is an integrity rule, where every table must

have a primary key and that the column or columns chosen to
be the primary key should be unique and not null.

B. Domain Constraint
Domain Constraint is an integrity rule, where a domain of

possible values should be associated with every attribute.
These domain constraints are the most basic form of integrity
constraint. The domain constraints consist of data type
(Character, Integer, Double, Boolean etc.), format and range.

TABLE I: USE CASE DESCRIPTION [7]

Use case no: 1
Use case name: Add contact
Description: Add new contact to list
Actor: Client

Pre-condition: Client enters the contact information: name, telephone,
address and zip code.

Required items
Item name Item type Item size Max value Min value

name String 20 - -
lastname String 10 - -
address String 35 - -
zip code Integer 5 10000 99999

Is abstract: 0
Success scenario
Condition no: 1 (name.length> 0)

Step Action
1

2

3

System submits the contact information from client.
System saves the contact information into database.
System shows a message. Saving new contact complete.

Alternative scenario
Condition no: 2.1 (name.length<= 0)

Step Action
2.1.1 System shows an error message. Please enter name.

Post-condition
:

0

2.1

System saves new contact and shows a
message. Saving new contact complete.
System shows an error message. Please enter
name.

V. APPROACH OF OUR FRAMEWORK
This paper presents a framework of impact analysis on test

cases affected by database schema changes using use cases.
The framework is shown in Fig. 1.

Our framework consists of 4 major steps as follows:

A. Analyzing Database Schema File
There are 2 input files for analysis in this framework.

These files are SQL scripts, consisting of create-scripts and
alter-scripts. An example of alter-scripts shown in Fig. 2.

1) Create-script
Create-script provides data for creating a database schema

or a database schema structure that consists of the schema
name, table name, attribute name, type of attribute, size of
attribute, null, unique, and primary key. An example is
shown in details in Table II.

Fig. 1. Overview of framework.

Fig. 2. Example of alter-scripts.

TABLE II: CREATE-SCRIPT INFORMATION

Table
name

Attribute
name

Attribute
type

Attribute
size Null Unique Primary

key

Customer

ID CHAR 10 Not
null Unique PK

name VARCHAR 50 Not
null - -

address VARCHAR 300 Null - -
telephone CHAR 15 Null - -

Employee
register DATE - Null - -

em_ID CHAR 5 Not
null Unique PK

2) Alter-script
Alter-script provides data for database schema changes.

The type of changes depends on SQL command, namely,
ADD, DROP and CHANGE. Changes cover entity integrity
rules (primary key, unique, and not null), and domain
constraints (table name, SQL command, attribute name, new
attribute name, attribute type and attribute size). An example
is shown in Table III.

This framework extracts create-scripts to get schema name,
table name, attribute name, type of attribute, size of attribute,
null, unique, and primary key, for recording information
about database schema structure. Furthermore, this
framework extracts alter-scripts to get table name, SQL
command, attribute name, new attribute name (if any),
attribute type, and attribute size, for recording information

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

187

about database schema changes.

B. Finding and Repairing Affected Use Cases
This step finds use cases that are affected by database

schema changes. Affected use cases are then repaired
according to the latest database schema that has been
changed. There are 2 sub steps explained as follows:

1) Finding affected use cases
This step uses the existing use case descriptions of the

system and information in Table II. The framework takes
each attribute in Table II to check for consistency with each
required item in the use case description. Consistency
analysis depends on the type of SQL command that is queried,
between DROP, ADD and CHANGE as shown as an activity
diagram in Fig. 3.

2) Repairing affected use cases
This step takes affected use cases found in 2.1 to be

repaired according to the latest database schema. The
framework uses the changed data to repair the use case
description in terms of required items and conditions of each
scenario. Moreover, the repair approach depends on the SQL
command as shown in Table IV.

C. Analyzing Affected Test Cases
Existing test cases, which were generated from the use

case description [7] are taken to be analyzed. An example of a
test case is shown in Table V. Therefore, affected test cases
are only generated from affected use cases.

Fig. 3. Consistency analysis for finding impact test cases.

TABLE IV: AFFECTED USE CASE REPAIR APPROACH

Type of SQL
command Description

DROP
Data using DROP commands are deleted in the
required items and scenarios according to the new
database schema.

ADD
Data using ADD command is added, user has to add
more use case description in the required items and
scenarios according to the new database schema.

CHANGE
Data using CHANGE command is changed in the part
of required items and scenarios according to the new
database schema.

TABLE III: ALTER-SCRIPT INFORMATION

 SQL command Attribute name Attribute type Attribute size Null Unique Primary key

Table name

Customer
CHANGE name VARCHAR 35 Not null - -

DROP address VARCHAR 300 Not null - -

Employee

CHANGE register DATE - Not null - -

CHANGE em_ID CHAR 10 Not null Unique PK

ADD email VARCHAR 30 Null - -

TABLE V: EXAMPLE OF A TEST CASE
Use case no: 1

Test case no: 1.1

Version no: 1.0

Description:
Success scenario
(member_ID.length > 0)&&(member_name.length >0)&&(member_ID>=“0000000000”)&&
(member_ID =< “9999999999”)

Type: Valid

Input

Name Value

member_ID 4536731356

member_name nerslkd

member_address 234dhsKr3

member_tel 2314

date_register 11-23-2012

date_expire 09-13-2014

Expected output: System shows a message. “Saving new member complete.”

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

188

This step compares the input value of the test case with the
constraints of required items in the repaired use case
description. The analysis process is shown in Fig. 4.

Fig. 4. Affected test cases analysis.

In summary, there are 2 types of test cases that are

analyzed, shown in Table VI.

TABLE VI: TYPES OF TEST CASE THAT WERE ANALYZED

Type of test cases Description

Unaffected test
cases

This type is not affected by database schema
changes. The input values of these test cases are
still useable, because their values follow the
constraints of required items in the use case
description. So, new test cases do not need to be
generated.

Affected test cases

This type of test case is affected by database
schema changes. The values of these test cases are
unusable, because their values do not follow the
constraints of required items in the use case
description. So, new test cases need to be generated
instead.

D. Generating New Test Cases
This step generates new test cases to replace only affected

test cases. This paper applies the approach [7] to generate
new test cases for replacing affected test cases and we divide
the test cases that are generated into 2 types: valid and invalid.
An example of a valid test case is shown in Table VI.

VI. CONCLUSION AND FUTURE WORK
This paper presents a framework for test case analysis of

database schema changes. This framework focuses on black
box techniques by using use case description. First, we find

use cases affected by database schema changes. If affected
test cases are unusable, we will generate new test cases
according to the new database schema.

In the future, we plan to implement a tool analyzing of
database schema changes using use cases.

REFERENCES
[1] C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, “Test data

generation from uml state machine diagrams using Gas,” in Proc.
International Conference on Software Engineering Advances-ICSEA,
2007, pp. 47.

[2] A. Karahasanovic, “Identify impact of database schema on
application,” Industrial Systems Development Group, Department of
Informatics, University of Oslo, 2001.

[3] A. Maule, W. Emmerich and D. S. Rosenblum, “Impact analysis of
database schema changes,” in Proc. International Conference on
Software Engineering - ICSE, 2008, pp. 451-460.

[4] S. K. Gardikiotis and N. Malevris, “A two-folded impact analysis of
schema changes on database applications,” International Journal of
Automation and Computing, 2009, pp. 109-123.

[5] S. Leeraharattanarak, “Approach for automatically generating test
cases from use cases,” M.S. thesis, Dept. Com. Eng., Chulalongkorn
Univ., Bangkok, Thailand, 2005.

[6] A. Cockburn, Writing Effective Use cases, U.S.A: Addison-Wesley,
2000.

[7] T. Murnane, and K. Reed, “On the effectiveness of mutation analysis as
a black box testing technique,” in Proc. Software Engineering
Conference, 2001, pp. 12-20.

[8] M. Chan and S. Cheung, “Applying white box testing to database
applications,” CSTR, Hong Kong University of ER-Models to
Generate Test Cases, Science and Technology, 1999.

[9] P. Tongruk and T. Suwannasart, “A tool for generating test case from
relational database constraints testing,” in Proc. International
Conference on Computer Science and Information
Technology -ICCSIT, pp. 435-439, 2009.

Jiratchaya Jainae has got B.Sc. in Computer
Science, Thammasat University, BKK, Thailand,
2011

She is a young researcher from Thailand. She
specializes in software engineering. Currently, she is a
master student in computer engineering,
Chulalongkorn University. Her main research
interests include software testing and database.

Taratip Suwannasart has got her Ph.D in Computer Science, llinois
Institute of Technology, CHI, U.S.A, 1996 and M.Sc. in Computer Science,
Chulalongkorn University, BKK, Thiland, 1991.

She currently is associate professor at Chulalongkorn University. Her
areas of interest are Test Process Improvement, Test-Related Metrics,
Software Testing and Quality Assurance, Software Process Engineering,
Software Testing Techniques and Methods, and Test Management. She has
several papers on this subject, especially Software Testing and Quality
Assurance, and Software Engineering.

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

189

