

Abstract—Security is a focus in many systems that are

developed today, yet this aspect of systems development is often

relegated when the shipping date for a software product looms.

This leads to problems post-implementation in terms of patches

required to fix security defects or vulnerabilities. One answer is

that if code were correct in the first instance, then

vulnerabilities would not exist. Security is now seen as an

essential part of systems development in several modern

methodologies. Unfortunately, the teaching of programming

secure software systems is seen as an extra or worse, an

impediment to learning programming. This paper presents the

case that secure programming should be the norm, rather than

the exception and uses a case study to describe the experience of

teaching secure programming in an Australian university. It

was found that students enjoyed the challenges presented by

learning secure programming and expected to use these skills in

industry.

Index Terms—Information systems security, secure

programming, applications development.

I. INTRODUCTION

Secure programming courses are offered at several

universities around the world (notably Purdue University in

the USA and the University of Birmingham in the UK) as

well as in some form in the commercial environment (for

example, the SANS secure coding course). It would be

expected, therefore, that the quality of software systems

would be increasing. This is especially important in

safety-critical domains such as military, aerospace and

medical systems. Unfortunately most software, according to

[1], is still insecure. To make matters worse, [2] suggest that

security requirements are often omitted from requirements

specifications altogether, therefore secure coding practices

are not likely to be implemented. Johnstone [3] points out

that this is due to the tension between functional

requirements (as seen by a customer) and security

requirements (which often are not immediately visible).

Anderson [4, p7] was far more direct when he said “Much

has been written on the failure of information security

mechanisms to protect end users from privacy violations and

fraud. This misses the point. The real driving forces behind

security system design usually have nothing to do with such

altruistic goals. They are much more likely to be the desire to

grab a monopoly, to charge different prices to different users

for essentially the same service, and to dump risk. Often this

is perfectly rational”.

One answer is to educate undergraduate software

Manuscript received January 12, 2013; revised March 12, 2013.

M. N. Johnstone is with the Edith Cowan University Security Research

Institute, Perth, WA 6027 Australia (e-mail: m.johnstone@ ecu.edu.au).

engineers about the need to treat security requirements with

the same level of importance as (other) functional

requirements, which should flow on to later stages of the

system development life cycle (especially programming).

This will have little immediate effect as students are unlikely

to have the maturity to see the necessity for security

requirements. This is not surprising as students are still

learning how to elicit, specify and validate requirements as

well as learning the science and craft of programming, so

increasing their cognitive load will probably not have the

desired effect unless something else in the curriculum is

removed.

Davis and Dark [5] suggest that the information assurance

community (and presumably by extension the computer and

information security communities) can learn from the method

used by software engineering educators in terms of taking a

holistic approach and moving from broad principles to

focussed technical subjects. This is evident in the framing of

the Software Engineering Body of Knowledge (SWEBOK),

and in fact, Davis and Dark suggest constructing a common

body of knowledge for information assurance. The result

would be, according to Davis and Dark, which “Students

repeatedly internalize knowledge and skills leading to, for

example, reusable and safe software. Over time, students

adopt best practice models as second nature.”

The primary argument of this paper is that the education of

undergraduates to use secure coding practices is a long-term,

but essential goal. As mentioned previously, some

universities are already doing this by delivering subjects that

teach the theory and practice of secure coding. Such subjects

usually have titles similar to “Programming Secure Software

Systems”, and thus are readily identifiable in the curriculum.

The expected benefit is that, over time, secure coding

practices will become normal practice rather than an

exception, leading to a significant reduction in vulnerabilities

and therefore higher quality systems. For this approach to be

effective, students must understand exploits in order to see

where vulnerabilities exist. This approach is problematic in

that for some this is tantamount to educating the next

generation of hackers. Frincke [6] and Rubin and Cheung [7]

provide some interesting insights with regard to the merits of

this approach as discussed in the next section.

This paper describes the issues involved with embedding

secure programming in the curriculum and uses a case study

from a specific university setting to illustrate the

effectiveness of teaching secure programming.

II. THE STATE OF SECURE PROGRAMMING IN UNIVERSITIES

Before delving into aspects of teaching secure

Embedding Secure Programming in the Curriculum: Some

Lessons Learned

Michael N. Johnstone

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

287DOI: 10.7763/IJET.2013.V5.560

programming, it is worthwhile examining current practice in

teaching computer security generally. The first issue to

tackle is to decide whether there is a problem to be solved.

Figure 1 makes a case for the scope of the security (or secure

programming) problem. Symantec [8] indicate that since

2005 there has been a significant increase in the number of

security threats reported. Whilst it is acknowledged that this

figure shows threats reported, not total actual threats or the

number of successfully exploited systems, it is an indicator of

the size and growth rate of the problem.

An Australian perspective on the problem can be gleaned

from a recent Auditor-General’s information security audit

which found that four out of nine state government agencies

were not meeting all of the required industry security

standards with respect to credit card data [9]. The same audit

report noted that “on average, online credit card fraud in

Australia is estimated to cause AUD$150 million worth of

losses each year, with more than 662,000 fraudulent

transactions reported.”, which supports the premise that there

is a problem to be solved.

Fig. 1. Malicious code signatures (adapted from [8]).

Integrating computer (or information) security into the

curriculum is not a new idea. Irvine et al. [10] point out that

“Security insights must be integrated within the existing

information systems programs, rather than be treated

separately. The technical aspects of security are closely

related to computer science and engineering.”

Bishop [11] considers that the best undergraduate

education serves to enable a student to be educated in broad

principles and their application. It deliberately does not focus

on any particular situation or system, thus facilitating the

learning of general principles that can be abstracted and then

applied across many situations or systems. In later work,

Bishop [12] extended this view to scholarly research as

applied to education. This is not surprising as most

universities promote some concept of a “research informing

teaching and vice versa” cycle.

Swart and Erbacher [13] point out that “Dealing with

epidemic-style attacks will require focused effort in software

engineering to develop secure code, but the solution will also

require systems that account for the human factors that

spread such attacks, including social engineering and

end-user psychology”.

In considering precisely what to teach in this area, Frincke

[6] suggests that there are two distinct perspectives that can

be taken: what she calls either “defence assurance” or “attack

understanding”. Secure programming tends to focus on the

former but this is not a clear dichotomy. Frincke notes that

most educators fall somewhere between these perspectives.

The ethical and legal minefield that is concomitant with the

teaching and dissemination of the output of security research

is highlighted by [7]. Academics in Australia face a similar

dilemma in dealing with the Defence Trade Controls Act [14].

Regarding the latter, teaching and research activities (and

their output that may potentially have a defence application)

that are conducted and reported within Australia may not be

exportable to other countries. In extreme cases this may

mean that a lecture given to students within Australia may not

be given to students in the same course at an overseas

campus.

Focusing on computer security education and research in

Australia, [15] outline the tertiary education landscape in

Australia and go on to mention particular universities that are

working in the field, viz. The University of South Australia,

Queensland University of Technology, Macquarie University,

Deakin University and Edith Cowan University (ECU).

They remark that each university is noted for particular

research areas.

Having identified the need for secure programming and

examined some of the relevant curriculum issues, it is now

appropriate to discuss the experience of teaching secure

programming at an Australian university.

III. TEACHING SECURE PROGRAMMING: A CASE STUDY

This section describes some relevant details about the

university in the case study, articulates the structure of a

specific secure programming unit, provides some vignettes

from experience in teaching the unit, describes some student

feedback and concludes by analysing how the content or aims

of the unit address the security education issues identified by

[6].

The School of Computer and Security Science at ECU in

Western Australia has a vigorous and industry-respected

profile in computer and network security. The School runs

several undergraduate programmes that have computer,

information and network security as their main focus, namely

a bachelor of computer and network security and a bachelor

of cyber security. Recently the School created a third-year

subject “Programming Secure Software Systems” which is a

core (course requirement) subject (unit) in both degrees. The

unit is also core to a mobile applications development major

aimed at computer science/software engineering students.

The unit covers the major elements of secure programming

such as buffer overflows, format string attacks, SQL

injections, race conditions and cross-site scripting as well as

code obfuscation. For the majority of these elements students

were provided with PowerPoint slides, tutorial exercises,

readings as well as recorded lectures. Extra support was also

provided in the form of language tutorials for C, Java and

PHP. This last point is particularly pertinent as will be seen

later.

In order to be able to enrol in the unit, students must have

already passed an introductory computer security unit as well

as a fundamental programming unit. All students had also

completed a Java unit and units in C programming or C++

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

288

programming. In common with many units at ECU, there are

three assessment points, viz: two assignments and a final

examination, a pass in the latter being a requirement to pass

the unit.

In its first semester of operation last year, the unit had an

enrolment of 30 students, with the majority of those being

face-to-face enrolments and a small number of on-line mode

only students who presumably were unable to attend classes

due to schedule clashes or other commitments.

As the examples of insecure code reflected those from

real-life (some were drawn from open source systems with

well-documented vulnerabilities), students were required to

be able to read and write code in a variety of programming

and scripting languages, particularly Java, C, SQL and PHP.

As all students, regardless of degree or major, are required to

complete a common first year where Java and SQL are taught,

it was not expected that this would present a difficult

conceptual or practical hurdle for the students in the unit.

This turned out not to be the case. Many students had

problems with the Java and SQL questions in the major

assignment. Further, some of those students relied on canned

answers obtained from a downloaded “e-book” of

questionable provenance and, as it transpired, even more

questionable verity. It became apparent, unbeknownst to

those students, that there were errors in the e-book. As that

particular sub-group never questioned the authority of the

e-book or bothered to test the supposed answers for

themselves, this did not help with their learning outcomes.

In terms of teaching outcomes, the results varied

somewhat. The highest overall mark was 96%, the lowest

2% (the latter being the result of an academic misconduct

case) with a mean of 62% and a standard deviation of 20%.

28% of students failed the unit (which includes some students

who enrolled but never submitted any assessment). Some

50% of the students were computer science or software

engineering majors. This meant that the unit was an elective

subject for them and thus they enrolled purely for interest or

possibly they perceived some other value to be gained from

the knowledge imparted in the unit. What was particularly

interesting was the physical separation between the computer

security course students and the computer science course

students, which they themselves engendered in the lab

classes. Without fail, in every lab session, the class would

split down the middle, with the security students on one side

of the room and the computing students on the other side.

The reasons for this behaviour are a mystery-certainly all the

students knew one another because of the mixing that occurs

in the common first year. What was also observed was that

the security course students had trouble with the C language

questions in the assignment, despite having completed a unit

using that language either concurrently with this one or in the

previous semester.

The first assessment required students to find an

interesting vulnerability in any system of their choice and

then explain and demonstrate it (safely-see below) in-class.

What was surprising was the number of hardware-oriented

choices. Students took great pride in showing how they were

able to exploit devices such as gaming consoles (to be

expected perhaps) but also modems, printers, routers and in

one case, a motor vehicle electronic control unit.

TABLE I: MATCH BETWEEN SECURITY ISSUES AND SECURE

PROGRAMMING.

Security Education Issue Addressed within ECU Secure

Programming by…

1. Where do we draw the line when

discussing security systems?

Given that information about the

attack surface for many systems is

freely available and the tools to

exploit those systems are mostly free

or open source, artificially making

something out of bounds doesn’t

necessarily have the desired effect.

Perhaps better to rely on good sense,

a reasonable moral code and act in an

ethical manner (but see point 5

below).

2. What perspective do we use when

presenting our material?

Secure programming focuses on

defence assurance because if secure

code was written in the first place,

vulnerabilities would not exist and

exploits would not occur.

Nonetheless, we acknowledge

Frincke’s [6] point about attack

being potentially more attractive to

students.

3. Do we describe real flaws in real

systems or analyse flawed models?

Flawed models are excellent for

explaining and demonstrating

principles of vulnerabilities that lead

to exploits. As models are

simplifications of reality they are

good for learning theory, however,

authentic assessment is part of the

unit structure, so describing and

demonstrating real flaws in real

systems is key to engagement and

anchoring student learning. Thus the

answer is both, in the right

proportions.

4. Do we concentrate on proper

system design, common system

failures, or some mixture?

At ECU, a mixture of evaluating

common vulnerabilities coupled

with secure design appears to work

well.

5. Do we include hands-on exercises

in our classrooms, and, if so, what

supervision and safety measures do

we provide?

Hand-on exercises are part of the

curriculum. The philosophy of the

unit is based on the idea that to

understand secure coding a student

must first understand vulnerabilities.

Students are not permitted to

demonstrate anything that would

contravene the ECU student charter,

nor are they allowed to actively

attack any University or commercial

system.

6. Should we put any restrictions on

who is allowed to participate in our

classes and research?

Engaging students in new

knowledge via state of the art

research is part of the essential

nature of a university, thus that the

answer is “no”. With the passing of

the Australian Defence Trade

Controls Bill in 2012, the answer is

“possibly”.

7. What is the pedagogical goal

behind our methodology?

This is fairly straightforward and the

answer may be well be the same for

any university, not just the one

mentioned in the case. The

pedagogical goal is to enable

students to learn by themselves, to

engage in critical thinking and to

present as useful members of the

workforce upon graduation. The

comments from the students suggest

that the goal has been achieved,

although it should be noted that some

of the initial impetus for the unit

came from industry feedback that

said students who could not identify

and correct a buffer overflow would

not be hired.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

289

Similar to most Australian universities, ECU runs on-line

unit and teaching evaluation questionnaires which students

may complete voluntarily and anonymously. Feedback via

these instruments was, in the main, positive:

“...It was a great experiencing [sic]. I came in with a

daunting feeling, however I leave (hopefully) with a

thorough understanding of software security.”-External

student.

“I found this unit gave me a lot of new knowledge and

skills which I definitely will use in the future.”-On-Campus

student.

“Excellent unit, just what I was looking for when finishing

off my undergrad comp science course. It deals with Buffer

Overflows, Smashing the Stack, SQL Injection, XSS, race

conditions, string formatting and much more. All excellent

tools for a programmer to be aware of.”-On-campus student.

“The tutorials were very thorough and explored the unit

modules in depth. The examples were excellent. Very helpful

towards learning for the assignments and the exam.”

-On-campus student.

Some students clearly had difficulties:

“I had to do a crash course on C and PHP, as well as

refresh myself in SQL to barely understand the content. The

book was barely adequate to cover all topics in the unit.”-

On-campus student. It appears that this student failed to

notice the extra materials on C for Java programmers and the

links to C library functions and PHP primer provided in the

University’s courseware management system.

“…the first assignment was weighted 15% of the unit, but

had quite a lot of work that needed to be done, where as the

second assignment was 35% and didn't require much work.”-

External student. Unfortunately it is not possible to

determine whether this student was a computer security

student or a computer science major (due to the anonymised

survey). Perhaps the latter as the second assignment required

students to read vulnerable code and then write a secure

alternative, for example, replacing a call to gets with fgets. It

would be expected (but by no means proven) that the

computer science students would be more comfortable with

this aspect of the assessment.

Frincke [6, p56] poses some interesting questions about

security education generally that provide a useful framework

with which to analyse the benefits (or otherwise) of teaching

secure programming. These questions (and responses from

the case experience) are described in Table I.

IV. CONCLUSION

This paper described the implementation of a secure

programming unit into an existing university curriculum.

The current state of play with respect to teaching secure

programming was briefly explained and a case study that

detailed specific experiences was articulated and discussed.

Specifically, this work used a case study to show how

effective secure programming could be when inserted into

the curriculum. It was argued that the benefits of providing

knowledge about vulnerabilities and how to protect against

them using secure programming outweighed the costs of

potentially educating the next generation of hackers. It was

shown that a secure programming unit could address key

issues in security education, at least for the university

described in the case study. It is expected that this experience

can be generalised.

Further work would involve using graduate destination

data to see whether graduates are using knowledge gained in

the unit in practice. It might also be possible to interview

students completing a final-year work placement which

would also gauge the use of the knowledge gained in the unit.

Additionally, this work has focused on secure programming

(i.e. defence assurance). It would be valuable to compare and

contrast this experience with one based on attack

understanding (i.e. ethical hacking) to examine how the

approaches might complement one another.

REFERENCES

[1] A. Shostack and A. Stewart, The New School of Information Security,

Upper Saddle River, NJ: Addison Wesley, 2008.

[2] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The Art of Software

Security Testing. Upper Saddle River, NJ: Addison Wesley, 2007.

[3] M. N. Johnstone, “Security Requirements Engineering-The Reluctant

Oxymoron,” Proceedings of the 7th Australian Information Security

Management Conference, Edith Cowan University, Perth Western

Australia, 1st-3rd December 2009.

[4] R. Anderson, “Why information security is hard: An economic

perspective,” Cambridge University Technical Report. 2001.

[5] J. Davis and M. Dark, “Teaching Students to Design Secure Systems,”

IEEE Security and Privacy, pp. 56-58, March/April 2003.

[6] D. Frincke, “Who Watches the Security Educators,” IEEE Security and

Privacy, pp. 56-58, May/June 2003.

[7] B. S. Rubin and D. Cheung, “Computer Security Education and

Research: Handle with Care,” IEEE Security and Privacy, pp. 56-59,

November/December 2006.

[8] Symantec. Internet security threat report. Volume XIV. Analysis of

threat activity January-December 2008. [Online]. Available:

http://www.symantec.com/business/theme.jsp?themeid=threatreport

[9] OAG, Information Systems Audit Report, Office of the Auditor

General Western Australian Government. 2012.

[10] C. E. Irvine, S. K. Chin, and D. Frincke, “Integrating Security into the

Curriculum,” IEEE Computer, pp. 25-30, December 1998.

[11] M. Bishop, “Education in Information Security,” IEEE Concurrency,

vol. 8, no. 4, pp. 4-8, Oct. 2000.

[12] M. Bishop, “Computer Security Education: Training, Scholarship, and

Research,” IEEE Computer, Part Privacy and Security Supplement, vol.

35, no. 4, pp. 31-33, Apr. 2002.

[13] R. S. Swart and R. F. Erbacher, “Educating Students to Create

Trustworthy Systems,” IEEE Security and Privacy, vol. 5, no. 3, pp.

58-61. 2007.

[14] Commonwealth of Australia, Defence Trade Controls Act 2012: An Act

to regulate dealings in certain goods, services and technologies, and

for related purposes, Australian Government, no. 153, 2012.

[15] J. Slay and B. Turnbull, “Computer Security Education and Research in

Australia,” IEEE Security and Privacy, pp. 64-67, Sept/Oct 2006.

Michael N. Johnstone gained the MSc and PhD

degrees from Curtin University in 1992 and 2008

respectively. He is a senior lecturer at Edith Cowan

University (ECU) in Western Australia where he

teaches secure programming and software engineering.

He is a member of the Security Research Institute at

ECU. His research interests include secure

development methodologies (for mobile applications),

wireless sensor networks (for military systems) and

cloud security (for e-Health data sharing). He has been a contractor for

private industry, government and research organisations and has held various

roles including programmer, systems analyst, project manager and network

manager before moving to academia. Dr. Johnstone is a member of the

Australian Computer society.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

290

