

Abstract—One of the challenging problems in software

design is to evaluate the risks using the architectural styles.With
the help of the architectural styles, it is able to reveal some
potential design problems which do not conform to the
non-functional requirements. The detection of a software
architectural style is typically done by hand and it is a tedious
work. However, there are still some ongoing researches on the
automatic detection of the software architectural styles. In this
paper, we propose an alternative scheme of the architectural
styles detection using the reduction steps of a graph grammar.
The definition of the context sensitive graph grammar and its
derivation and reduction steps is extended and proposed to
represent the typical components, interfaces and links in the
software architectural model written in xADL. The xADL is one
of the popular architectural description languages ever used. A
case study of repository style detection scheme is demonstrated.
The resulting derivation and reduction of the specific graph
grammar show the valid parsability of the graph.

Index Terms—Software architecture, xADL, detection
architecture, graph grammar.

I. INTRODUCTION
Today, the enterprise company is often developing a large

information system based on the growth of the company. The
complexity and large scale of enterprise software cause
problems when the software needs to be extended. These
problems can be solved by considering software architectural
styles in the design model. The architectural style consists of
a set of software components and their specific relationship
among the components. The various performance features of
the software system can be verified through design [1]
choreographed by using diagrams.

After the architectural styles has been applied to
systems,then the problems are more stable and easier to be
solved or improved the complexity of the system. In case of
the large scale and more complex software, it is difficult to
investigate and detect the architectural styles. Thus, in this
paper we introduce the usage of the context sensitive graph
grammar to represent the software architectural model. Our
approach focuses on the architectural model written in xADL,
one of the well known architectural description languages
(ADL). The xADL statements are analyzed and the
corresponding graph grammar will be equivalently generated.
The output graph grammar will be parsed and reduced into

 Manuscript received May 23, 2013; revised July 20, 2013.
Songpon Thongkum and Wiwat Vatanawood are with the Department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University
Bangkok, Thailand (e-mail: Songpon.T@Student.chula.ac.th; and e-mail:
wiwat@chula.ac.th).

the possible target of the predefined architectural styles.
In this paper, we introduce a scheme to define the

architectural style based graph grammar (ASGG) and its
production rules. A sample of derivation and reduction steps
is demonstrated to detect a simple repository styles. We also
consider the transformation between a given software
architectural model written in xADL and the corresponding
graph grammar. This paper is organized as follows. The
introduction is described in Section I. Section II reviews the
related works and backgrounds. Section III describes our
proposed architectural style based graph grammar (ASGG).
Section IV describes our Architectural Style Detection
Scheme and Section V is the conclusion.

II. RELATED WORK
The graph grammars have been studied by many

researchers [2], [3] and many variation of graph grammar
approaches [4]-[6] have been presented. Typically, the graph
grammar is the graph rewriting system, and the formal graph
language is defined to enumerate all graphs from some
starting graph. The context sensitive graph grammar is more
effective to almost applications. The context sensitive is more
expressively and flexibly formalize the graph syntax rules of
visual language. The Node-label-controlled (NLC) graph
grammars, defined by [4], are one of the most interesting
families of graph rewriting formalisms. Moreover, there also
is the context sensitive graph grammar with neighborhood
controlled embedding (CS-NCE) [7] to be used to formalize
syntactical rules of a wide range of visual language.

Among the mentioned researches, [5] introduced a graph
grammar approach to software architectural verification and
transformation. The graph grammar is made of a set of
rewriting rules, called productions. A production is a
rewriting rule with two equivalent graphs called left graph
and right graph as shown in Fig. 1.

Fig. 1. Graph grammar characteristic

An Approach of Software Architectural Styles Detection
Using Graph Grammar

Songpon Thongkum and Wiwat Vatanawood

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

123DOI: 10.7763/IJET.2014.V6.679

COM

III. OUR ARCHITECTURAL STYLE BASED GRAPH GRAMMAR
In this section, we formalize a context sensitive graph

grammar for detecting architectural styles, called ASGG -
Architectural Style based Graph Grammar, which is based on
CS-NCE graph grammar in [7]. A number of definitions and
algorithm are introduced as follows.

Definition 1: Architectural Style Name AS is considered as
a finite nonempty set of start symbols in the proposed graph
grammar. Typically, each start symbol is classified as a
non-terminal node in the graph grammar. In our approach,
each start symbol represents an architectural style name
which will be detected. The architectural style name AS is
formally defined as AS = {REPOSITORY, PIPE&FILTER, …}
where REPOSITORY is the target architectural style named
“Repository” and PIPE&FILTER is the architectural style
named “Pipe and Filter”.

Definition 2: Graph is a 2-tuple G = (V, E) where V is a
finite nonempty set of nodes and E is a set of edges.

Definition 3: An Architectural Style based Graph
Grammar is a 4-tuple ASGG = (Ψ , Σ, Γ, Ρ) where Ψ ∈ AS.
We define Σ = ΣN ∪ ΣT and ΣN ∩ ΣT =φ . ΣN is a set of
non-terminal nodes and ΣT is a set of terminal nodes AE. Γ is
a set of edges on Σ x Σ . Each edge is a 2-tuple (n1, n2) where
n1 ≠ n2. Ρ is a finite nonempty set of productions. Each
production is written in term of L ::= R where L is either
single start symbol Ψ or graph G = (Σ, Γ) and R is graph G
= (Σ, Γ). For a production p written as L ::= R, L is called
the left-hand side of p and is denoted as lhs(p), while R is
called the right-hand side of p and is denoted as rhs(p)

Definition 4: Derivation of ASGG is a sequence of
derivation steps to transform a single start symbol Ψ into a
new graph G = (Σ, Γ). A derivation step is also called the
graph rewriting based on the left application of the
production rule Ρ of the ASGG graph grammar. The graph G
is transformed into G’ by the left application of a production
p and is denoted as G p⇒ G’.

Definition 5: Reduction of ASGG is a sequence of
reduction steps to reversely transform any graph G = (Σ , Γ)
into a single start symbol Ψ. A reduction step is called the
right application of the production rule Ρ of the ASGG graph
grammar. The graph G’ is reversely transformed into G by
the right application of a production p’ and is denoted as G’
p’⇒ G.

Definition 6: Terminal node AE is a set of architectural
elements in software architectural model. In our approach,
the architectural elements are component, interface according
to the xADL language. Thus, the terminal node AE =
{ compo, intf }.

Definition 7: The ASGG for rewriting Repository Style.
According to the ASGG definition, we formally define the
start symbol, non-terminal and terminal nodes as shown in
Fig. 2. The production rules are written and shown in Fig. 3

Fig. 2. The start symbol, non-terminal and terminal nodes of ASGG for

repository style

 (p1)

 (p2)

 (p3)

 (p4)

 (p5)

 (p6)

 (p7)

 Fig. 3. The production rules of ASGG for repository style

IV. OUR ARCHITECTURAL STYLE DETECTION SCHEME
In this section, we will present how to detect software

architectural style using ASGG. As we mentioned earlier, the
given software architectural model is written in xADL
provided by the designer. The algorithm 1 shows how to
detect the expecting architectural style of Repository in the
given xADL model.

Algorithm 1: The Architectural Style Detection for
Repository.

 Given a software architectural model AMODEL written in
xADL as shown in Fig. 4 (a):

1) Extract a set of component elements CE which is
specified by <component> tag in xADL.

2) For each component in CE, Extract a set of interface
elements IE which is specified by <interface> tag in
xADL.

3) Extract a set of link elements LK which is specified by
<link> tag in xADL.

4) According to resulting CE, IE, and LK , a graph G =
(Σ, Γ) with only terminal nodes is generated as
shown in Fig. 4 (b).

5) For each possible subgraph SGi of G, if SGi can be
reduced into the start symbol REPOSITORY using
the ASGG defined in definition 6, then a Repository
style is detected and reported.

6) The Repository style is not founded if there does not
exist the reducible SGi in step 5.

::=

REPOSITORY

COM

COMS

compo INTFS ::= compo

COM ::= compo
intf

INTFS

COM

COMS

COM ::= COM COMS

::= COM COMS COM

COM COM ::= COM compo intf

compo INTFS ::= compo
INTFS

intf

compo Terminal

Non-terminal

intf

COM COMS INTFS

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

124

INTFS

(a) Software architectural model in xADL

(b)The corresponding ASGG for xADL
Fig. 4. xADL and its corresponding ASGG

V. DEMONSTRATION OF THE REDUCTION OF A GRAPH G =
(Σ, Γ) TO DETECT REPOSITORY STYLE

As shown in Fig. 4(b), a Graph G = (Σ, Γ) which is
generated from a xADL model is to be reduced. The
production rules in definition 6 are reversely applied to
reduce the input G into a single start symbol REPOSITORY
as shown in Fig. 5-23.

The initial graph is shown in Fig. 5 and it is considered to
be reduced. The Fig. 6 showns the selected subgraph being
reduced.

Fig. 5. The initial graph to be reduced

Fig. 6. The selected subgraph to be considered

Fig. 7 shows the rewritten subgraph after applying rule P7’.

Fig. 7. The graph after applying P7’

Now we consider the subgraph shown in Fig. 8 and then
applying the rule P6’ yielding the result in Fig. 9.

Fig. 8. The graph before applying P6’

Fig. 9. The graph after applying P6’

The subgraph in Fig. 10 is then considered and the result
shown in Fig. 11 is the result of applying rule P6’.

Fig. 10. The graph before applying P6’

Fig. 11. The graph after applying P6’

 The next subgraph to be considered is shown in Fig. 12.
The rule P5' is applied as shown in Fig. 13.

Fig. 12. The graph before applying P5’

comp

intf

intf

intf

intf

comp

comp

compINTF

compo

intf

intf

intf

intf

intf

intf

compo

compo

compo

compo

intf

intf

intf

intf

intf

intf

compo

compo

compo

compo

intf

intf

intf

intf

intf

intf

compo

compo

compo

compo intf

intf

intf

intf

intf

compo

compo

compo

intf

compo

intf

intf

intf

intf

compo

compo

compoINTFS

INTFS

compo

intf

intf

intf

intf

intf

compo

compo

compo

intf

compo

intf

intf

intf

intf

intf

compo

compo

compo

INTFS

compo

intf

intf

intf

intf

intf

compo

compo

compo

INTFS

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

125

Fig. 13. The graph after applying P5’

By applying rule P4' to Fig. 14, we can change all of the
non-terminals into the terminals shown in Fig. 15.

Fig. 14. The graph before applying P4’

Fig. 15. The graph after applying P4’ for three times

For the subgraph shown in Fig. 16, we use the rule p3' and
the result is shown in Fig. 17.

Fig. 16. The graph before applying P3

Fig. 17. The graph after applying P3’

Now we can group another COM into COMS shown in

Fig. 18 by applying P2’ and result after applying P2’ is shown
in Fig. 19.

Fig. 18. The graph before applying P2’

Fig. 19. The graph after applying P2’

We repeat the rule P2' again to Fig. 20 and then the result is

shown in Fig. 21.

Fig. 20. The graph before applying P2’

Fig. 21. The graph after applying P2’

Finally we can reduced the subgraph in Fig. 22 into single

start symbol REPOSITORY by applying P1’ and result after
applying P1’ is shown in Fig. 23

Fig. 22. The graph before applying P1’

Fig. 23. The final start symbol after applying P1’

VI. CONCLUSION
In this paper, we propose an alternative detection scheme

of software architectural style. The context sensitive graph
grammar is exploited and extended based on CS-NCE graph
grammar in [7]. We formally define our Architectural Style
based Graph Grammar – ASGG, to appropriately represent a
software architectural model which consists of components,
interfaces, and links. The detection scheme of Repository
style is demonstrated. The ASGG along with derivation and
reduction and the algorithm for detecting Repository style are

COM

COM

COMS

COM

COM

COM

COM

COM

COM

COM

COMS

COM

COM

COM

COM

COM

COM

COM

COM

COM

COM

COM

COM

COMS

REPOSITORY

COM

intf

intf intf

compo

compo

compo

intf

intf

intf

compo

compo

compo COM

COM

COM

COM

COM

COMS

COM

COM

COMS

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

126

provided. The grammar graph is valid and parsable. However,
the large graph can lead to the nontrivial problems in
reduction steps.

REFERENCES
[1] E. M. Mahdieh Alemi and Hassan Rashidi,”Software architecture: A

survey and classification,” in Proc. 2nd International Conference on
Communication Software and Networks, Singapore, 2010, pp.
454-460.

[2] J. Engelfriet and G. Rozenberg, Node Replacement Graph Grammar, in
Handbook of Graph Grammars and Computing by Graph
Transfonnation (Rozenberg, G., eds), World Scientific (1997), pp. 1-94

[3] M. Erwig, “Visual graphs,” in Proc. IEEE Symp. Visual Languages,
1999, pp. 122-129.

[4] D. Q. Zhang, K. Zhang, and J. N. Cao, “A context-sensitive graph
grammar formalism for the specification of visual language,”
Computer journal, British: British Computer Society, pp. 186-200,
2001.

[5] J. Kong, K. Zhang, J. Dong, and G. L. Song, “A graph grammar
approach to software architecture verification and transformation,” in.
Proc. the 27th Annual International Conference on Computer Software
and Applications, USA: IEEE Computer Society, 2003, pp. 492.

[6] Y. Shindo, K. Anada, and T. Yaku, “ A Graph grammar model for
syntaxesof financial statements,” in. Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing, USA: IEEE Computer
Society, pp. 265-266, 2011.

[7] Y. Adachi and Y. Nakajima,“ A context-sensitive nce graph grammar
and its parsability,” in Proceedings of 2000 IEEE International
Symposium on Visual Languages, USA: IEEE Computer Society, 2000,
pp. 111 – 118.

Songpon Thongkum was born in Bangkok Thailand in
1986. He is a graduate student of Computer Engineering
at Faculty of Engineering, Chulalongkorn University.
His research interest is Software Engineering.

Wiwat Vatanawood is currently an associate
professor of Computer Engineering at Faculty of
Engineering, Chulalongkorn University. His research
interests include formal specification methods,
software architecture.

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

127

