
  

  
Abstract—A neural network is, in essence, an attempt to 

simulate the brain. Neural network theory revolves around the 
idea that certain key properties of biological neurons can be 
extracted and applied to simulations, thus creating a simulated 
(and very much simplified) brain. The first important thing to 
understand then is that the components of an artificial neural 
network are an attempt to recreate the computing potential of 
the brain. This famous network memorizes information by a 
process of training, to this effect the theory of artificial neural 
network is developed and is applied in several fields of sciences. 
The geotechnical domain is among them and in particular the 
resolution of problems of which parameters that govern them 
have an uncertain character, as the case of the prediction of the 
pile capacity. For it we collected 120 cases of the literature, 
sweeping a variety of sites through the world. The model 
conceived by an iterative process that is, the retropropagation 
was validated  by experimental tests and was compared with the 
values predicted by four of the most commonly used traditional 
methods. In this paper, the developed neural network model is 
based on the principal component analysis approach (PCA) for 
data analysis in the aim to improve the generalization process. 
The results indicate that the ANN model is able to accurately 
predict the capacity in several cases, including the experiments 
on model piles. The PCA technique shows the efficiency in the 
variable analysis in order to determine their relative 
contribution on the pile capacity and improve the 
generalization capacity. This study is limited for the driven 
piles. 

 
Index Terms—Bearing capacity, back propagation algorithm, 

neural networks, principal components analysis, simulation, 
driven piles. 

 

I. INTRODUCTION 
Pile foundations are used extensively around the world to 

support both inland and offshore structures, including 
nuclear plants and oil drilling platforms. They are mainly 
used in sites where the presence of soft soil layers would 
cause excessive deformation or failure of more conventional 
types of foundations. The two major categories of piles in 
common use are: friction or floating piles, whose load 
carrying capacity depends mostly on the amount of friction 
resistance that can develop at the interface between the pile 
shaft and the soil; and end bearing piles, which rely primarily 
on the concentrated soil resistance at the tip of the pile. To 
estimate the load-bearing capacity of the piles, therefore, one 
or more of several pile loading tests (PLTs) and pile dynamic 

 

analysis (PDA) tests may be performed, depending on the 
importance of a project. Due to the high cost and the time 
required for conducting such tests.  Many researches reports 
dealing with the ultimate bearing capacity of pile foundations 
have been listed in the literature during the past four decades. 

 There are two approaches employed in the study of the 
behaviour of the pile foundations: theoretical and 
experimental. The problem of estimating the capacity of deep 
foundations is very complex and the mechanisms are not yet 
entirely understood. This can be attributed the sensitive 
nature of the factors affecting the behaviour of the pile. 
Among these factors are the stress-strain history of the soil, 
soil compressibility, and the difficulty in obtaining 
undisturbed samples of cohesionless soil, the installation 
effects. 

 In recent years, the application of in-situ testing 
techniques has increased for geotechnical design. This is due 
to the rapid development of in-situ testing instruments, an 
improved understanding of the behavior of soils, and the 
subsequent recognition of some of the limitations and 
inadequacies of conventional laboratory testing [1],[2], such 
as the standard penetration test. This test is the most frequent 
in-situ test in geotechnical practice because of its simplicity 
and affordable costs. Pile capacity determination by SPT is 
one of the earliest applications of this test that includes two 
main approaches, direct and indirect methods [3]. Most of the 
proposed procedures have achieved limited success in terms 
of providing accurate prediction of pile capacity. Although 
these methods reflect to some extent natural soil conditions, 
they have many limitations. Hence, ANN models could be an 
alternate approach for the above case. Several researchers 
[4]-[9], have attempted artificial neural networks (ANNs) for 
predicting bearing capacity of pile foundations. In this paper, 
the axial capacity of driven piles in cohesive soils has been 
correlated with SPT data using artificial neural networks.  

The modeling advantage of ANNs is the ability to capture 
the nonlinear and complex relationship between the bearing 
capacity and the factors affecting it without having to assume 
a priori formula of what could be this relationship. Many 
authors have described the structure and operation of ANNs 
[10]; [11]. Although some ANN models are not significantly 
different from a number of standard statistical models, they 
are extremely valuable as they provide a flexible way of 
implementing them. Model complexity can be varied simply 
by altering the transfer functions or network structure.       
Traditional empirical approaches for predicting bearing 
capacity of piles are used: [12]; [13]; [14], [15] and others.        
As a result, the use of ANNs models may overcome the 
limitations of the traditional methods. In this paper, ANNs 
are used to predict the ultimate bearing capacity of piles base 
on standard penetration test (SPT) data. The aims of the paper 
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are: 
1) To analyse the variables (inputs) to choose the most 

pertinent by using the PCA approach (Principal 
Components Analysis): a multi variable analysis is 
carried by the PCA, in the aim to determine the 
principal factors which affect the bearing capacity 
and improve the generalization process. 

2) To investigate the feasibility of the ANN technique 
for predicting the bearing capacity of pile in 
cohesionless soils;  

3) To explore the relative importance of the factors 
affecting capacity predictions by carrying out a 
sensitivity analysis; 

4) To compare the performance of ANN model with 
some of the most commonly used traditional 
methods; and 

5) To assess the benefits and limitations of the ANN 
technique over traditional methods. 
 

II. DESCRIPTIVE ANALYSIS OF VARIABLES 

A. Literature Review 
Despite the important advances realized in the domain, the 

dimensioning of piles remains a difficult problem, connected 
to complex behavior mechanisms and still ill-known. 
Although understanding of the factors affecting pile capacity 
is needed in order to obtain accurate bearing capacity 
prediction, most traditional methods include; geometry state, 
mechanical state, soil compressibility state. The database is 
extracted from literature and is resumed in Table I. The main 
factors affecting the capacity are summarized in Table II 

 
 TABLE I: ORGANIZATION OF THE DATABASE 

 

Surface of 
data Country Site Number of 

total data 

Bouafia and 
Benali 
(2002) 

[16] 

Belgium Kallo 2 
USA SF Francisco , Seattle 4 
The 

Netherlan
ds 

Amsterdam 1 

Canada Vancouver 2 
Greece - 3 
Japan Osaka 8 

Malaysia Port klang 2 
Thailand Bangkok 7 
Croatie - 2 

Palestine - 4 

UAE Sharjah, Dubai, Ajman, 
Ras-El-Kheimah 40 

- - 18 
Lee and Lee 

(1996) 
[17] 

- - 27 

B. Statistical Analysis 
The statistical parameters considered include the mean, 

standard deviation, minimum, maximum, and range. In this 
part, the statistical parameters studied represent the entire 
database (Table II).  The depth of the water table is not 
included in this study; its effect is already reflected in the 
measured SPT blow count down. Burland and Burbidge [18] 
recommended no correction to N be taken for overburden 
pressure or submergence. However, for sand and gravel, they 
take the correction proposed by [19]. In this study, we take 

the correction proposed by [19] for sand or gravel below the 
water table when N > 15 as follows: 

 
                    15 0.5( 15)correctedN N= + −                       (1) 
 

TABLE II: STATISTICAL ANALYSIS OF THE DATABASE 

   
These corrections were applied on all case records in the 

database used in the present study. Soil compressibility 
within the depth of influence of a foundation requires the 
assignment of soil properties that can accurately reflect this 
compressibility. The SPT is of one the most commonly used 
tests in practice for measuring the compressibility of 
cohesionless soils. Although it is not the most accurate in situ 
method for measuring soil compressibility, it is used 
extensively worldwide. Consequently, for the purpose of this 
study and from an already done study, the average SPT blow 
count/300mm (Nspte) over the influence of the foundation is 
used as a measure of soil compressibility. 
 

                    
 .

3
1 3

0
∫
+

+
=

BD

spte dzNspt
BD

N                         (2) 

 
These variables include: B: Pile diameter; D: Pile 

penetration depth; D/B : Slenderness;  Rg  : Roughness of the 
pile/soil interface;  Nspte  : Number of blows equivalent; σ’v  : 
Overburden pressure at the pile point; φ’: Internal angle of 
friction; Ocrb : Overconsolidation ratio;  Qt  : Total pile 
capacity. 

The performance of a multi layered neural network mainly 
depends on its generalization capacity, which in return 
depends on the data. The data analysis can be carried out by 
using different statistical tools; among them we find the 
principal component analysis. In this study the main 
objective of the PCA is the determination of the contribution 
rate of variables in the studied problem. Each variable is 
relative to one component. Thus, according to the component 
order, we can classify the different variables effects. Next, we 
compare these results with the sensitivity analysis of the 
relative importance of the neural network model input 
variables. 
 

III. PRINCIPAL COMPONENTS ANALYSIS OF THE VARIABLES 

A. Definition 
The PCA technique was first introduced by Karl Pearson 

in 1901. It is a descriptive technique which allows the study 
of dependency that exists between the variables. 
Mathematically, the PCA is a linear orthogonal projection 
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technique which projects multidimensional observations 
represented in a subspace of m dimensions (m is the number 
of observed variables) in a subspace with low dimensions (L 
< m) by maximizing the projection variables. 

Practically, for modeling a process using the PCA, the 
variables for this process are collected in an Xb matrix. 
Whether m the number of variables and N the number of 
observations for each variable, Xb is given by (3), 
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where x1(1) represents the value of the first variable of the 
first observation. 

As a preliminary, in order to make the result independent 
of the used units for each variable, a necessary pretreatment 
comprises of centering and reducing variables. Each Xj 
column is given by (4), 
 

                               
j

j
b
j

j

MX
X

σ
−

=                             (4) 

where  
 

Xj
b is the jth column of the Xb matrix and Mj is its mean 

given by (5), 
 

                               ( )∑
=

=
N

k
ij kx

N
M

1

1
                          (5) 

 
And σj

2 is its variance which will be determined by using 
the equation (6) 
 

                       ( )( )∑
=

−=
N

k
jij Mkx

N 1

22 1σ                      (6) 

 
The new matrix for the normalized data is noted (7) 

 
                                [ ]mXXX ...1=                            (7) 

 
The correlation matrix is given by: (8) 

 

                                ∑ −
= XX

N
T

1
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                          (8) 

 
The estimation of PCA parameters is summarized in an 

estimation of proper values and vectors of the correlation 
matrix Σ. A spectral decomposition of this latter allows 
writing (9). 
 

∑∑
=

==
m

i

T
iii

T PPPAP
1

λ                     (9) 

where pi is the ith proper vector of Σ, λi is the corresponding 
proper value and Λ is the diagonal matrix for proper vectors.  

If there’re q linear relationships between the X columns, 
we shall have q zero proper values and the X matrix can be 
represented by the first (m-q) = L principal components 
corresponding to none zero proper values. However, it is rare 
to have proper values equal to zero in reality (quasi-linear 
relations, noise…etc). So, it is necessary to determine the 
number L representing the number of proper vectors 
corresponding to dominants proper values. A number of rules 
are proposed in the literature to determine the number of L 
components to deduct [20] where most are heuristic. In our 
study, we utilized the method of cumulated percentages of 
the total variance (PVC). The basis of this method, each 
principal component is representative of a portion of the 
variance of data for the studied process. The proper values of 
the correlation matrix are measured from this variance and 
can so be utilized in the selection of the number of principal 
components. The implementation was done with the aid of an 
Excel Stat Software [21] 

B. Results and Discussion 
The cumulative variances of relative contributions for 

principal components to the total variance of data are given in 
Table III. Considering the distribution values, the three first 
which have 90% of the total variance of variables were 
chosen and the remaining can be neglected; because they 
don’t have an important impact on the information. 

Table III also shows that the first proper value is 6.039, it 
corresponds to a percentage of 67.09% of the variance, and it 
expresses part of the information explained by the first axis. 
The second proper value is 1.204 and corresponds to a 
percentage of 13.37%, the third proper value is 0.86 and 
corresponds to a percentage of 9.62%, these results show: 
The first three proper values represent and synthesise better 
the information. As a matter of fact, the information 
explained by the first, second and the third axes is 90%. The 
plan formed by the axis one and two explains to its self 80% 
of the information.  

Fig. 1 illustrates a graphical representation of proper 
values in function with the principal components axes (F1, 
F2,…Fi)  and which confirm that the three first principle 
components present 90% of the variance (Fi are the Axes of 
Principal Components). 

 
TABLE III: PROPER VALUES 

 
 

 
Fig. 1. Histogram representing the proper values (test of the bearing capacity) 
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C. Contribution of Variables in Principal Axes 
(Components)  
The disposition of variables on different axes of the 

principle components, and the contribution to the axis 
formation is function of many parameters. In this study we 
used the CTR factor, defined as the variables contribution to 
construct the principal components. In other words, this 
parameter (CTR) enabled us to determine the contribution of 
the variables to the total capacity. For this study, we 
concentrate on the values given by the CTR parameter.  

Basing on the order of these components, we can draw 
important remarks concerning the effect of the different 
variables on the pile capacity. The first component designs 
the pile depth (D), the overconsolidation ratio (Ocrb), and the 
angle of friction (φ’). The second component is connected to 
the overburden pressure (σ’v), the pile – soil interface 
roughness (Rg), and the number of blows (Nspte). The third 
component corresponds to the pile diameter (B) and the 
slenderness ratio (D/B). Following the CTR values, the best 
represented variables on the different axis and in a 
descending order are presented respectively in Tables IV, V 
and VI 

 We conclude that the PCA technique enabled us also to 
determine the importance of the variables on the phenomena 
(the pile bearing capacity). The different  used variables (B,D, 
D/B, Ocrb, Nspte, φ’, σ’v and Rg) participate respectively with 
the following percentages, 17.5%, 14%, 49.44%, 13.89%, 
22.27%, 14%, 25.5%, and 15%.These values are considered 
so important, and for that we can consider them being the 
relevant variables for the problem studied. 
 

TABLE IV: PARAMETERS FORMING THE FIRST PRINCIPAL AXIS                   
(PILE CAPACITY) 

 
 

TABLE V: PARAMETERS FORMING THE SECOND PRINCIPAL AXIS                
(PILE CAPACITY) 

 
 

TABLE VI: PARAMETERS FORMING THE THIRD PRINCIPAL AXIS                      
(PILE CAPACITY) 

 
 

IV. NEURAL NETWORK MODELING 

A. Overview of the Neural Network Modeling 
The types of neural networks used in this study are 

multilayer perceptrons (MLPs) that are trained with the back 
propagation algorithm. A comprehensive description of back 
propagation can be found in [10]; [11]; [22]. The typical 
MLP consists of a number of processing elements (called 

neurons, or units) that are usually arranged in layers: an input 
layer, an output layer, and one or more hidden layers. Each 
processing element in the specific layer is joined to the 
processing element of other layers via weighted connections. 
The input from each processing element in the previous layer 
is multiplied by an adjustable connection weight. 

This combined input then passes through a nonlinear 
transfer function (sigmoid or purelin function) to produce the 
output of the processing element. The output of one 
processing element provides the input to the next processing 
elements. In this work, the ANN model is developed with 
flexible and useful software for this type of application; the 
MATLAB release 7.0.[23]. The data used to calibrate and 
validate the model were obtained from literature and included 
a series of 120 axially loaded piles (Table1).  

NN: Neural Network;  ANN: Artificial Neural Network; 
MPLs: Multilayer perceptrons; ANN – MP: Artificial Neural 
Network – Multilayer   perceptron. 

B. Model Inputs and Outputs 
The ANN is considered as a black box system as it is 

unable to explain the underlying principles of prediction and 
the effect of inputs on the output. Therefore, interpretation of 
weights may be considered to the subject of future research. 
Recently, a number of investigators have advocated the use 
of connection weights to interpret the input variable 
contributions in neural networks [24]-[26]. 

In an attempt to identify which of the input variables has 
the most significant impact capacity predictions using ANN 
model, a sensitivity analysis is carried out on the trained 
network. A simple and innovative technique proposed by [27] 
is used to interpret the relative importance of the input 
variables by examining the connection weights of the trained 
network. For a network with one hidden layer, technique 
involves a process of partitioning the hidden output 
connection weights into components associated with each 
input node. The sensitivity analyses are repeated for 
networks trained with different initial random weights in 
order to test the robustness of the model in relation to its 
ability to provide information about the relative importance 
of the different factors affecting the bearing capacity of deep 
foundations. The results of the sensitivity analysis are 
discussed later. 

C. Data Division and Processing 
Recent studies have found that the way the data are divided 

can have a significant impact on the results obtained [28]. 
Like all empirical models, ANNs are unable to extrapolate 
beyond the range of their training data. Consequently, in 
order to develop the best possible model, given the available 
data, all patterns that are contained in the data need to be 
included in the training set. If all the available patterns are 
used to calibrate the model, the best way of improving 
generalization ability of the model is if all of the patterns are 
also part of the validation set. Consequently, it is essential 
that the data used for training, testing and validation 
represent the same population [29]. In this present study, 
several random combinations of the training, testing, 
validation sets are tried until three statistically consistent data 
sets are obtained. The statistical parameters considered 
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include the mean, standard deviation, minimum, maximum, 

and range. Despite trying numerous random combinations of 

training, testing, and validation sets, there are still some slight 

inconsistencies in the statistical parameters for the training, 

testing, and validation sets that are most closely matched 

(Table 7). The data ranges used for the ANN model variables 

are given in Table VII.

The next step in the development of the ANN model is 

dividing the available data into their subsets. In this work, the 

data were randomly divided into three sets: a training set for 

model calibration, a testing set and an independent validation 

set for model verification. In total, 65 tests were used for 

model training, 15 tests for model testing and 40 for model 

validation.  Once available data are divided into their subsets, 

the input and output variables are pre-processed, in this step 

the variables are normalized between -1.0 and 1.0. 

TABLE VII: ARTIFICIAL NEURAL NETWORK INPUT and OUTPUT

STATISTICS

D. Model Architecture

Following the data division and the pre-processing, the 

optimum model architecture (i.e., the number of hidden 

layers and the corresponding number of hidden nodes) must 

be determined. It should be noted that a network with one 

hidden layer can approximate any continuous function if 

sufficient connection weights are used [30]. Therefore, one 

hidden layer was used in the current study. The optimal 

number of hidden nodes obtained by trial and error approach 

in which the network is trained with a set of random initial 

weights and a fixed learning rate of 0.3, a momentum term of 

0.01, a tansigmoidal transfer function for hidden layer nodes, 

and pureline transfer function for the output layer nodes. The 

designed ANN has three layers, eight neurons in the input 

layer, six neurons in the hidden layer and one neuron in the 

output layer.

To terminate the training process, the criterion used is: the 

scaled mean squared error with regularization performance 

function (MSEREG), it measures network performance as 

the weight sum of two factors: the mean squared error and the 

mean squared weights and biases between the actual and 

predicted values of all outputs over all patterns is monitored 

until no significant improvement in the error occurs. This was 

achieved at approximately 90000 training epochs.

E. Model Validation

As a result of training, Tables VIII, VIX and VX show that 

the network ANN1 produced 6x8 weights and 6 bias values 

connecting the input layer to the hidden layer, 1x6 weights 

and one bias value connecting the hidden layer to the output 

layer for the model.

TABLE VIII: CONNECTIONS WEIGHT OF THE FIRST HIDDEN LAYER

TABLE IX: BIASES OF THE FIRST HIDDEN LAYER

TABLE X: CONNECTIONS WEIGHT OF THE SECOND HIDDEN LAYER

The performance of the optimum ANN model in the 

training set is shown in Fig. 2, and the predictive ability of the 

model in the validation is depicted in Fig.3. It should be noted 

that the validation is done for 40 tests (ANN1). These results 

demonstrate that the ANN model has a strong capability to 

stimulate the complex behavior of pile. The error distribution 

of the predicted capacity is also shown in Fig.4.

Table XI summarizes the results of comparison between 

the usual statistical parameters of model predictions and 

measured values. The statistical parameters for both model 

prediction and measured values are closely matched which 

gives the best generalization of the model.

Fig. 2.The learning of the ANN1 model

Fig. 3. Generalized model to predict the bearing capacity of pile (ANN1 

model)
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Fig. 4. Error distribution of the predicted capacity for all pile tests

TABLE XI: COMPARISON BETWEEN STATISTICAL PARAMETERS OF 

PREDICTED VALUES AND MEASURED VALUES

V. TRADITIONAL METHODS FOR CAPACITY PREDICTION

Many traditional methods for capacity prediction of deep 

foundations are presented in the literature particularly the 

empirical methods. The predictive ability of ANN1 model in 

validation set was made using four empirical techniques and 

they were also compared with actual measurements of pile 

capacities. These methods are those proposed by [12], [13], 

[14] and [15]. These methods are chosen as they are 

commonly used; represent the chronological development of 

capacity prediction, and the database used in this work 

contains most parameters required to the calculate capacity 

by these methods (Table XII).

TABLE XII: COMPARISON OF ARTIFICIAL NEURAL NETWORK AND 

TRADITIONAL METHODS FOR PILE CAPACITY PREDICTION

Fig. 5. Comparison of Predicted and measured total pile capacity

TABLE XIII: ARTIFICIAL NEURAL NETWORK RESULTS

   

The ANN model performs better than the traditional 

methods for all the four performance measures considered. 

As just mentioned, the coefficient of determination, R2, the 

MSERG, and MSE obtained using the ANN and the four 

traditional methods are summarized in Table XIII. Fig.5 

shows the relationship between measured and predicted 

values of the four methods. ANN predictions show few 

scatters in the data points than the predictions of all other 

methods. 

The predictive performance of the optimal neural network

model is summarised in Table 13. The results indicate that the 

ANN model performs well with an R2 of 0.88, an MSERG of 

4.8% for the validation set.

VI. COMPARISON WITH OTHER METHODS 

To measure the model performance, we take a numerical 

example described in Table XI. The studied case is an IPE 

400 embedded in sandy soil in Kallo site in Belgium. The 

interpretation of the load test curve gives value of 3474 KN. 

The obtained result is compared with the different 

approaches based on SPT, presented in Table XII (1:

Canadian code (CFEM; 1985) [34] 2: [31]; 3: [32]; 4: [33]; 

Qu: Ultimate pile capacity).

The coefficient of variation values (COV) shows a 

divergence between the Aoki and De‟Alencar method and 

the other prediction approaches witch give a good agreement 

with the measured value. The developed model shows best 

predictive ability with low Variation Coefficient (COV= 

4.77%).

TABLE XIV: PILE GEOMETRY AND SOIL PROPERTIES

Soil properties Pile geometry Nspt

C = 0

 = 35.2°

d = 15.6 

KN/m3

IPE400

D = 14m 

(embedment 

length)

Nb = 42

Ns = 30

Nspte =

33

TABLE XV: COMPARISON OF A NEURAL NETWORK MODEL AND OTHER 

METHODS

methods 1 2 3 4
ANN

model

Test  

result

Qu (KN)
3045.

4

378

7

578

6

296

6
3640 3474

COV (%) 12 9 66 14.6 4.77 -

VII. SENSITIVITY ANALYSIS OF THE RELATIVE IMPORTANCE 

OF ARTIFICIAL NEURAL NETWORK INPUT VARIABLES

The result of the sensitivity analyses are shown in Table 16. 

It can be seen that Nspte has the most significant effect on the 

predicted capacity when the network is retrained with 

different initial weights. However, the relative importance of 

the remaining input variables changed depending on which 

initial weights were used. Although σ‟v was found to be the 

most important input in all trials, the variables D/B, Nspte, Rg, 
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φ‟ and D have a tendency of having the same contribution. 

The remaining variables B and Ocrb look to have the same 

effect. The analysis carried out indicate that as expected, σ‟v, 

Nspte, φ’, D and D/B are the most important factors affecting 

pile capacity with average relative importance equal 

respectively to 16.14%, 14.15%, 12.46%, 12.69%and 

13.27%. The results also indicate that Rg, Ocrb and B have a 

moderate impact on pile capacity with average relative 

importance respectively equal to 11.16%, 10.54%, and 

9.77%.

TABLE XVI: SENSITIVITY ANALYSES OF THE RELATIVE IMPORTANCE OF 

ARTIFICIAL NEURAL NETWORK INPUT VARIABLES

VIII. CONCLUSIONS

ANNs were used to simulate the mechanical behavior of 

an axially loaded pile and more particularly the prediction of 

the bearing capacity. The ANNs used were MLPs that were 

trained with the back-propagation algorithm.The principal 

aim of this study is to show the efficacy of this approach to 

estimate the total pile capacity in cohesionless soils. 

A database containing 120 case records of actual field 

measurements for capacity was used for model development 

and verification. The optimum network architecture and 

internal parameters were found to be as follows: 6 hidden 

layer nodes; a learning rate of 0.3; a momentum of 0.01; a 

tansigmoidal transfer function for the hidden layer nodes and 

a pureline transfer function for the output layer nodes. A 

sensitivity analysis was carried out to study the relative 

importance of the factors that affect a pile capacity. The 

results of the ANN model were compared with the results of 

the experimental tests and with those obtained from other

traditional methods.  The results indicate that the ANN model 

was capable of accurately simulating the pile capacity by 

using eight simple parameters as model inputs (i.e., B, D, D/B, 

Rg, φ’, Ocrb, Nspte, and σ’v). The results obtained also 

demonstrate that the ANN method performs better than the 

traditional methods. A neural network performance depends 

mostly on its generalization capacity, which in return

depends on the data. 

The application of the PCA technique on the study of 

variables before the learning process of an ANN model 

enabled us to determine the importance of the variables on 

the phenomena to study (pile bearing capacity). 

The sensitivity analysis indicates that the SPT blow count, 

the overburden the pressure at the pile point, the pile 

slenderness, and the internal angle of friction, the penetration 

depth, the roughness of the pile/soil interface, the pile 

diameter and the overconsolidation ratio are most important 

factors affecting pile capacity in cohesionless soils. ANNs 

have the advantage that once the model is trained, it can be 

used as an accurate and quick tool for estimating the total 

bearing capacity without need of using table or charts.

Like all empirical models, the range of applicability of 

ANNs is constrained by the data used in the model calibration 

phase and ANNs should thus be recalibrated as new data 

becomes available. Despite of these limitations, the results of 

this study indicate that ANNs have a number of significant 

benefits that make them a powerful and practical tool for pile 

capacity prediction in cohesionless soils.
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