
 

 

  
Abstract—A modified non–Fourier equation of bio-heat 

transfer based on the second-order Taylor expansion of 
dual-phase-lag model is proposed to estimating thermal damage 
in a laser-irradiated biological tissue. This non-Fourier bio-heat 
transfer equation involves the mixed-derivative terms and the 
high-order derivatives of temperature with respect to time. The 
thermal damage in the tissue is assessed with the rate process 
equation. The effects of blood perfusion and metabolic heat 
generation on thermal response and thermal damage are 
explored. There are mathematical difficulties in dealing with 
such a problem. A hybrid numerical scheme is extended to solve 
the present problem. The deviations of the results from the 
bio-heat transfer equation based on the linear form of the 
dual-phase-lag model are presented and discussed. 
 

Index Terms—Bio-heat transfer, dual-phase-lag mode, 
laplace transform, scattering tissue.  
 

I. INTRODUCTION 
The Pennes bio-heat equation describes the thermal 

behavior based on the classical Fourier’s law which depicts 
an infinitely fast propagation of thermal signal. In reality, the 
living tissues are highly non-homogenous and need a 
relaxation time to accumulate enough energy to transfer to 
the nearest element. As a result, to solve the paradox occurred 
in the Pennes model, the non-Fourier models of bio-heat 
transfer were proposed for the investigation of physical 
mechanisms and the behaviors in thermal propagation in 
living tissues [1,2]. In order to consider the effect of 
micro-structural interactions in the fast transient process of 
heat transport, a phase lag for temperature gradient absent in 
the thermal wave model was introduced [3]. The 
corresponding model is called the dual-phase-lag (DPL) 
model. Antaki [2] used the DPL model to interpret heat 
conduction in processed meat that was interpreted with the 
thermal wave model. Xu et al. [4] presented a system 
discussion on the application of the DPL model in the 
biothermomechanical behavior of skin tissue. Liu and his 
co-workers [5, 6] did an extension study for exploring 
whether the DPL thermal behavior exists in tissue. 

The heat transfer equation used in the above papers was 
developed with the linear form of the DPL model involving 
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the linear effects of the phase lag times. Recently, the 
non-linear effects of the phase lag times on transport 
phenomena were introduced for multi-carrier [7], [8]. The 
more rational prediction of temperature distribution is always 
needed in the development of thermal medical treatments. 
For a more general form, this paper develops a modified DPL 
equation of bio-heat transfer based on the second-order 
Taylor expansion. For convenience of statement, this paper 
calls it non-linear DPL equation. The non-linear DPL 
equation is a fourth order partial differential equation. There 
are mathematical difficulties in dealing with such an equation.  
The hybrid numerical scheme [9] based on the Laplace 
transform and the modified discretization technique is 
extended to solve the present problem. 

 

II.  PROBLEM FORMULATION 
In order to solve the paradox occurred in the classical heat 

flux model and to consider the effect of micro-structural 
interactions, the DPL model was suggested [3] with 

)()( Tq tTktq τ+∇−=τ+v                              (1) 

where T is the temperature, k the heat conductivity, q the heat 
flux, and t the time. τq means the phase lag of the heat flux 
and τT means the phase lag of the temperature gradient. 

Equation (1) is, usually, developed in the first-order Taylor 
series expansion. As the literature [4] did, this paper would 
develop (1) in the second-order Taylor series expansion for a 
more general form. Thus, it is rewritten as 
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In a local energy balance, the energy conservation 

equation of bio-heat transfer is described as 

rmbbbb qqTTcwq
t
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where t is time. ρ, c, and T denote density, specific heat, and 
temperature of tissue. bc  and bw  are, respectively, the 
specific heat and perfusion rate of blood. mq  is the metabolic 

heat generation and rq  is the heat source for spatial heating. 

bT  is the arterial temperature. 
Substituting (2) into the energy conservation (3) leads to 

the second-order DPL equation of bio-heat transfer with 
constant physiological parameters as the following: 
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As τT = 0, equation (4) undergoes to the hyperbolic heat 

transfer equation with negating second-order Taylor series 
expansion for τq. Deleting the second-order Taylor series 
expansions for τq and τT leads to the first-order DPL equation 
of bio-heat transfer. On the other hand, equation (4) would 
reduce to the Pennes equation for τq = τT = 0. 

Consider a broad laser beam with a uniform irradiance 
( inφ ) is applied normally to a finite slab of biological tissue 
with a thickness of L at time t = 0+. When the spot size of the 
broad laser beam is much larger than the thickness of the 
thermally affected zone for the time period of interest, a 1-D 
model would be sufficient for analyzing the thermal response 
of the heated medium [10], [11]. 

The 1-D form of (4) with constant thermal parameters is 
written as 
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When laser irradiation is strongly scattered in the tissue, 

laser heating serves as a spatially-varied body heat source 
that heats up the tissue. Under broad beam irradiance, the 
light distribution in scattering tissues is described with two 
exponentials as [12] 

 
)]/exp()/exp([)( 2211 δδφφ xdCxdCx in −−−=         (6) 

 
where the coefficients C1, d1, C2, d2 depend on the diffuse 
reflectance and can be obtained from the Monte Carlo 
solutions, ; δ the effective optical penetration depth, which is 
defined based on the diffusion theory as 
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where aμ  is the absorption coefficient and sμ is the 
scattering coefficient. The reduced scattering coefficient 

'
sμ is introduced as )1(' gss −= μμ , in which g is the 

anisotropy factor. 
Therefore, the laser volumetric heat source rq can be 

described as 

)(xq ar φμ=                                        (8) 

This study assumes the laser irradiance inφ is deposited as 

)]()([0 ttutuqin Δφ −−=                           (9) 

where 0q  is the laser intensity, tΔ is the laser exposure time, 

and u is step function. 
For strongly scattering tissues, laser heating is considered 

as a body heat source and the irradiated surface is regarded as 
being thermally insulated. The boundary conditions for this 
case thus become [10] 

 
q = 0 for x = 0, L when t >0                   (10) 

 
The studied problem has the initial conditions 
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For estimation of thermal damage in a living tissue, the 

damage parameter Ω was defined as 
 

)ln(
0

0

dCC
C
−

=Ω                                  (12) 

 
where C0 is the protein concentration in the normal tissue, Cd  
the concentration of denaturated protein. Welch [13] 
regarded the protein denaturation process as a chemical 
reaction. The Arrenius equation was used to evaluate the 
damage parameter: 
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where A is the frequency factor; E the energy of activation of 
denaturation reaction; R the universal gas constant, 8.314 
J/(mol K); T the absolute temperature of the tissue at the point 
where Ω is calculated; t1 the time at the onset of laser 
exposure; and tf the time when the thermal damage is 
evaluated [10]. 

When the protein denaturation reaches 63% of the 
molecules, which corresponds to Ω  = 1.0, the tissue is 
assumed to be irreversible damaged. The values of the 
frequency factor and the activation energy are given as: A = 
3.1×1098 s−1; E = 6.28×105 J/mol [13]. 

 

III. ANALYTICAL METHOD 
For a brief statement, the elevation variable H is defined as 

bTTH −= . As a result, Equation (4) is rewritten as 
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The initial conditions are also rewritten as 
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First, the Laplace transform method is employed to map 
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the transient problem into steady one. Equation (14) and the 
boundary conditions can be written in the transform domain 
based on the initial conditions (15) as 
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The function H is written as H~  in the Laplace domain. s is 
the Laplace transform parameter with respect to t. 

A modified discretization scheme is applied to numerically 
solve the present problem. Please refer to the literature [9] for 
the details of the present numerical scheme. 

 

IV. RESULTS AND DISCUSSION 
The values of relevant thermal parameters in the 

calculations are taken from the paper [10]. The 
thermalphysical properties of tissue are: k = 0.628 W/m⋅K, 

1000=ρ  kg/m3, and c = 4187 J/(kg⋅K). The thermalphysical 

properties and temperature of blood are: bρ = 1.06×103 

kg/m3, cb = 3860 J/(kg⋅K), wb = 1.87×10−3m3/(m3⋅s), Tb = 37 

◦C. The metabolic heat generation is qm = 1.19×103 W/m3. 
The optical properties are: 4.0=aμ cm-1, 120=sμ cm-1, g 
= 0.9, and Rd = 0.05. The values of L and ∆t are specified as 5 
cm and 5 s, respectively. The incident laser irradiance is 
considered, 0q = 30 W/cm2. The relaxation times are 

specified as τq = 15.5 s, τT = 10 s. 
T The adjustment of temperature is one of the functions of 

blood circulation in a living tissue. The effect of the perfusion 
rate on the bio-heat transfer is needed to pay attention. The 
effects of the blood perfusion rate on the temperature and 
thermal damage are demonstrated in Fig. 1. The blood 
perfusion develops a cooling function, since the tissue 
temperature is higher than the arterial temperature. At the 
initial times, the heat energy carried off by the perfusion 
blood is small. Therefore, the surface temperatures for wb = 
1.87×10-3 m3/(m3⋅s), wb = 2.8×10-3 m3/(m3⋅s) and wb = 
3.8×10-3 m3/(m3⋅s) do not have obvious difference. After that, 
the difference increases with time for the cooling function of 
the blood perfusion. The heat energy taken away by the blood 
is proportional to the perfusion rate. The magnitude of the 

transient temperature decreases with the blood perfusion rate. 
It is found from Fig. 1(a) that the temperatures obtained from 
the linear and non-linear DPL equations are very similar. 
However, this slight difference induces a more serious 
thermal damage, as shown in Fig. 1(b). It implies that thermal 
damage in living tissues is sensitive to temperature. 
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Fig. 1. Temperature and thermal damage at the irradiated surface for various 
blood perfusion rates. 

 
The metabolic heat generation and blood perfusion are 

important characteristics of living tissues. As shown in Fig. 1, 
the blood perfusion is able to significantly affect the 
temperature rise during thermal treatment. The present work 
explores the effect of metabolic heat generation on the 
non-Fourier bio-heat transfer, as shown in Fig. 2, in which 
presents the temperature variation at the laser irradiated 
surface for qm = 2.9×104 W/m3 and qm = 1.19×103 W/m3. It is 
seen that the thermal effect is not obvious, and the 
temperature difference between qm = 2.9×104 W/m3 and qm = 
1.19×103 W/m3 is quite small. For the effects of of 2

qτ  and 
2
Tτ , the temperature predicted with the non-linear DPL 

equation is slightly larger than that with the linear DPL 
equation at the initial times. Correspondingly, the value of 
damage parameter based on the non-linear DPL equation is 
larger. 
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Fig. 2. Effects of metabolic heat generation on the temperature and damage 
parameter at laser irradiated surface. 

 

V.   CONCLUSIONS 
A non-linear DPL equation of bio-heat transfer, which 

includes blood perfusion and metabolic heat generation, is 
numerically solved for thermal response, and to assess 
thermal damage to the tissue by a rate process equation. The 
comparison of temperature variation and the tissue damage 
parameter at the laser irradiated surface with those obtained 
from the linear dual-phase-lag equation is done. For the 
effects of 2

qτ  and 2
Tτ , the non-linear DPL equation predicts a 

larger value of temperature during the laser heating. 
Although the difference between the temperatures obtained 
from the linear and non-linear DPL equations is slight, the 
difference in thermal damage is quite obvious. It implies 

thermal damage in living tissues is sensitive to temperature. 
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