

Abstract—The Internet is considered to be as a rich platform

of information where many people get benefit from its access
but still they are being attacked by computer malwares and
various other threats which distract their normal work flow to
be carried out in an efficient manner. In this paper, we give an
overview of the efficient read aligner software termed as REAL
which is used for next generation sequencing. It reads
structures as a tool to detect computer Malware. Using this tools
a dynamic computer malware detection model has been
presented in this paper that can detect the malwares to prevent
attacks which might cause damaging or stealing sensitive
information. This model is inspired by REAL which is an
efficient read aligner for next generation sequencing for
processing biological data. New anti-Malware technologies are
introduced to the world by the clock, but at the same time new
malware techniques have also emerged to misuse these
technologies. Experimental results of this study shows that the
proposed system is efficient and it is a novel way for detecting
malware code embedded in different types of computer files,
using bioinformatics tools with consistency and accuracy in
detecting the malware and it was able to complete the
assignment in high speed without excessive memory usages.

Index Terms—Malware detection, pattern recognition,
pattern matching, security.

I. INTRODUCTION
Malware is a generic term used to describe all kinds of

malicious software. Viruses, Worms, Spyware, Trojan horses
are all examples of malicious software. It is created by
attackers to not only cause major threat to the security and
privacy of computer users and their sensitive information, but
most of the time it is also responsible for a significant amount
of financial loss. As the complexity of modern computing
systems are growing, various bugs are unavoidable in
software systems; this increases the possibility of the
malware attack that usually exploits such vulnerabilities in
order to damage the systems [1].

There are many approaches for malware detections which
can be classified into two categories. First is the
anomaly-based detection technique which uses its knowledge
to monitor the program's behavior to decide the
maliciousness of a program under inspection. Second
technique which is considered as the most popular one is
signature-based approach [2], which attempts to model the
malicious behavior of malware and uses this model in the
malware detection [3]. Both of the detection techniques can
employ one of three different approaches: static, dynamic, or
hybrid. Static approach describes the structure of the

Manuscript received December 30, 2012; revised March 12, 2013. This
work was supported in part by the Department of informatics Kings College
London.

The authors are with the Department of Informatics, King’s College
London, London WC2R 2LS, United Kingdom (e-mail:
ali.alatabbi@kcl.ac.uk, mudhi.aljamea@kcl.ac.uk, csi@kcl.ac.uk).

malicious code in the program that is under inspection before
execution. Dynamic approach tries to detect the malicious
code during or after the program execution. Hybrid approach
is a combination of both previous approaches. (See Fig. 1)

Fig. 1. A classification of malware detection techniques.

The rest of the paper is structured as follows. In Section II,

the basic malware analysis and approaches are presented. In
Section III, we briefly review some of the related work in the
string matching malware detection approach. In Section IV,
the basic definitions that are used throughout the paper are
presented. We give an overview of REAL is Section V. In
Section VI, we formally define the problem solved. Section
VII, the experiments and results are discussed. Finally, we
briefly conclude with some future proposals in Section VIII.

II. BACKGROUND
Malware writers keep improving their obfuscation

techniques to make the programs harder to understand and to
evade the malware detectors. Encryption is one of the
malware approaches that are used widely to evade
signature-based detectors. In this approach, an encrypted
malware is typically composed of the decryptor and
encryptor.

The decryptor recovers the main body whenever the
infected file is run. By using a different key for each infection,
the malware makes the encrypted part unique, thus hiding its
signature [4]. Yet, the main problem of the encryption is that
the decryptor remains constant and in such case detector will
be able to detect the malware based on the descriptor's code
pattern.

However, malware writers always create and develop new
techniques in writing malware script or code in order to make
it hard to detect. They have reached a point where the virus
can modify its code and appearance after each infection in
order to avoid the detective and the generic scanning. One of
the approaches called “Polymorphic Malware" is capable of
changing its decryptor slightly, while avoiding the problem in

Malware Detection using Computational Biology Tools

Ali Alatabbi, Moudhi Al-Jamea, and Costas S. Iliopoulos

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

315DOI: 10.7763/IJET.2013.V5.566

the previous approach.
Another more advanced approach is the “Metamorphic

Malware”. It is considered as one of the best approaches in
using the best obfuscation techniques. It basically evolves its
body into new generations, which changes the total look of
the malware while keeping the same functionality. It should
be able to recognize, parse and mutate its own body whenever
it propagates. It is important that the metamorphic malware
never reveals its constant body in memory due to not using
encryption or packing, thus making it so difficult for the
anti-malware scanners to detect this malware [4].

Nevertheless, there are many obfuscation techniques that
are specifically used by the malware writers in the
polymorphic and metamorphic malware approaches for
example (Dead-Code Insertion, Register Reassignment,
Subroutine Reordering, Instruction Substitution, Code
Transposition and Code Integration).

However, most of the malware writers use an old version
of a malware to create a new one by reordering the malware
instructions. The majority of malwares that appears today is a
simple repacked version of old malware [5]. Even after
changing or reordering the instructions of the malware they
will still share some behaviors. Different obfuscated versions
of the same malware have to share (at least) the malicious
intent, namely the maliciousness of their semantics, even if
they might express it through different syntactic forms.
Therefore, addressing the malware detection problem from a
semantic point of view can lead a more robust detection
system [6] which will help in detecting them since the
detectors are familiar with the old malware.

Executable packing: basically is the approach of using the
executable packing technique which is popular nowadays
among the malware writers to obfuscate malicious code and
evade detection by signature-based anti-virus software. This
later technique is the most common one. In general, it is
believed that nearly 80% of malware are packed and 50% of
existing malware are packed versions of old malware [7] and
that is due to the accessible effortless open-source and
commercial executable packers that help these writers to
generate an encrypted version of their malware. Since it has
been packed, the signature-based anti-malware will not detect
the malicious code as it will not be able to match the signature
with the packed malware. As soon as the malware is executed
it will be decrypted and do the harm to the computer.

On the other hand, anti-malware providers try their best to
follow up with the latest developments in order to be able to
detect and remove these new malwares and overcome their
threats. For example, there have been universal unpackers
that can help in detecting and extracting encrypted code from
packed executables, but these unpackers are expensive and
time consuming as it might take hours or even days to scan
large collections of executables looking for malware
infections.

 However, (R. Perdisci et al., 2008) [5] has devised a new
approach by applying pattern recognition techniques for fast
detection of packed executables. The objective behind fast
detection is to efficiently and accurately distinguish between
packed and non-packed executables, so that only executables
detected as packed will be sent to a universal unpacker, thus
saving a significant amount of processing time. (See Fig. 2).

Fig. 2. Classification system produced by (R. Perdisci et al., 2008) to

distinguish between packed and non-packed executables

This work of classification system extracts a number of
features from executable files in PE format through static
analysis, which means that they will be able to identify the
packed executables without the need of running them. Yet,
this technique will only improve the processing time of
malware detecting since it will save time when it distinguish
between packed and non-packed executables, and then rely
on the unpacker and signature based anti-malware software
for detecting malicious code.

 Other approach of distinguishing packed from non-packed
executables is based on raw binary data which was
introduced by [7]. They only used the raw binary information
to extract features that can effectively distinguish between
packed and unpacked executables without the need of
decoding the instructions of the executable. Their algorithm
can quickly tell which samples are packed or encrypted [7]
and according to that, these packed executables will be sent to
the unpacker to unpack them.

 Meanwhile, there are no proposed solutions or algorithms
for detecting viruses and malwares in packed files without
unpacking them first. Results prove that no algorithm can
detect packed executables and computer viruses with
absolute precision, detection may still be performed with
high accuracy [5].

One of the most popular malware detection techniques is
the pattern matching algorithm. There is a great demand for
high speed and scalable pattern matching algorithms [8],
specifically in the signature-based malware detection
approach which we will adopt and discuss in this paper.

III. RELATED WORK
Nowadays the number of virus signatures and the network

bandwidth are growing significantly and constantly, thus
anti-malware vendors have to work very hard to develop
solutions and algorithms that are able to deal with these
growing threats. However, researchers have produced a
number of solutions to deal with this problem specifically in
the pattern matching technique. Thus many pattern matching
algorithms have been proposed to solve the problem of
intrusion detection system (IDS) [8].

The majority of these algorithms are "Shift based" which
are fundamentally relying on the classic single pattern
matching algorithm BM (Boyer-Moore algorithm). The core
idea of BM is to utilize information from the pattern itself to

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

316

quickly shift the text during searching to reduce number of
compares as many as possible. BM introduces a bad character
heuristic to effectively capture such information [9].

“Clam-AV” is one of the anti-virus pattern matching
solutions which has been used widely in UNIX platforms
lately [10]. It has been implemented in an extended version of
BM (BMEXT) as a core pattern matching algorithm for
scanning basic signatures along with other algorithms AC
[11]. The down side of this algorithm is that its performance
will decrease whenever the number of signatures increases.

Another anti-virus pattern matching solution known as
(MRSI: A Fast Pattern Matching Algorithm for Anti-virus
Applications) introduced in [8] is used to improve the
previous solution, after analysing the different types of
signatures (Basic, MD5, Regular Expression) and few other
signatures types Table I.

TABLE I: DIFFERENT TYPES OF SIGNATURES THAT HAS BEEN ANALYZED

BY MRSI

And after studying the time processing for each signature

type [8] decided to concentrate their work on matching the
(basic) signatures since it is the most popular one and the
most time consuming in order to improve the virus scanning
speed on Clam-AV. (results in Table II) And for that they
managed to achieve an 80%~100% faster virus scanning
speed.

TABLE II: THE PROCESSING TIME FOR EACH SIGNATURE IN CLAM-AV

However, the similarities between malware detection and

biological molecules sequencing provide the possibilities of
using short reads alignment algorithm REAL in malware
detection based on signatures.

Currently, human genome sequence mapping has been
completed. Typical applications of bioinformatics are:
searching one or a set of gene occurrence in a gene sequence,
to compare similarity relationship; or matching unknown
protein sequence according to known protein sample. As the
protein and gene could be represented as sets of strings,
traditional pattern matching technology could be used to
solve such matching problems in the malware detection area
[12].

IV. PRELIMINARIES
Let Σ be a finite alphabet which consists of a set of

characters (or symbols). The cardinality of an alphabet,
denoted by || Σ . The set of all non-empty strings over the
alphabet Σ is denoted by +Σ . The empty string is the empty
sequence (of zero length) and is denoted by ε ; we write

ε∪ΣΣ +=* . A string is a sequence of zero or more characters
(or symbols) in an alphabet Σ .

A string x of length n is represented by][1 nx , where

Σ∈][ix for ni ≤≤1 . The i -th symbol of a string x is
denoted by][ix . We denote by][jix the substring of x
that starts at position i and ends at position j . Then a string
w is a substring of x if uwvx = , where *, Σ∈vu .
Conversely, x is called a super-string of w .

Edit Distance: [13] The distance),(yxEδ between two
strings x and y is the minimal cost of a sequence of
operations that transform x into y . The cost of a sequence
of operations is the sum of the costs of the individual
operations. The operations are a finite set of rules of the form

nvuE =),(δ , where u and v are different strings and n is a
non-negative real number. Once the operation has converted
a string u into v , no further operations can be done on v .
The edit distance is symmetrical and, assuming unit costs, it
holds |)||,(|),(0 yxmaxyxE ≤≤ δ .
 • Insertion:),(aE εδ , i.e. inserting the letter a .
 • Deletion:),(εδ aE , i.e. deleting the letter a .
 • Substitution or Replacement:),(baEδ for ba ≠ , i.e.
substituting a by b .

Hamming Distance: Given two strings of equal length,
the Hamming distance between them is the number of
positions for which the corresponding symbols are different.
In other words, the Hamming distance between two strings of
equal length is the minimum number of symbol substitutions
required to change one string into the other.

Hamming distance allows only substitutions, which cost 1.
The Hamming distance is symmetric, and it is finite. In this
case it holds ||),(0 vvu ≤≤ δ where ||=|| vu .

},1|{=|,=|),(nipsiIIYXH iiDist ≤≤≠
where

| |=| |=X Y n

Alignment of two strings: An alignment between two
strings yx, *Σ∈ whose respective lengths are n and m , is
a way to visualize their similarities, Formally an alignment A
between x and y is a string z such that

),()())(εεεε ×∪Σ×∪Σ . Given two sequences x and y such
that nxxx 1= , nyyy 1= .

Formally a local alignment between x and y at position

q with at most k - differences is nq xx , for qnx ≥|=| ,

can be transformed in to y by performing at most k of the
edit operations.

V. REAL OVERVIEW
REAL (REad ALigner) is a new read aligner, which

addresses the problem of efficiently mapping rppp ,..., 21 to
t with at most k -mismatches. In order for the procedure to
be efficient, we make use of word-level parallelism by
transforming each factor of length of t into a signature.

In addition, the idea of using the pigeonhole principle to
split each read into ν fragments is adopted. The general idea
for the k -mismatches problem is that inside any match of the

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

317

pattern of length m , with at most k errors, there must be at
least km− letters belonging to the pattern [14]. By requiring

k−ν of the fragments (instead of all of them) to be perfectly
matched on t , the non-candidates can be filtered out very
quickly.

REAL algorithm has been presented recently to the gene
and DNA sequencing area and so far it performed very well
with positive results. It is worthy of trying to use this pattern
matching algorithm in signature pattern matching of
anti-malware and malware detection area. However the
performance could be evaluated and we might need to do
some changes on the algorithm. Full details on how the
algorithm work can be found in [15].

VI. PROBLEM DEFINITION
This work considers two areas, signature-based malware

and bioinformatics sequencing pattern matching. Real
algorithm could solve the problem described as:

We formally define the problem of mapping tens of
millions of short sequences to a reference genome as follows:

Find whether the pattern
iρ =][1...iρ , for all ri ≤≤1 , with

∑∈
*

iρ , },,,{= TGCA∑ , occurs with at most k -mismatches in

][1..= ntt , with t *Σ∈ .
In particular, we are interested in reporting a pattern, for all

ri ≤≤1 , in a case that occurs with the least possible
number of allowed mismatches, exactly once in t [15], [16].

Problem 1. Given a set of patterns },...,,{ 21 rρρρ of length
, with iρ *Σ∈ , Σ is a bounded alphabet, and an integer

threshold 0>h , find whether
iρ , for all ri ≤≤1 , occurs in text

t of length n and/or in text t̂ , where tt ˆ, *Σ∈ and

httE ≤)ˆ,(δ .

VII. THE EXPERIMENT

TABLE III: THE DETECTION PROCESS RESULTS IN THE EXPERIMENT

We experimented with different types of files including
Portable Executables (".exe" and ".dll"), email files, Graphics
(".jpg" and ".gif"), OLE2 component (eg: VBA script),
normalized Web files (HTML, PHP, Java Script) and
normalized ASCII text file.

We generated two different types of signatures MD5 hash
and body-based signature, either by using “Sigtool”, a tool
for generating MD5 hash or body-based signature, also we
developed a Signature generator component in on Microsoft

C# programming language.
The following steps are for generating the signatures given

an infected file:
 Step 1: For body-based signature we started by loading

the infected file content as byte array to the memory (for
larger file we only read small segments of the file (2KB, 2048
Bytes), the selected segment could be taken arbitrary from
any part of the file. For MD5 hash we added an extra step to
the process by passing the byte array extracted from the file to
the MD5 hash generator function. Note that different
signatures can be created from different parts of the infected
file body by selecting different offsets, (the beginning,
middle or the end of the file) finding informative areas in the
file body will improve the detection process.

Step 2: Convert the selected byte array to Hexadecimal
signature and write the output to the virus signature library
file.

 For example to create a body-based signature for the file
"program.exe" using the CALMAV signature tool.

hdbtestexeprogramsigtooltmplocalhostroot .>./$/:@

To create MD5 hash signature use the "–md5" option of
sigtool as follow:

dumphexsigtooltmplocalhostroot −−−/$/:@

hdbtestexemdumpprogra .>.

The virus library contains list of the signatures stored one
signature per line, as shown in Table IV

TABLE IV: THE STRUCTURE OF THE VIRUS LIBRARY FILE

The first line in the file contains the total number of
signature in the library.

VIII. CONCLUSION
We have introduced a novel way for detecting malware

code embedded in different types of computer files, using
bioinformatics tools, namely REAL (short read aligner for
next generation sequencing), which uses approximate string
matching. One of the benefits of this approach is that REAL
is implemented in such a way that it does not necessarily load
the whole file in memory. Instead, it loads blocks of the file
depending on the the physical memory of the individual
machine. Concerning the storage used for indexing, no
additional hard disk space is necessary for REAL, as it does
not store an index of the file data. The presented experimental
results are very promising, in terms of efficiency and
sensitivity on the detection process.

As it is shown by the results in Table III , REAL showed a
consistency and accuracy in the the detection process and it

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

318

was able to complete the assignment much faster, despite not
using a stored preprocessed index of the scanned files. REAL
outperform classic pattern matching such as
Knuth-Morris-Pratt and Boyer-Moore [15].

Our future work will focus on two parts. First of all, using
some heuristic algorithm for optimizing segmentation and
selection of the signature region, utilized very well (e.g. level
8 memories). Hence, additional algorithms will be designed
to further optimize the memory cost.

Second, provide support for signature based container
meta-data by allowing matching for signatures in files stored
inside different container types such as compressed and
encrypted files.

In Addition, Future work will focus on studying the
capability of perm-term analysis instead of segmentation,
experiments with different and larger malware collections,
and a combination of this technique with machine learning
analysis of malicious code.

REFERENCES
[1] Y. Zeng, F. Liu, X. Luo, and C. Yang, “Formal description and analysis

of malware detection algorithm mom a,” in Proc. International
Symposium on Computer Science and Computational Technology, pp.
139-142, 2009.

[2] P. Szor, The art of computer virus research and defense,
Addison-Wesley Professional, 2005.

[3] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, pp. 48, 2007.

[4] W. D. Doyle, “Magnetization reversal in films with biaxial anisotropy,”
in Proc. 1987 INTERMAG Conf., 1987, pp. 1-6.

[5] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Proc. Int. Conf. on Broadband, Wireless Computing,
Communication and Applications, pp. 297-300, 2010.

[6] R. Perdisci, A. Lanzi, and W. Lee, “Classification of packed
executables for accurate computer virus detection,” Pattern
Recognition Letters, vol. 29, no. 14, pp. 1941-1946, 2008.

[7] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A
semantics-based approach to malware detection,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 30, no. 5, pp.
25, 2008.

[8] L. Nataraj, G. Jacob, and B. S. Manjunath, “Detecting packed
executables based on raw binary data,” Technical report, Jun 2010.

[9] X. Zhou, B. Xi, Y. Qi, and J. Li. Mrsi, “A fast pattern matching
algorithm for anti-virus applications,” in Proc. Networking, Seventh
International Conference of IEEE, pp. 256-261, 2008.

[10] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[11] T. Kojm. Clamav. (2004). URL. [Online]. Available: http://www.
clamav. net

[12] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[13] M. Elloumi, P. Hayati, C. S. Iliopoulos, S. P. Pissis, and A. Shah,
“Detection of fixed length web spambot using real (read aligner),” in
Proceedings of the CUBE International Information Technology
Conference, ACM, pp. 20-825, 2012.

[14] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press,
1997, ch. 11.

[15] Appliedbiosystems URL. [Online]. Available:
http://www.appliedbiosystems.com.

[16] K. Frousios, C. S. Iliopoulos, L. Mouchard, S. P. Pissis, and G. Tischler,
“Real: An efficient read aligner for next generation sequencing reads,”
in Proceedings of the First ACM International Conference on
Bioinformatics and Computational Biology, BCB ’10, New York, NY,
USA, pp. 154-159, 2010.

[17] P. Antoniou, J. W. Daykin, C. S. Iliopoulos, D. Kourie, L. Mouchard,
and S. P. Pissis, “Mapping uniquely occurring short sequences derived
from high throughput technologies to a reference genome,” in Proc.
Information Technology and Applications in Biomedicine, 2009. ITAB
2009. 9th International Conference of IEEE, pp. 1-4, 2009.

Ali Alatabbi got his B.Sc. in Electrical Engineering
(Computer and Control), Department of Electrical
Engineering, College of Engineering, University of
Basra, Basra, Iraq-1994, M.Sc. E-Commerce
Engineering, Westminster University, Harrow
Computer School, London, 2003. He got his MCPD
certificate(Microsoft Certified Professional
Developer): Enterprise Applications Developer,

London, 2007- 2008. He is currently a Ph.D. student in the Department of
Informatics, King's College London, as a member of the Bioinformatics and
Algorithm Design Group. His research focuses on Design and Analysis of
String Algorithms, Algorithms for Molecular Sequences, Approximate
string-matching algorithms, Computational Linguistics and Arabic language
Morphology Analysis) and he have publications in these area.

Moudhi M. Al-Jamea was born on 5/5/1983 in
Saudi Arabia. Got her BS in Management
Information Systems from King Fisal University in
Saudi Arabia (2006), M.Sc. in Information
Technology with E-business from University Of
Greenwich London (2010) , Ph.D., Candidate in the
Department of informatics at Kings College,
University of London (2015). Moudhi is a lecturer at
al Dammam University sponsored by them to pursue

her Ph.D. at Kings College. Also Moudhi is the President/CEO of Superior
for Information Technology Services Inc., www.superior-sa.com. Moudi’s
research intrest is in the (Design and Analysis of String Algorithms,
Algorithms for Molecular Sequences, Approximate string-matching
algorithms and Information Security .

Costas S. Iliopoulos got his B.Sc. in Mathematics,
University of Athens, Greece (1980), his M.Sc. in
Computer Science by research, University of
Warwick, Coventry, England (1981) and in 1983 he
got his Ph.D. in Computer Science, University of
Warwick, Coventry, England. He is a Professor of
Algorithm Design at the Department of Computer
Science at King's College London and Marie-Curie

Research Fellow at the Computer Technology Institute of Universityof
Patras. Also he is the Head of the Algorithm Design Group at King’s college
London and the Director of the M.Sc. Program. His research interest is in the
Design and Analysis of String Algorithms, Algorithms for Molecular
Sequences and Algorithm Engineering for Music and Biological sequences
and he have so many publications in theses area. Prof. Iliopoulos is an Editor
in Chief of the Journal of Discrete Algorithms , Editor of the Journal of
Computer Mathematics and Combinatorial Computing and he is a Member
of the Programme Committee of the (AICCSA '10, ISAAC '08 ,AWOCA '07,
SPIRE '07.. etc) more information available at Prof. Iliopoulos page
http://www.dcs.kcl.ac.uk/staff/csi/

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

319

