

Abstract—High speed multiplication has always been a

fundamental requirement of high performance processors and
systems. With MOS scaling and technological advances there is
a need for design and development of high speed data path
operators such as adders and multipliers to perform signal
processing operations at very high speed supporting higher data
rates. In DSP applications, multiplication is one of the most
utilized arithmetic operations as part of filters, convolves and
transforms processors. Improving multipliers design directly
benefits the high performance embedded processors used in
consumer and industrial electronic products. Hence there is a
need for design and development of high-speed architectures
for N-bit multipliers supporting high speed and power. Here we
review the architecture reported in the literature for multipliers
and critical issues degrading the speed and power of these
multiplier. Based on this review suitable modifications are
suggested in the design for high speed and low power
multipliers.

Index Terms— CPA, DSP, microprocessor, multiplier.

I. INTRODUCTION
Multiplication is a less common operation than addition,

but is still essential for microprocessors, digital signal
processors and graphics engines. Multiplication algorithms
are used to illustrate methods of designing different cells so
that they fit into a large structure. The most basic form of
multiplication consists of forming the product of two
unsigned binary numbers, simplified to base 2.

M × N bits multiplication can be viewed as forming N
partial products of M bits each, and then summing the
appropriately shifted partial products to produce on M + N
bits result P[1]. Binary multiplication is equivalent to a
logical AND operation. Therefore, generating partial product
consists of logical ANDing of the appropriate bits of the
multiplier and multiplicand. Each column of partial products
must then be added and if necessary, any carry values passed
to the next columns.

A. Parallel Multipliers
In the 1960's two classes of parallel multipliers were

defined. The first class [1] of parallel multipliers uses a
rectangular array of identical combinational cells to generate
and sum the partial product bits. Multipliers of this type are
called array multipliers. They have a delay that is generally

Manuscript received June 20, 2012; revised July 30, 2012.
Vasudev G. is with the ACS College of Engineering, Bangalore, India-

560 032 (e-mail:deva_gbg76@yahoo.co.in).
Rajendra Hegadi is with the Pragati College of Engineering and

Management, Raipur (C.G)-492015, India (e-mail:
rajendra.hegadi@gmail.com).

proportional to the word length of the multiplier input. Due to
the regularity of their structures, array multipliers are
carrying to layout and have been implemented frequently.

The second class of parallel multipliers reduces a matrix of
partial product bits to two words through the strategic
application of counters or compressors [2]. These two words
are then summed using a fast carry-propagate adder to
generate the product. This class of parallel multiplier is
known as column compression multiplier. These are also
fastest multiplier as the delay is proportional to the logarithm
of the multiplier and word length.

B. Array Multipliers
In array multiplier the two basic functions, partial product

generation and summations are combined. For unsigned N ×
N multiplication, N2+N-1 cells (where N2 contain an AND
gate for partial product generation, a full adder for summing
and N-1 cells containing a full adder) are connected to
produce a multiplier. This array generates N lower product
bits directly and uses a carry-propagate adder, in this case a
ripple carry adder, to form the upper N bits of the product.

C. Column Compression Multiplier
Column compression multiplier continued to be studied

due to their high speed performance. This multiplier’s total
delay is proportional to the logarithm of the operand word
length. These multipliers are faster than array multipliers
whose delay grows linearly with operand word length.
According to Thomas Ko Callaway et. al. [3] column
compression multipliers are more power efficient than array
multipliers. In 1964, Wallace [4] introduced a scheme for fast
multiplication based on summing the partial product bits on
parallel using a tree of carry save adders which became
generally known as the Wallace tree. Dadda [5] later refined
Wallace's method by defining a counter placement strategy
that required fewer counters in the partial product reduction
stage at the cost of a larger carry-propagate adder. For both
methods, the total delay is proportional to the logarithm of
the operand word-length. Other partial product reduction
methods have been proposed since the work of Wallace and
Dadda. The reduced area [6] and the Windsor methods are
based on strategic utilization of (3, 2) and (2, 2) counters to
improve area and layout, while maintaining the fast speed of
the Wallace and Dadda designs.

In this paper we identify techniques for optimal computer
aided designs of column compression multipliers by
analyzing area, power and timing characteristics with
particular emphasis on low power.

Design and Development of 8-Bits Fast Multiplier for Low
Power Applications

Vasudev G. and Rajendra Hegadi, Member, IACSIT

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

774DOI: 10.7763/IJET.2012.V4.482

II. DESIGN AND ANALYSIS
The major works in this paper are study of multiplier

architectures for high speed signal processing applications,
identifying the specifications for the multiplier design,
modeling the architecture, functional verification, and
developing the test bench to verify the design for all possible
input combinations. We also do FPGA implementation of
the proposed multiplier to meet the specification identified.
Synopsys tool flow is used for ASIC synthesis, physical
design and implementation of multipliers. GDSII generated
and report prepared.

Following are the technical specification of experimental
work carried out to design and implement Booth, Wallace,
Dadda multipliers using 130nm technology.
Input bit width: 8-bit, signed, unsigned, integer, decimal.
Input arrival: parallel with 100 Mbytes / sec.

Expected output: 16-bit output, supporting all formats.
Output data rate: 100 Mbytes /sec.
Tech: 130 nm, Lib: TSMC.
Power: 10≤ μ watts.
Area: 400 sq. mm.
The power analysis is the process of calculating the power

consumption of the chip. It also consists of the calculation of
voltage, current drop (IR drop) and electromigration analysis
due to high current density of the metal. Table I gives the
power consumption of the multipliers.

Dadda multiplier consumes less area as compared to that of
Wallace tree and Booth Multiplier. Booth multiplier
consumes less power as compared to that of Wallace tree and
Dadda multiplier. Wallace tree has less delay as compared to
that of Booth and Dadda multipliers.

Booth multiplier has maximum number of ROMs, macros
and BELS. Wallace tree has minimum number of BELS and
macros compared to Booth and Dadda multiplier. Also
Wallace tree multiplier and Dadda multiplier have no
flip-flops and Booth multiplier has maximum flip-flops.

The multipliers have been synthesized setting a constraint
on speed to a maximum of 130MHz. Based on this constraint
the table II gives the design compiler output for various
factors of the multipliers.

TABLE I: COMPARIAION OF MU LTIPLIERS

8 bit Booth
Multiplier

Wallace
tree

Dadda
Multiplier

Area (μm) 5115.963379 1330.7615 1330.761597

Power(μw) 324.5302 655.5517 655.8073

Timings (ns) 3.75 1.56 1.56

For the multiplication of two numbers y and x, we denote
the multiplicand as in (1)

0121 ,...,(yyyyy MM −−=) (1)

and multiplier as in (2)

0121 ,...,(xxxxx NN −−=) (2)

For unsigned multiplication, the product is given in (3).

222
1

0

1

0

1

0

1

0
))((ji

j

N

i

M

j
i

i
N

i
i

j
M

j
j yxxyP +

−

=

−

=

−

=

−

=
∑∑∑∑ ==

 (3)

Number of techniques can be used to perform
multiplication. In general, the choice is based up on factors
such as latency, throughput, area, and design complexity. An
obvious approach is to use an M+1 bits carry propagate adder
(CPA) to add the first two partial products, then another CPA
to add the third partial product to the running sum, and so
forth. Such an approach requires N-1 CPAs and is slow, even
if a fast CPA is employed. More efficient parallel approaches
use some sort of array or tree of full adders to sum the partial
products.

In the early 1950’s, multiplier performance was
significantly improved with the introduction of Booth
multiplier [7], development of faster adders [8] and memory
components.

Booth's method and the modified Booth's method do not
require a correction of the product when either (or both) of
the operands is (are) negative for two's complement numbers.
During the 1950's adder designs moved away from the slow
sequential circuit executed by ripple carry adders carry look
ahead, carry select, and conditional sum adders yielded
speedy sums through the faster simultaneous or parallel
generation of carriers.

TABLE II: DESIGN COMPILER OUTPUT

8 bit
Multiplier

Booth Wallace tree Dadda

Frequency 130MHZ 130MHZ 130MHZ
Number of
Ports 38 34 32

Number of Nets 265 302 348

Number of Cells 214 248 266

References 35 5 5

Combinational Area (μm) 1868.8373 1470.7612 1330.7615

Sequential Area (μm) 3247.1262 0.0000 0.0000

Total Cell Area (μm) 5115.9633 1470.7672 1330.7615

Cell internal Power (μw) 303.1691 501.8940 562.0927

Net Switching power μw) 21.3691 153.6577 153.7151
Total Dynamic
Power(μw) 324.5302 655.5517 655.8073

Cell Leakage Power (μw) 5.6910 5.6263 5.6258

III. ARRAY MULTIPLIER
The two basic functions of array multiplier, partial product

generation and summation are combined. For unsigned N x N
multiplication, N2+N-1 cells are connected to produce a
multiplier, where N2 contain an AND gate for partial product
generation, a full adder for summing and N-1 cells containing
a full adder [9]. The array generates N lower product bits
directly and uses a carry-propagate adder, in this case a ripple
carry adder, to form the upper N bits of the product.

Replacing full adder with half adders, possibly reduces the
complexity to N2 AND gates, N half adders, and N(N-2) full
adders. The worst case delay is (2N-2) cΔ , where cΔ is the
adder delay.

In order to design an array multiplier for two's complement
operands, Booth algorithm [10] can be employed. This

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

775

algorithm computes the partial products by examining two
multiplicand bits at a time. Except for enabling usage of two's
complement operands, this algorithm offers no performance
or area advantage in comparison to the basic array multiplier.
Better delays, though can be achieved by implementing a
higher radix modified Booth algorithm [11].

Another method for building an array multiplier that
handles two's complement operands was presented by Baugh
et al. [12] as shown in fig. 1. This method increases the
maximum column height by two. This may lead to an
additional stage of partial product reduction, thereby
increasing overall delays [12]. A modified form of the Baugh
et al. strategy is more commonly used because it does not
increase the maximum column height [13].

0 n 1 0 n 2 0 2 0 1 0 0a b a b a b a b a b- -

n 1 n 2 1 0

n 1 n 2 1 0

a a a a

b b b b. . .
- -

- -

1 n 1a b -

1

1 n 2a b - 1 1 1 0a b a b

2 n 1a b - 2 n 2a b - 2 1a b 2 0a b

n 2 n 1a b- - n 2 n 2a b- - n 2 0a b-

n 1 n 1a b- - n 1 n 2a b- - n 1 1 n 1 0a b a b- -
1

2n 1P - 2n 2P - 2n 3P - n 1P + nP n 1P - n 2P - 2P 1P 0P

×

Fig. 1. Two’s complement by modified Baugh-Wooley method

IV. COLUMN COMPRESSION MULTIPLIER
Column compression multiplier continued to be studied

due to their high speed performance. These multipliers total
delays are proportional to the logarithm of the operand word
length, where as other array multipliers delay grows linearly
with operand word length. According to Thomas Ko
Callaway et. al. [3] column compression multipliers are more
power efficient than array multipliers. In 1964, Wallace [4]
introduced a scheme for fast multiplication based on
summing the partial product bits on parallel using a tree of
carry save adders which became generally known as the
Wallace tree. Dadda [5] later refined Wallace's method by
defining a counter placement strategy that required fewer
counters in the partial product reduction stage at the cost of a
larger carry-propagate adder. For both methods, the total
delay is proportional to the logarithm of the operand word
length. Other partial product reduction methods have been
proposed since the work of Wallace and Dadda. The reduced
area [6] and the Windsor methods are based on strategic
utilization of (3, 2) and (2, 2) counters to improve area and
layout, while maintaining the fast speed of the Wallace and
Dadda designs.

This research identifies techniques for optimal computer
aided designs of column compression multipliers by
analyzing area, power and timing characteristics with
particular emphasis on low power.

V. TOOLS
The tools used for this research work are Xilinx and

Modelsim from Mentor Graphics. NCsim from Cadence,
VCSIM from Synopsys and Astro tool from Synopsys for
physical design. Design compiler for viewing the schematic
and primetime for static timing analysis. The Synopsys
Design Compiler (DC) and Design Vision (DV) comprise a
powerful suite of logic synthesis products, designed to
provide an optimal gate-level synthesized netlist based on the
design specifications, and timing constraints.

Primetime (PT) is the Synopsys sign-off quality, full chip,
and gate level static timing analysis tool. It allows
comprehensive modeling capabilities often required by large
designs [14]. It is faster compared to design compilers
internal static timing analysis engine. It provides enhanced
analysis capabilities to other Synopsys tools, which is based
on TCL language, thus providing powerful features of that
language to promote the analysis and debugging of the
design.

The SDF file is used to perform exhaustively throughout
the ASIC world to perform dynamic timing simulations. It
contains timing information of each cell in the design. The
basic timing data comprises of the following.

• IOPATH delay- specifies the cell delay.
• INTERCONNECT delay- specifies point to point

delay.
• SETUP timing check- contains the required setup of

each sequential cell.
• HOLD timing check-hold time of each sequential

cell.

A. SDF File
The SDF file may be generated for pre-layout or

post-layout simulations. The post-layout SDF is generated
from DC or PT, after back annotating the extracted RC delay
values and parasitic capacitances to DC or PT. The post
-layout values represent the actual delays associated with the
design.

The pre-layout numbers contain delay values that are
based upon the wire-load models; it does not contain the
clock tree. Therefore it is necessary to approximate the
post-route clock trees delays while generating the pre-layout
SDF. The post-layout design contains the clock tree
information. Therefore all the steps that were needed to fix
the clock latency, skew and clock transition time, during
pre-layout phase are not required for post-layout SDF file
generation.

After getting the schematic view timing, power and area
constraints are set. The netlist, out put of synthesis is the
input for the tool. The design setup consists of entire
technology file named as technology file, library exchange
format, advance library format, cell library file, physical
library, design exchange format, top design format, physical
design format, and table look up files [14]. They contain
technology and foundry dependent parameters and are used
to get a physically implemented chip. Next step is to load the
netlist to the library for further process like floor planning,
power planning etc. Floor planning is a process of placing the
input, output, power and ground pads. The exact locations of
all the pads are predefined in the technology dependent file
(TDF) provided by the tool vendor.

Nest step is floor planning of the design as shown in fig.2.
To set aspect ratio of the core power planning has to be done

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

776

by creating the power rings around the core region through
which straps and trunks for the core region are connected.
Choose the even metal layer for vertical and odd metal layer
for horizontal with has less RC value. We have used metal 4
for the power and metal 3 for the ground. After creating the
rectangular rings around the core region connect the VDD
and VSS pads to the power and ground rings, which is known
as pre instance in the tool option.

B. SDC File
The next step is load the standard delay constraint (SDC)

file containing timing parameters of the netlist taken at the
time of static timing analysis through the primetime tool [14].
At the time of synthesis nets used for routing and the
numerical value of the RC are not known. The timing
analysis output should not be violating setup and hold time.

After loading the SDC file and getting the timing report,
placement is to be done by placing the standard cells
horizontally in the core region. At this step, we set some
common option like optimization mode, placement
constraints, location constraints etc. then do pre placement
optimization in which we have to set design cleanup, quick
placement optimization of high fanout synthesis, ideal
optimization and logic remapping. After pre-placement we
do post-placement optimization.

The next step is to set the clock common option like the
conditions worst, best and buffers, inverters and perform
clock tree synthesis. After the process of clock tree synthesis
we have to do post-place optimization for this set option like
setup fixing, hold fixing, maximum capacitance, area
recovery and logic remapping.

Now the design at this point is DRC free with no violation
in the timing. The next step is to common option like global
routing, track assign, CTS net, detailed routing, library cells
and design rule etc. routing is last stage of physical design
flow. After giving the common option we have to set the net
group. After setting the all options we have to do global
routing and after that detailed route. After completing all the
routing process we do the post route optimization with some
constraints like routing phase, optimization effort,
optimization target, optimization mode, optimization control,
flow control etc. The routing output for the multipliers is as
shown in fig. 4. After completing the routing check the
design rule checked. If there is any DRC violation then we
have to do search and repair. This option in the tool will
detect the DRC violation and it will rectify.

Fig. 2. Floor planning process

Fig. 3. Placement output

Fig. 4. Routing output

C. DEPOGIT: Dense Power-Ground Interconnect
Architecture for Physical Design Integrity:
In recent deep submicron VLSI design, signal integrity (SI)

and power-ground integrity (PGI) have become very
important to design in a short time. Most engineers working
on process design, chip design, and EDA areas are acutely
aware of a tough challenges emerging because of process
variability and physical integrity issues. Process variability is
not only a fabrication problem, but also a serious design issue.
Similarly, physical integrity problems are not only design and
EDA issues, but also process-related architecture problems.

As a solution, DEPOGIT is a new dense power-ground
interconnect architecture that realizes more robust physical
design integrity. It basically consists of adjoining power and
ground lines. This architecture is a method of running both
the power and ground wires adjacent to the signal wires. This
provides not only the general shielding effect but also explicit
decoupling capacitance (decap) by means of the wires. This
architecture also guarantees regularity, thus reducing
manufacturing variations in interconnects. Using this
architecture

• High quality decap for a small chip areas can be
obtained.

• The resistive IR drop can be less than 20% of that of a
conventional power grid.

• Transient peak noise can be reduced by about 80%.
• The inductive crosstalk effect of the signal wire can

be greatly reduced.

VI. REVIEW OF MULTIPLIER

A. Modified Booth’s Multiplier
Booth’s algorithm is a powerful direct algorithm to

perform signed number multiplication [10]. It involves
repeatedly adding one of two predetermined values A and S
to a Product P, then performing a rightward arithmetic shift
on P. Let x and y be the multiplicand and multiplier
respectively. Let nx and ny represent the number of bits in x
and y. The modified Booth’s multiplier algorithm to obtain

Left

Top

Bottom
Right

Placed
cells

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

777

the product of x and y is as follows.
1) Determine the values of A, S and the initial value of P.

All of these numbers should have a length equal to nx +
ny + 1.

• A: Fill the most significant (leftmost) bits with the
value of x. Fill the remaining (ny +1) bits with zeros.

• S: Fill the most significant bits with the value of (-x)
in two’s complement notation. Fill the remaining (ny
+1) bits with zeros.

• P: Fill the most significant nx bits with zeros. To the
right of this append the value of y. Fill the least
significant (rightmost) bits with a zero

2) Determine the two least significant (rightmost) bits of P.
• If they are 01, find the value of P+A, ignore any

overflow.
• If they are 10, find the value of P+S, ignore any

overflow.
• If they are 00 or 11, do nothing, use P directly in the

next step
3) Arithmetically shift the value obtained in the previous

step by a single place to the right. Let P now equal to this
new value.

4) Repeat steps 2 and 3 until they have been done ny times.
5) Drop the least significant (rightmost) bit from P,

resultant is the product of x and y.

B. Wallace tree Multiplier
In 1964 C.S.Wallace introduced a scheme for the

multiplication based on summing the partial product bits in
parallel using a tree of carry save adders which became
generally known as the Wallace tree [4]. This method has a
three step process is used to multiply two numbers.

Step 1: The bit products are formed
Step 2: The bit product matrix is reduced to a two row

matrix by using carry save adders known as Wallace tree.
Step 3: The remaining two rows are summed using a fast

carry –propagate adder to produce the product.
Though the process seems to be complex it yields

multipliers with delay proportional to the logarithm of the
operand word length n. The Wallace tree multiplier belongs
to a family of multipliers called column compression
multipliers.

The principle in this family of multipliers is to achieve
partial product accumulated by successively reducing the
number of bits of information in each column using full
adders or half adders. The full adder is known as (3:2)
compressor because of its ability to add three bits from a
single column of the partial product matrix and output two
bits, one bit in the same column and one bit in the next
column of the output matrix. The half adder is known as (2:2)
compressor because of its ability to take two bits from a
single column of the partial product matrix and output two
bits, one bit in the next column of the output matrix.

Fig. 5 gives dot diagram of Wallace tree multiplier. The
Wallace tree consists of numerous levels / stages of such
column compressor structures until finally only two full
width operands remain. These two operands can then be
added using regular 2N bits adders to obtain the product
result. The difference between the Wallace tree multiplier
from column compression multiplier is that, in the Wallace
tree every possible bit in every column is covered by the (3:2)

or (2:2) Compressors respectively. Until finally the partial
product matrix has a depth of only two. Thus the Wallace tree
multiplier uses as much hardware as possible to compress the
partial product matrix as quickly as possible into the final
product.

Fig. 5. Dot diagram of Wallace tree multiplier

C. Dadda Multiplier
Dadda refined Wallace’s method by defining a counter

placement strategy that required fewer counters in the partial
product reduction stage at the cost of a larger carry propagate
adder [5]. Dadda has introduced a number of ways to
compress the partial product bits using such a counter which
later became known as Dadda’s Counter. Fig. 6 gives the
process for 8 × 8 bits Dadda multiplier.

Fig. 6. Operation 8X8 bits dadda multiplier

An input 8 × 8 bits matrix of dots (each dot represents a bit)
is shown as step 0. Columns having more than six dots are
reduced by the use of half adders, each half adder takes in two
dots and outputs one in the same column and one in the next
more significant column and full adders, each full adder takes
in three dots and outputs one in the same column and one in
the next more significant column so that no column in step 1
will have more than six dots [5]. Half adders are shown by a
crossed line in the succeeding matrix and full adders are
shown by a line in the succeeding matrix. In each case the
rightmost dot of the pair that is connected by a line is in the
column from which the inputs were taken from the adder.

In the succeeding steps reduction to step 2 with no more
than four dots per column, matrix three with no more than
three dots per column, and finally step 4 with no more than
two dots per column is performed. The height of the matrices
is determined by working back from the final two row matrix
and limiting the height of the each matrix to the largest
integer that is no more than 1.5 times the height of its
successor. Each matrix is produced from its predecessor in
one adder delay. Since the number of bits in the words to be
multiplied, the delay of the matrix reduction process that

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

778

reduces is proportional to log n, where n is word size. Since
the adder that reduces the final two row matrix can be
implemented as a carry look ahead adder which also has
logarithmic delay, the total delay for this multiplier is
proportional to the logarithm of the word size n.

VII. COMPARISON

A. Comparison of Dadda and Wallace Tree Multipliers
This section gives the comparative study of the 8 X 8 bits

Dadda and Wallace tree multipliers.
• Wallace tree multiplier uses 38 full adders and 15 half

adders.
• Dadda multiplier uses 35 full adders and 7 half

adders.
• Wallace tree multiplier requires a carry-propagate

adder of 10 bits wide
• Dadda multiplier requires a carry propagate adder of

14 bits wide.
• The other disadvantage of Dadda multiplier is that it

is less regular than the Wallace tree multiplier,
making it more difficult to layout in VLSI design.

The multiplier being one of the major complex arithmetic
building blocks for VLSI design has its own sets of
complexities in terms of area, power, speed, and cost and
design methodology.

The table III and table IV show the complexity involved in
multiplier design. With bit width being increased, the number
of stages also increases, and this introduces complexity.
Wide bit width is required for accuracy and high sampling
rate. Hence there is a need for design and development of an
IP that can be easily adopted for any high speed applications
by just using the basic building block of the multiplier design.

TABLE III: NUMBER OF STAGES IN MULTIPLIERS
Bit width of Multiplier Number of Stages

2 0

3 1

4 2

5 to 6 3

7 to 9 4

10 to 13 5

14 to 19 6

20 to 28 7

29 to 42 8

43 to 63 9

64 o 94 10

TABLE IV: COMPARIAION OF MULTIPLIERS WITH RESPECT TO AREA, SPEED

AND POWER

Multiplier Delay (ns) Area
(µm2)

Power
(mw)

Dadda using carry look
ahead adder 2.56 878 5.65

Dadda using Ripple carry
adder 2.73 853 5.23

Array 8 3.02 979.7 5.16

Wallace 8 2.81 910 5.39

B. FPGA and ASIC
The advantages of ASIC physical design over FPGA are

listed in table V.

TABLE V: COMPARIAION OF MULTIPLIERS WITH RESPECT TO AREA, SPEED
AND POWER

Sl. No. FPGA ASIC

1 Complexity of multipliers is
more

Complexity of multipliers
is less

2 Area occupied by the
multipliers is less.

Area occupied by the
multipliers is more.

3 Power consumption by the
multipliers is more.

Power consumption by the
multipliers is less.

4 Delay is more and hence speed
is less.

Delay is less and hence
speed is high.

VIII. APPLICATION, CONCLUSION AND FUTURE WORK

A. Application
The potential usages of proposed design are -
• High Speed Signal Processing that includes DSP

based applications.
• DWT and DCT transforms used for image and wide

signal processing.
• FIR and IIR Filters for high speed, low power

filtering applications.
• Multirate signal processing applications such as

digital down converters and up converters.

B. Conclusion
In this work we have identified the techniques for optimal

computer aided designs of selected three 8 bits multipliers
namely Booth, Wallace tree and Dadda by analyzing delay,
area and power characteristics with particular emphasis on
designing the cells for optimum power using layout design
techniques. These three multipliers are implemented and the
constraints area, power and timing are optimized using
Verilog codes based on software resources NC SIM and VC
SIM.

The results of the research work carried out are
• Reviewed the existing high speed serial and parallel

multipliers available, identified the specification
requirements for the multipliers.

• Modeled the multipliers using HDL and verified the
functionality using test vectors.

• Implemented the design on FPGA and verified its
functionality and identified the hardware
requirements.

• Carried out ASIC design on the synthesized net list by
appropriately providing the constraints based on the
first cut information obtained from FPGA synthesis.

• Compared the performance of multiplier design and
optimized the design for area, speed and power.

Finally we conclude that performance wise, Dadda
multiplier consumes less area as compared to Wallace tree
and Booth multiplier. Power wise Booth multiplier consumes
less power compared to Wallace tree and Dadda multiplier.
Delay wise Wallace tree has less delay as compared to Booth
and Dadda multiplier.

From the tables we observed that the Dadda Multipliers
requires more nets and consumes lesser references than
Wallace tree multiplier and Booth multiplier. The increase in
number of intermediate stages in multipliers, the

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

779

interconnection between the building blocks also increases.
As Dadda multiplier has more number of intermediate stages
it has more number of interconnections (76.5% more).

C. Scope for Future Work:
As this work was limited to design of only the multiplier as

an IP using TSMC 130nm CMOS technology, it would be
better to incorporate the Multiplier into a MAC unit that can
perform multiplication and accumulation. MAC forms the
major block for any filtering application. During the design
of MAC block, redundancy in filter coefficients can be
exploited to minimize the filter structure and optimize the
performances of MAC unit. Also, there is possibility in
developing a hybrid multiplier that takes into consideration
both Dadda and Wallace multiplier architecture combined
with booths multiplier.

REFERENCES
[1] R. De Mori, “Suggestions for an IC fast parallel multiplier,”

Electronics letters, vol. 5, pp. 50-51, 1965.
[2] C. L. Wey and T. Y. Chang, “Design and analysis of VLSI-based

parallel multipliers,” in Proc. IEEE proceedings Computers and
Digital Techniques, vol. 137, no. 4, pp. 328-336, July 1990.

[3] T. K. Callaway and E. E. Swatzlander, “Optimizing multipliers for
WSI,” in Proc. International Conference on Wafer Scale Integration,
1993, pp. 85-94.

[4] C. S. Wallace, “A suggestion for a fast multiplier,” IEE Transactions
on Electronic Computers, vol. EC-13, pp. 14-17, 1964.

[5] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol.
34, pp. 349-356, August 1965.

[6] K. Adrea, C. Bickerstaff, M. J. Schulte, and E. E. S. Lander, “Reduced
area multipliers,” in Proc. International Conference on Application
Specific Array Processors, pp. 478-489, 1993.

[7] O. L. Mac Sorley, “High-speed arithmetic in binary computers,” in
Proc. of the IRE, vol. 49, pp. 67-91, 1961.

[8] B. Gilchrist, J. H. Pomerene, and S. Y. Wong, “Fast carry logic for
digital computers,” IRE Transactions on Electronic Computers, vol. 4,
pp. 133-136, 1955.

[9] K. K. Parhi, VLSI digital signal processing systems design and
implementation, ASIA: John Wiley and sons, 1999, vol. 5, pp.
323-346.

[10] A. D. Booth, “A signed binary multiplication technique,” Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, pp. 236-240,
1951.

[11] R. F. Shaw, Arithmetic Operations in a Binary Computer: Review of
Scientific Instruments, 1950, vol. 21, no. 9, pp. 687-693.

[12] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Transactions on Computers, vol. C-22,
pp. 1045-1047, 1973.

[13] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
Newyork: Oxford University press, 2000, vol. 4, pp. 245-256.

[14] H. Bhatnagar, Advanced ASIC Chip Synthesis, Second Edition:
Kluwer Academic publisher, 2002, vol. 3-4, pp. 183-256.

Vasudev G. This author became a Member (M) of
IAENG. He was born on 21 March 1985, has completed
B.E from Nagarjuna college of Engineering and
Technology,Bangalore, India in 2006, Completed his
M.Tech from JSS Academy of Technical Education,
Bangalore India, in the year 2008. Currently he is
working as faculty in ACS College of Engineering,
Bangalore, India. He is a member of IACSIT.

Rajendra Hegadi is Senior Member (80339644) of
IAENG, born in Bijapur, state Karanataka. He has
completed his Master of Science Degree in Solid State
Physics from Gulbarga University, Gulbarga, Karnataka,
India, Master Technology Degree in Computer Science
and Engineering from National Institute of Technology
Karnataka, Surathkal, India in 2000, Ph.D in Computer
Science and Engineering from Dr. M.G.R. Educational

Research Institute University, Chennai, India in 2009. He has over 17 years
of teaching in engineering education and 2 years of software industry
experience. Currently he is working as Professor and Principal at Pragati
College of Engineering and Management, Raipur (C.G), India since 2010.
Dr. R. Hegadi is the Life Member of Cryptology Research Society of India
(CRSI), Life member of Indian Society for Technical Education (ISTE),
Member of The Society of Digital Information and Wireless
Communications (SDIWC). He is Co-editor of CSVTU Research journal.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

780

