
  

  
Abstract—High speed multiplication has always been a 

fundamental requirement of high performance processors and 
systems. With MOS scaling and technological advances there is 
a need for design and development of high speed data path 
operators such as adders and multipliers to perform signal 
processing operations at very high speed supporting higher data 
rates. In DSP applications, multiplication is one of the most 
utilized arithmetic operations as part of filters, convolves and 
transforms processors. Improving multipliers design directly 
benefits the high performance embedded processors used in 
consumer and industrial electronic products. Hence there is a 
need for design and development of high-speed architectures 
for N-bit multipliers supporting high speed and power. Here we 
review the architecture reported in the literature for multipliers 
and critical issues degrading the speed and power of these 
multiplier. Based on this review suitable modifications are 
suggested in the design for high speed and low power 
multipliers. 
 

Index Terms— CPA, DSP, microprocessor, multiplier.  
 

I. INTRODUCTION 
Multiplication is a less common operation than addition, 

but is still essential for microprocessors, digital signal 
processors and graphics engines. Multiplication algorithms 
are used to illustrate methods of designing different cells so 
that they fit into a large structure.  The most basic form of 
multiplication consists of forming the product of two 
unsigned binary numbers, simplified to base 2.  

M × N bits multiplication can be viewed as forming N 
partial products of M bits each, and then summing the 
appropriately shifted partial products to produce on M + N 
bits result P[1]. Binary multiplication is equivalent to a 
logical AND operation. Therefore, generating partial product 
consists of logical ANDing of the appropriate bits of the 
multiplier and multiplicand. Each column of partial products 
must then be added and if necessary, any carry values passed 
to the next columns. 

A. Parallel Multipliers 
In the 1960's two classes of parallel multipliers were 

defined. The first class [1] of parallel multipliers uses a 
rectangular array of identical combinational cells to generate 
and sum the partial product bits. Multipliers of this type are 
called array multipliers. They have a delay that is generally 
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proportional to the word length of the multiplier input. Due to 
the regularity of their structures, array multipliers are 
carrying to layout and have been implemented frequently. 

The second class of parallel multipliers reduces a matrix of 
partial product bits to two words through the strategic 
application of counters or compressors [2]. These two words 
are then summed using a fast carry-propagate adder to 
generate the product. This class of parallel multiplier is 
known as column compression multiplier. These are also 
fastest multiplier as the delay is proportional to the logarithm 
of the multiplier and word length.  

B. Array Multipliers  
In array multiplier the two basic functions, partial product 

generation and summations are combined. For unsigned N × 
N multiplication, N2+N-1 cells (where N2 contain an AND 
gate for partial product generation, a full adder for summing 
and N-1 cells containing a full adder) are connected to 
produce a multiplier. This array generates N lower product 
bits directly and uses a carry-propagate adder, in this case a 
ripple carry adder, to form the upper N bits of the product. 

C. Column Compression Multiplier 
Column compression multiplier continued to be studied 

due to their high speed performance. This multiplier’s total 
delay is proportional to the logarithm of the operand word 
length. These multipliers are faster than array multipliers 
whose delay grows linearly with operand word length. 
According to Thomas Ko Callaway et. al. [3] column 
compression multipliers are more power efficient than array 
multipliers. In 1964, Wallace [4] introduced a scheme for fast 
multiplication based on summing the partial product bits on 
parallel using a tree of carry save adders which became 
generally known as the Wallace tree. Dadda [5] later refined 
Wallace's method by defining a counter placement strategy 
that required fewer counters in the partial product reduction 
stage at the cost of a larger carry-propagate adder. For both 
methods, the total delay is proportional to the logarithm of 
the operand word-length. Other partial product reduction 
methods have been proposed since the work of Wallace and 
Dadda. The reduced area [6] and the Windsor methods are 
based on strategic utilization of (3, 2) and (2, 2) counters to 
improve area and layout, while maintaining the fast speed of 
the Wallace and Dadda designs. 

In this paper we identify techniques for optimal computer 
aided designs of column compression multipliers by 
analyzing area, power and timing characteristics with 
particular emphasis on low power. 
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II. DESIGN AND ANALYSIS 
The major works in this paper are study of multiplier 

architectures for high speed signal processing applications, 
identifying the specifications for the multiplier design, 
modeling the architecture, functional verification, and 
developing the test bench to verify the design for all possible 
input combinations.  We also do FPGA implementation of 
the proposed multiplier to meet the specification identified. 
Synopsys tool flow is used for ASIC synthesis, physical 
design and implementation of multipliers. GDSII generated 
and report prepared. 

Following are the technical specification of experimental 
work carried out to design and implement Booth, Wallace, 
Dadda multipliers using 130nm technology. 
Input bit width:  8-bit, signed, unsigned, integer, decimal. 
Input arrival:  parallel with 100 Mbytes / sec. 

Expected output: 16-bit output, supporting all formats. 
Output data rate: 100 Mbytes /sec.  
Tech:  130 nm,   Lib:  TSMC. 
Power:  10≤ μ  watts. 
Area:  400 sq. mm. 
The power analysis is the process of calculating the power 

consumption of the chip. It also consists of the calculation of 
voltage, current drop (IR drop) and electromigration analysis 
due to high current density of the metal. Table I gives the 
power consumption of the multipliers. 

Dadda multiplier consumes less area as compared to that of 
Wallace tree and Booth Multiplier. Booth multiplier 
consumes less power as compared to that of Wallace tree and 
Dadda multiplier. Wallace tree has less delay as compared to 
that of Booth and Dadda multipliers. 

Booth multiplier has maximum number of ROMs, macros 
and BELS. Wallace tree has minimum number of BELS and 
macros compared to Booth and Dadda multiplier. Also 
Wallace tree multiplier and Dadda multiplier have no 
flip-flops and Booth multiplier has maximum flip-flops. 

The multipliers have been synthesized setting a constraint 
on speed to a maximum of 130MHz. Based on this constraint 
the table II gives the design compiler output for various 
factors of the multipliers. 

 
TABLE I: COMPARIAION OF MU LTIPLIERS 

8 bit Booth 
Multiplier 

Wallace 
tree 

Dadda 
Multiplier 

Area (μm) 5115.963379 1330.7615 1330.761597

Power(μw) 324.5302 655.5517 655.8073 

Timings (ns) 3.75 1.56 1.56 

For the multiplication of two numbers y and x, we denote 
the multiplicand as in (1) 

0121 ,...,( yyyyy MM −−= )                       (1) 

and multiplier as in (2) 

0121 ,...,( xxxxx NN −−= )                       (2) 

For unsigned multiplication, the product is given in (3). 
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Number of techniques can be used to perform 
multiplication. In general, the choice is based up on factors 
such as latency, throughput, area, and design complexity. An 
obvious approach is to use an M+1 bits carry propagate adder 
(CPA) to add the first two partial products, then another CPA 
to add the third partial product to the running sum, and so 
forth. Such an approach requires N-1 CPAs and is slow, even 
if a fast CPA is employed. More efficient parallel approaches 
use some sort of array or tree of full adders to sum the partial 
products. 

In the early 1950’s, multiplier performance was 
significantly improved with the introduction of Booth 
multiplier [7], development of faster adders [8] and memory 
components. 

Booth's method and the modified Booth's method do not 
require a correction of the product when either (or both) of 
the operands is (are) negative for two's complement numbers. 
During the 1950's adder designs moved away from the slow 
sequential circuit executed by ripple carry adders carry look 
ahead, carry select, and conditional sum adders yielded 
speedy sums through the faster simultaneous or parallel 
generation of carriers. 

 
TABLE II: DESIGN COMPILER OUTPUT 

8 bit 
Multiplier 

Booth Wallace tree Dadda  

Frequency 130MHZ 130MHZ 130MHZ 
Number of 
Ports 38 34 32 

Number of Nets 265 302 348 

Number of Cells 214 248 266 

References 35 5 5 

Combinational Area (μm) 1868.8373 1470.7612 1330.7615 

Sequential Area (μm) 3247.1262 0.0000 0.0000 

Total Cell Area (μm) 5115.9633 1470.7672 1330.7615 

Cell internal Power (μw) 303.1691 501.8940 562.0927 

Net Switching power μw) 21.3691 153.6577 153.7151 
Total Dynamic 
Power(μw) 324.5302 655.5517 655.8073 

Cell Leakage Power (μw) 5.6910 5.6263 5.6258 

 

III. ARRAY MULTIPLIER 
The two basic functions of array multiplier, partial product 

generation and summation are combined. For unsigned N x N 
multiplication, N2+N-1 cells are connected to produce a 
multiplier, where N2 contain an AND gate for partial product 
generation, a full adder for summing and N-1 cells containing 
a full adder [9]. The array generates N lower product bits 
directly and uses a carry-propagate adder, in this case a ripple 
carry adder, to form the upper N bits of the product. 

Replacing full adder with half adders, possibly reduces the 
complexity to N2 AND gates, N half adders, and N(N-2) full 
adders. The worst case delay is (2N-2) cΔ , where cΔ  is the 
adder delay. 

In order to design an array multiplier for two's complement 
operands, Booth algorithm [10] can be employed. This 
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algorithm computes the partial products by examining two 
multiplicand bits at a time. Except for enabling usage of two's 
complement operands, this algorithm offers no performance 
or area advantage in comparison to the basic array multiplier. 
Better delays, though can be achieved by implementing a 
higher radix modified Booth algorithm [11]. 

Another method for building an array multiplier that 
handles two's complement operands was presented by Baugh 
et al. [12] as shown in fig. 1. This method increases the 
maximum column height by two. This may lead to an 
additional stage of partial product reduction, thereby 
increasing overall delays [12]. A modified form of the Baugh 
et al. strategy is more commonly used because it does not 
increase the maximum column height [13]. 

0 n 1 0 n 2 0 2 0 1 0 0a b a b a b a b a b- -

n 1 n 2 1 0

n 1 n 2 1 0

a a a a

b b b b. . .
- -

- -

1 n 1a b -

1

1 n 2a b - 1 1 1 0a b a b

2 n 1a b - 2 n 2a b - 2 1a b 2 0a b

n 2 n 1a b- - n 2 n 2a b- - n 2 0a b-

n 1 n 1a b- - n 1 n 2a b- - n 1 1 n 1 0a b a b- -
1

2n 1P - 2n 2P - 2n 3P - n 1P + nP n 1P - n 2P - 2P 1P 0P

×

 
Fig. 1. Two’s complement by modified Baugh-Wooley method 

 

IV. COLUMN COMPRESSION MULTIPLIER 
Column compression multiplier continued to be studied 

due to their high speed performance. These multipliers total 
delays are proportional to the logarithm of the operand word 
length, where as other array multipliers delay grows linearly 
with operand word length. According to Thomas Ko 
Callaway et. al. [3] column compression multipliers are more 
power efficient than array multipliers. In 1964, Wallace [4] 
introduced a scheme for fast multiplication based on 
summing the partial product bits on parallel using a tree of 
carry save adders which became generally known as the 
Wallace tree. Dadda [5] later refined Wallace's method by 
defining a counter placement strategy that required fewer 
counters in the partial product reduction stage at the cost of a 
larger carry-propagate adder. For both methods, the total 
delay is proportional to the logarithm of the operand word 
length. Other partial product reduction methods have been 
proposed since the work of Wallace and Dadda. The reduced 
area [6] and the Windsor methods are based on strategic 
utilization of (3, 2) and (2, 2) counters to improve area and 
layout, while maintaining the fast speed of the Wallace and 
Dadda designs. 

This research identifies techniques for optimal computer 
aided designs of column compression multipliers by 
analyzing area, power and timing characteristics with 
particular emphasis on low power. 
 

V. TOOLS 
The tools used for this research work are Xilinx and 

Modelsim from Mentor Graphics. NCsim from Cadence, 
VCSIM from Synopsys and Astro tool from Synopsys for 
physical design. Design compiler for viewing the schematic 
and primetime for static timing analysis. The Synopsys 
Design Compiler (DC) and Design Vision (DV) comprise a 
powerful suite of logic synthesis products, designed to 
provide an optimal gate-level synthesized netlist based on the 
design specifications, and timing constraints. 

Primetime (PT) is the Synopsys sign-off quality, full chip, 
and gate level static timing analysis tool. It allows 
comprehensive modeling capabilities often required by large 
designs [14]. It is faster compared to design compilers 
internal static timing analysis engine. It provides enhanced 
analysis capabilities to other Synopsys tools, which is based 
on TCL language, thus providing powerful features of that 
language to promote the analysis and debugging of the 
design. 

The SDF file is used to perform exhaustively throughout 
the ASIC world to perform dynamic timing simulations. It 
contains timing information of each cell in the design. The 
basic timing data comprises of the following. 

• IOPATH delay- specifies the cell delay. 
• INTERCONNECT delay- specifies point to point 

delay. 
• SETUP timing check- contains the required setup of 

each sequential cell. 
• HOLD timing check-hold time of each sequential 

cell. 

A. SDF File 
The SDF file may be generated for pre-layout or 

post-layout simulations. The post-layout SDF is generated 
from DC or PT, after back annotating the extracted RC delay 
values and parasitic capacitances to DC or PT. The post 
-layout values represent the actual delays associated with the 
design. 

The pre-layout numbers contain delay values that are 
based upon the wire-load models; it does not contain the 
clock tree. Therefore it is necessary to approximate the 
post-route clock trees delays while generating the pre-layout 
SDF. The post-layout design contains the clock tree 
information. Therefore all the steps that were needed to fix 
the clock latency, skew and clock transition time, during 
pre-layout phase are not required for post-layout SDF file 
generation. 

After getting the schematic view timing, power and area 
constraints are set. The netlist, out put of synthesis is the 
input for the tool. The design setup consists of entire 
technology file named as technology file, library exchange 
format, advance library format, cell library file, physical 
library, design exchange format, top design format, physical 
design format, and table look up files [14]. They contain 
technology and foundry dependent parameters and are used 
to get a physically implemented chip. Next step is to load the 
netlist to the library for further process like floor planning, 
power planning etc. Floor planning is a process of placing the 
input, output, power and ground pads. The exact locations of 
all the pads are predefined in the technology dependent file 
(TDF) provided by the tool vendor.  

Nest step is floor planning of the design as shown in fig.2. 
To set aspect ratio of the core power planning has to be done 
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by creating the power rings around the core region through 
which straps and trunks for the core region are connected. 
Choose the even metal layer for vertical and odd metal layer 
for horizontal with has less RC value. We have used metal 4 
for the power and metal 3 for the ground. After creating the 
rectangular rings around the core region connect the VDD 
and VSS pads to the power and ground rings, which is known 
as pre instance in the tool option. 

B. SDC File 
The next step is load the standard delay constraint (SDC) 

file containing timing parameters of the netlist taken at the 
time of static timing analysis through the primetime tool [14]. 
At the time of synthesis nets used for routing and the 
numerical value of the RC are not known. The timing 
analysis output should not be violating setup and hold time.  

After loading the SDC file and getting the timing report, 
placement is to be done by placing the standard cells 
horizontally in the core region. At this step, we set some 
common option like optimization mode, placement 
constraints, location constraints etc. then do pre placement 
optimization in which we have to set design cleanup, quick 
placement optimization of high fanout synthesis, ideal 
optimization and logic remapping. After pre-placement we 
do post-placement optimization.  

The next step is to set the clock common option like the 
conditions worst, best and buffers, inverters and perform 
clock tree synthesis. After the process of clock tree synthesis 
we have to do post-place optimization for this set option like 
setup fixing, hold fixing, maximum capacitance, area 
recovery and logic remapping. 

Now the design at this point is DRC free with no violation 
in the timing. The next step is to common option like global 
routing, track assign, CTS net, detailed routing, library cells 
and design rule etc. routing is last stage of physical design 
flow. After giving the common option we have to set the net 
group. After setting the all options we have to do global 
routing and after that detailed route. After completing all the 
routing process we do the post route optimization with some 
constraints like routing phase, optimization effort, 
optimization target, optimization mode, optimization control, 
flow control etc. The routing output for the multipliers is as 
shown in fig. 4. After completing the routing check the 
design rule checked. If there is any DRC violation then we 
have to do search and repair. This option in the tool will 
detect the DRC violation and it will rectify. 

 
Fig. 2. Floor planning process 

 
Fig. 3. Placement output 

 
Fig. 4. Routing output 

C. DEPOGIT: Dense Power-Ground Interconnect 
Architecture for Physical Design Integrity: 
In recent deep submicron VLSI design, signal integrity (SI) 

and power-ground integrity (PGI) have become very 
important to design in a short time. Most engineers working 
on process design, chip design, and EDA areas are acutely 
aware of a tough challenges emerging because of process 
variability and physical integrity issues. Process variability is 
not only a fabrication problem, but also a serious design issue. 
Similarly, physical integrity problems are not only design and 
EDA issues, but also process-related architecture problems. 

As a solution, DEPOGIT is a new dense power-ground 
interconnect architecture that realizes more robust physical 
design integrity. It basically consists of adjoining power and 
ground lines. This architecture is a method of running both 
the power and ground wires adjacent to the signal wires. This 
provides not only the general shielding effect but also explicit 
decoupling capacitance (decap) by means of the wires. This 
architecture also guarantees regularity, thus reducing 
manufacturing variations in interconnects. Using this 
architecture 

• High quality decap for a small chip areas can be 
obtained. 

• The resistive IR drop can be less than 20% of that of a 
conventional power grid. 

• Transient peak noise can be reduced by about 80%. 
• The inductive crosstalk effect of the signal wire can 

be greatly reduced. 
 

VI. REVIEW OF MULTIPLIER 

A. Modified Booth’s Multiplier 
Booth’s algorithm is a powerful direct algorithm to 

perform signed number multiplication [10]. It involves 
repeatedly adding one of two predetermined values A and S 
to a Product P, then performing a rightward arithmetic shift 
on P. Let x and y be the multiplicand and multiplier 
respectively. Let nx and ny represent the number of bits in x 
and y. The modified Booth’s multiplier algorithm to obtain 

Left 

Top 

Bottom 
Right 

Placed 
cells 
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the product of x and y is as follows. 
1) Determine the values of A, S and the initial value of P. 

All of these numbers should have a length equal to nx + 
ny + 1. 

• A: Fill the most significant (leftmost) bits with the 
value of x. Fill the remaining (ny +1) bits with zeros. 

• S: Fill the most significant bits with the value of (-x) 
in two’s complement notation. Fill the remaining (ny 
+1) bits with zeros. 

• P: Fill the most significant nx bits with zeros. To the 
right of this append the value of y. Fill the least 
significant (rightmost) bits with a zero 

2) Determine the two least significant (rightmost) bits of P. 
• If they are 01, find the value of P+A, ignore any 

overflow. 
• If they are 10, find the value of P+S, ignore any 

overflow. 
• If they are 00 or 11, do nothing, use P directly in the 

next step 
3) Arithmetically shift the value obtained in the previous 

step by a single place to the right. Let P now equal to this 
new value. 

4) Repeat steps 2 and 3 until they have been done ny times. 
5) Drop the least significant (rightmost) bit from P, 

resultant is the product of x and y. 

B. Wallace tree Multiplier 
In 1964 C.S.Wallace introduced a scheme for the 

multiplication based on summing the partial product bits in 
parallel using a tree of carry save adders which became 
generally known as the Wallace tree [4]. This method has a 
three step process is used to multiply two numbers. 

Step 1: The bit products are formed 
Step 2: The bit product matrix is reduced to a two row 

matrix by using carry save adders known as Wallace tree. 
Step 3: The remaining two rows are summed using a fast 

carry –propagate adder to produce the product. 
Though the process seems to be complex it yields 

multipliers with delay proportional to the logarithm of the 
operand word length n. The Wallace tree multiplier belongs 
to a family of multipliers called column compression 
multipliers. 

The principle in this family of multipliers is to achieve 
partial product accumulated by successively reducing the 
number of bits of information in each column using full 
adders or half adders. The full adder is known as (3:2) 
compressor because of its ability to add three bits from a 
single column of the partial product matrix and output two 
bits, one bit in the same column and one bit in the next 
column of the output matrix. The half adder is known as (2:2) 
compressor because of its ability to take two bits from a 
single column of the partial product matrix and output two 
bits, one bit in the next column of the output matrix.  

Fig. 5 gives dot diagram of Wallace tree multiplier. The 
Wallace tree consists of numerous levels / stages of such 
column compressor structures until finally only two full 
width operands remain. These two operands can then be 
added using regular 2N bits adders to obtain the product 
result. The difference between the Wallace tree multiplier 
from column compression multiplier is that, in the Wallace 
tree every possible bit in every column is covered by the (3:2) 

or (2:2) Compressors respectively. Until finally the partial 
product matrix has a depth of only two. Thus the Wallace tree 
multiplier uses as much hardware as possible to compress the 
partial product matrix as quickly as possible into the final 
product. 

 
Fig. 5. Dot diagram of Wallace tree multiplier 

C. Dadda Multiplier  
Dadda refined Wallace’s method by defining a counter 

placement strategy that required fewer counters in the partial 
product reduction stage at the cost of a larger carry propagate 
adder [5]. Dadda has introduced a number of ways to 
compress the partial product bits using such a counter which 
later became known as Dadda’s Counter. Fig. 6 gives the 
process for 8 × 8 bits Dadda multiplier. 

 
Fig. 6. Operation 8X8 bits dadda multiplier 

An input 8 × 8 bits matrix of dots (each dot represents a bit) 
is shown as step 0. Columns having more than six dots are 
reduced by the use of half adders, each half adder takes in two 
dots and outputs one in the same column and one in the next 
more significant column and full adders, each full adder takes 
in three dots and outputs one in the same column and one in 
the next more significant column so that no column in step 1 
will have more than six dots [5]. Half adders are shown by a 
crossed line in the succeeding matrix and full adders are 
shown by a line in the succeeding matrix. In each case the 
rightmost dot of the pair that is connected by a line is in the 
column from which the inputs were taken from the adder. 

In the succeeding steps reduction to step 2 with no more 
than four dots per column, matrix three with no more than 
three dots per column, and finally step 4 with no more than 
two dots per column is performed. The height of the matrices 
is determined by working back from the final two row matrix 
and limiting the height of the each matrix to the largest 
integer that is no more than 1.5 times the height of its 
successor. Each matrix is produced from its predecessor in 
one adder delay. Since the number of bits in the words to be 
multiplied, the delay of the matrix reduction process that 
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reduces is proportional to log n, where n is word size. Since 
the adder that reduces the final two row matrix can be 
implemented as a carry look ahead adder which also has 
logarithmic delay, the total delay for this multiplier is 
proportional to the logarithm of the word size n.  
 

VII. COMPARISON  

A. Comparison of Dadda and Wallace Tree Multipliers 
This section gives the comparative study of the 8 X 8 bits 

Dadda and Wallace tree multipliers.  
• Wallace tree multiplier uses 38 full adders and 15 half 

adders. 
• Dadda multiplier uses 35 full adders and 7 half 

adders. 
• Wallace tree multiplier requires a carry-propagate 

adder of 10 bits wide 
• Dadda multiplier requires a carry propagate adder of 

14 bits wide. 
• The other disadvantage of Dadda multiplier is that it 

is less regular than the Wallace tree multiplier, 
making it more difficult to layout in VLSI design. 

The multiplier being one of the major complex arithmetic 
building blocks for VLSI design has its own sets of 
complexities in terms of area, power, speed, and cost and 
design methodology. 

The table III and table IV show the complexity involved in 
multiplier design. With bit width being increased, the number 
of stages also increases, and this introduces complexity. 
Wide bit width is required for accuracy and high sampling 
rate. Hence there is a need for design and development of an 
IP that can be easily adopted for any high speed applications 
by just using the basic building block of the multiplier design. 

 
TABLE III: NUMBER OF STAGES IN MULTIPLIERS 
Bit width of Multiplier  Number of Stages

2 0 

3 1 

4 2 

5 to 6 3 

7 to 9 4 

10 to 13 5 

14 to 19 6 

20 to 28 7 

29 to 42 8 

43 to 63 9 

64 o 94 10 

 
TABLE IV: COMPARIAION OF MULTIPLIERS WITH RESPECT TO AREA, SPEED 

AND POWER 

Multiplier Delay (ns) Area 
(µm2) 

Power 
(mw) 

Dadda using carry look 
ahead adder 2.56 878 5.65 

Dadda using Ripple carry 
adder 2.73 853 5.23 

Array 8 3.02 979.7 5.16 

Wallace 8 2.81 910 5.39 

B. FPGA and ASIC 
The advantages of ASIC physical design over FPGA are 

listed in table V. 
 

TABLE V: COMPARIAION OF MULTIPLIERS WITH RESPECT TO AREA, SPEED 
AND POWER 

Sl. No. FPGA ASIC 

1 Complexity of multipliers is 
more 

Complexity of multipliers 
is less 

2 Area occupied by the 
multipliers is less. 

Area occupied by the 
multipliers is more. 

3 Power consumption by the 
multipliers is more. 

Power consumption by the 
multipliers is less. 

4 Delay is more and hence speed 
is less. 

Delay is less and hence 
speed is high. 

 

VIII. APPLICATION, CONCLUSION AND FUTURE WORK 

A. Application 
The potential usages of proposed design are - 
• High Speed Signal Processing that includes DSP 

based applications. 
• DWT and DCT transforms used for image and wide 

signal processing. 
• FIR and IIR Filters for high speed, low power 

filtering applications. 
• Multirate signal processing applications such as 

digital down converters and up converters. 

B. Conclusion 
In this work we have identified the techniques for optimal 

computer aided designs of selected three 8 bits multipliers 
namely Booth, Wallace tree and Dadda by analyzing delay, 
area and power characteristics with particular emphasis on 
designing the cells for optimum power using layout design 
techniques. These three multipliers are implemented and the 
constraints area, power and timing are optimized using 
Verilog codes based on software resources NC SIM and VC 
SIM.  

The results of the research work carried out are  
• Reviewed the existing high speed serial and parallel 

multipliers available, identified the specification 
requirements for the multipliers. 

• Modeled the multipliers using HDL and verified the 
functionality using test vectors. 

• Implemented the design on FPGA and verified its 
functionality and identified the hardware 
requirements. 

• Carried out ASIC design on the synthesized net list by 
appropriately providing the constraints based on the 
first cut information obtained from FPGA synthesis. 

• Compared the performance of multiplier design and 
optimized the design for area, speed and power. 

Finally we conclude that performance wise, Dadda 
multiplier consumes less area as compared to Wallace tree 
and Booth multiplier. Power wise Booth multiplier consumes 
less power compared to Wallace tree and Dadda multiplier. 
Delay wise Wallace tree has less delay as compared to Booth 
and Dadda multiplier. 

From the tables we observed that the Dadda Multipliers 
requires more nets and consumes lesser references than 
Wallace tree multiplier and Booth multiplier. The increase in 
number of intermediate stages in multipliers, the 
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interconnection between the building blocks also increases. 
As Dadda multiplier has more number of intermediate stages 
it has more number of interconnections (76.5% more). 

C. Scope for Future Work: 
As this work was limited to design of only the multiplier as 

an IP using TSMC 130nm CMOS technology, it would be 
better to incorporate the Multiplier into a MAC unit that can 
perform multiplication and accumulation. MAC forms the 
major block for any filtering application. During the design 
of MAC block, redundancy in filter coefficients can be 
exploited to minimize the filter structure and optimize the 
performances of MAC unit. Also, there is possibility in 
developing a hybrid multiplier that takes into consideration 
both Dadda and Wallace multiplier architecture combined 
with booths multiplier. 
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