

Abstract—Records duplication is one of the prominent

problems in data warehouse. This problem arises when various
databases are integrated. This research focuses on the
identification of fully as well as partially duplicated records. In
this paper we propose a de-duplicator algorithm which is based
on numeric conversion of entire data. For efficiency, data
mining technique k-mean clustering is applied on the numeric
value that reduces the number of comparisons among records.
To identify and remove the duplicated records, divide and
conquer technique is used to match records within a cluster
which further improves the efficiency of the algorithm.

Index Terms—Data cleansing, De-Duplicator, partial
duplication, K-Mean clustering.

I. INTRODUCTION
Data warehouses store large amount of data that is used in

analysis and decision making process. Data is integrated
from various heterogeneous sources. In heterogeneous
sources data has different formats. Data is noisy in nature [1],
[2] and needs to be cleaned in data warehouse. Data
cleansing is a process of detecting incorrect, redundant and
missing values and then correcting them. This process also
checks the format, completeness, and other business rules
related errors in data.

Data cleansing process is used to improve the quality of
data [3]. Some data quality problems occur because of data
entry operator errors such as spellings mistakes, missing
integrity constraints, missing field (e.g., date of birth used in
the field of admission date), noise or contradicting entry, null
values, misuse of abbreviations, and duplicated records
[3]-[9]. Data quality measures the accuracy, integrity,
completeness, validity, consistency and redundancy aspects
of data [1], [8].

In data warehouse, data cleansing has a vital role. If the
quality of data is not good, the strategic decisions taken on
the basis of that data may not be good [3]. Records
duplication is one of the major issues in data quality [3], [10].
It is the representation of the same real world object more
than once in the same table [6], [10]-[12]. It is necessary to
eliminate duplicated records in order to bring consistency and
improve the quality of the data. Identification and removal of
the duplicated records is an important issue in data cleansing
which is the subject of this research.

This paper proposes a novel approach for detection of
duplicated records by converting the field values into
numeric form instead of condensing them as tokens. The

Manuscript received September 27, 2012; revised November 9, 2012.
The authors are with the Department of Computer Science University of

Peshawar, Pakistan (e-mail: smbilal_84@yahoo.com).

proposed technique identifies and removes not only fully but
also partially duplicated records. The K-mean clustering
algorithm is used to reduce the number of comparisons by
forming clusters and the divide and conquer approach is used
to match records within the clusters.

We classified the duplicated records into three categories.
a) Fully Duplicated Records, having two identical rows
representing the same real world entity. b) Erroneous
Duplicated Records, which in fact are duplicated records but
due to the data entry operator’s erroneous entry, they seem to
be different. Identification of such records is a challenging
process as they cannot be separated out by sorting techniques.
c) Partially Duplicated Records, having partial duplication
but the difference is original. Our proposed technique
identifies all such kinds of records.

The rest of paper is organized as follow. We describe the
related work in Section II. Section III presents the core of our
approach. Experimental results are introduced in Section IV.
Finally, we conclude our work in Section V.

II. RELATED WORK
The problem of duplicated records has been extensively

discussed in the literature. Bitton et al. discussed the
elimination of duplicated records in large data files by sorting
which brings identical records together [13]. If sorting is
based on dirty fields, identical records can never get together.
Sorting method is inefficient for large data files having
typographical errors.

Hernandez et al. discuss the problem of merge/purge in a
large database [14]. They form token keys of selected fields
of the database table. Records in the table are sorted by using
that key. To reduce the number of comparisons, records
having same token keys are sorted and put in the same
clusters [14]. The effectiveness of merge/purge approach
depends on the quality of the chosen keys which may fail in
bringing possible duplicated records near each other for
subsequent comparison.

Character and token based techniques are used by
Elmagrmid et al. for detecting record duplication [6].
Character based technique deals well with the typographical
errors. But sometimes typographical conventions lead to
rearrangement of words e.g. (“Bilal Khan”, versus “Khan,
Bilal”). Character based technique fails in order to compare
such kind of strings. The token base technique is used to
overcome this problem.

Token based data cleansing technique defines smart tokens
that are used to identify and remove duplicated records [4],
[15]. To identify the duplicated records, user selects two or
three fields on the basis of unique identification of records

Removing Fully and Partially Duplicated Records through
K-Means Clustering

Bilal Khan, Azhar Rauf, Huma Javed, Shah Khusro, and Huma Javed

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

750DOI: 10.7763/IJET.2012.V4.477

and then produces sorted token tables over these fields.
Tokens are created on the basis of initials of letters. An
obvious drawback of this technique is that in many cases it
considers non duplicated records as duplicated recorders,
causing an increase in the value of false positive (non
duplicated records considered as duplicated records). For
example, token created for the name column containing
values ‘Aslam Khan’ and ‘Asim Khan’ will be ‘AK’.
Although actual values are different but token created for
these values is same. Thus non duplicated records are
considered as duplicated records.

III. PROPOSED DE-DUPLICATOR ALGORITHM
Data cleansing process is used to identify and remove

duplicated records. This problem can be explained as an
example in the healthcare business. If a customer’s record is
stored more than one times, the company will send him mails
more than once as he is considered another individual but in
fact he is the same person. Similarly in data warehousing
where analysts make decisions, such redundancy can cause
the analysis to produce the wrong result that leads to wrong
decisions and thus the business will suffer.

There is a need to detect and remove duplicated records
from the data warehouse. Duplication affects the overall
performance of data warehouse and also slows down the
knowledge extraction process by data mining.

The proposed de-duplicator algorithm is primarily used to
identify and remove duplicated records in data warehousing.
This algorithm not only improves the data quality but also the
performance of the data warehouse. The algorithm uses three
steps to identify fully and partially duplicated records. These
steps are conversion, clustering and matching.

A. Conversion
De-duplicator algorithm first brings the data into a uniform

format. As the data fed to the data warehouse comes from
different operational systems, there could be numerous
formatting issues in data. One of them is data type format
mismatch. For example, a date may be in the formats of
dd-mm-yyyy, mm-dd-yyyy, or yyyy-mm-dd. Similarly, a
phone number having country code and city code in one
record but in another record same phone number without city
and country code. Such formatting and missing values issues
are resolved and data is brought to a uniform format.
Similarly, abbreviations are expanded.

To standardize and remove inconsistency in the data, our
approach brings the data into a uniform format and then
converts all field values (whether string, numeric or date) into
numeric form by applying the radix formula on data. After
conversion of the field values into numeric form, an extra
column is appended storing all the calculated values into that
column corresponding to relevant row separated with comma
(,).

Table I contains three fields; first of all field values of the
table are converted into numeric form and then stored in the
appended column.

 ∑[((radix) position × alphvalue) mod m] (1)

where alphvalue is marked from 0-9 and aA=10, bB=11,……,

zZ=35 and m is any large prime number.
The value of radix is greater than or equal to 36 because it

consists of 36 characters (10 digits i.e. 0-9 + 26 alphabets +
special characters). As the value of radix depends on digits,
alphabets and special characters that is why its value is
greater then or equal to 36 (e.g. radix>=36). The use of
special characters may increase the value of radix because
special character values are also used in alphval. The value of
position is marked from right to left starting with 0. Fig. 1
describes the process of conversion. Fig. 2 describes the
complete algorithm of data cleansing and numeric
conversion.

TABLE I: NUMERIC VALUE CONVERSION
Name Fname Sal Numeric Conversion

Asim Asghar 14000 1321, 1487, 728

Fig. 1. Numeric value conversion formula

Fig. 2. Algorithm for numeric conversion

B. Clustering
After storing the values in the Numeric Conversion

column, again radix formula given in equation (1) is applied
on values of the Numeric Conversion column and output is
stored in the Final Output column as shown in Table II. Then
K-means clustering algorithm [16], [17], [18] is applied on
the data stored in Final Output column and results are stored
in the Clustered column. In this manner matching records are
stored in one cluster. But clustering reduces the number of

ASIM

Let m = 731 (large prime number)

∑{((36)3 × 10) mod 731) + ((36)2 × 28) mod 731)+
((36)1 × 18) mod 731) + ((36)0 × 22) mod 731) }

= 182+ 469 + 648 + 22

= 1321

Input: Table with different data format, and
abbreviations
Output: Uniform format table with extra appended
attribute having numeric value

Algorithm
Begin
For attribute j = 1 to last attribute, n

 For row i = 1 to last row, m

1. Bring attribute values into uniform format
2. Remove the special character
3. Remove the variation of attribute values
4. Expand abbreviations
5. Convert all the values into numeric form
6. Put the numeric value into appended

attribute separated with comma (,)

end

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

751

comparisons and ultimately improves the performance.
In Table II, the total numbers of groups are two and total

records are four. If there is a single group in table then the
numbers of comparisons will be 6. Because row 1 is
compared with 3 rows i.e. row 2nd, 3rd and 4th, row 2
compared with 2 different rows i.e. 3rd and 4th rows and row
3rd row compared with only one row i.e. row 4. But with two
groups, it reduces the number of comparisons. For example
in Table II, we have two groups. To find the duplicated
records, we compare the records within a cluster which
reduces the number of comparison and our de-duplicator
algorithm works faster.

TABLE II: CLUSTERING

Name Fname Sal Numeric
Conversion

Final
Output Clustered

Amjad Qasim 8000 1686, 1397, 438 2559 G1

Zaker Qasim 8000 1319, 1397, 438 2794 G1

Zaheer Tanveer 14321 2105, 2767, 1034 3482 G2

Daud Thalet 16233 1424, 2186, 1713 3261 G2

C. Matching
After conversion step, the divide and conquer approach is

applied on each row of the cluster. This approach divides the
values recursively into smaller pieces and continues the
process until certain smallest size is reached. Then compares
the single value of one record is with the single value of other
record. If match is found between values of records then the
percentage duplication of records is calculated.

In Table III, three attribute values of both records are
match and total attribute values are four. That’s why both of
these records are 75% duplicated (3/4×100 = 75%).

The difference between these records is due to data entry
operator error. In Table III, data entry operator types ‘Dajid’
instead of typing ‘Sajid’ in the name field value in second
row. Such a difference is called erroneous difference and
corrected by the domain expert.

TABLE III: PARTIALLY DUPLICATED RECORDS

Name Fname Job Salary Appended Column

Sajid Asif Accountant 10500 1707,1314,2535, 1141

Dajid Asif Accountant 10500 1382,1314, 2535, 1141

In Table IV, two records are 75% duplicated. There is an
original difference between these records. For example,
difference occurs in the name field of row 1 and 2. These two
records are for two different individuals. Only name field
values are different i.e. ‘Imad’ and ‘Iman’ and other
attributes value of both the records are same. When domain
expert analyzes that the difference is original then he/she
keeps the records.

If both records are fully duplicated as in Table V, then the
duplicate records are discarded and the original row is kept.
For example, in Table V both the records are 100%
duplicated, when the divide and conquer approach is applied
on these records, the system identifies that these records are
fully duplicated.

TABLE IV: ORIGINAL DIFFERENCE

Name Fname Job Salary Appended Column

Imad Irfan Prof 18950 996, 1406, 1238, 1826

Iman Irfan Prof 18950 1006, 1406, 1238, 1826

TABLE V: FULLY DUPLICATED RECORDS

Name Fname Job Salary Appended Column

Ifnan Saif Clerk 6500 1614, 1267, 1357, 1326

Ifnan Saif Clerk 6500 1614, 1267, 1357, 1326

If records are partially duplicated then the threshold value

is checked. If the percentage of duplication crosses the
threshold, the program displays those records and mentions
clearly those attribute values having difference among them
as an output to analyze whether this was an actual difference
or erroneous difference among those records.

For example, the difference in Table III is an erroneous
entry which is corrected and stored. In this manner, both
records become identical or fully duplicated. The duplicated
records are then discarded and single row is kept. But in case
of actual difference between the records as in Table IV, both
rows are kept.

Sometimes column values don’t look fully matched but
they are actually matched. For example: column name having
two values one is “Asim Ali Asghar” and other is “Asim
Asghar” are actually matched but it does not seem that these
values are matched.

To identify such matching records, domain expert defines
threshold for column value and when threshold value is
crossed, the algorithm considers that the values of column are
matched.

Our algorithm not only specifies the threshold for the
single column value matched but it also specifies the
threshold for all columns to identify the partial duplicated
records. For example, we have 10 columns and two records
having 8 columns matched values and values of two columns
are not matched. In such a situation domain expert needs to
specify the threshold. If the matching values of records cross
the threshold then it display those records and mention the
non matching values. The domain expert can correct if there
is any erroneous difference, discard the record and keep the
original entity otherwise leaves the records.

In Fig. 3, De-Duplicator algorithm describes the complete
procedure of comparison between records and identifying
duplicated records. Symbols used in De-Duplicator
algorithm are explained in Table VI.

TABLE VI: FULLY DUPLICATED RECORDS

Symbol Description

Δ Percentage duplications between records

Ξ Threshold value specified by the domain expert

P First position of record i.e. 1

Q Last position of record i.e. n

V Number of values after dividing the row into two portion

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

752

Fig. 3. De-Duplicator Algorithm

IV. EXPERIMENTAL RESULT
The dataset has been taken from [19] for designing an

experiment on the de-duplicator algorithm. The data set
named “Restaurant” contains 864 records where 112 records
are duplicated.

Our de-duplicator algorithm identifies and removes all
fully duplicated records with or without clustering. The use
of clustering reduces the number of comparisons. Thus for
fully duplicated records, it provides 100% accuracy. In Fig. 4,
the graph shows that when the number of clusters increases,
the elapsed time decreases. For example, when we have one
group then it takes more time to identify and remove
duplicated records. But when the number of clusters
increases then elapsed time decreases. Time elapsed is used
for fully duplicated records as well as partially duplicated
records.

Fig. 4. Graph between time elapsed and Number of cluster

Fig. 5. Graph between k-cluster and accuracy

We need to identify partially duplicated records which

may occur in different groups. We can not compare partially
duplicated records which are present in different groups. In
Fig. 5, the graph represents the accuracy of partially
duplicated records, which decreases by increasing the
number of clusters.

V. CONCLUSION
A numeric conversion and matching technique of record

de-duplication is explained in this article. An algorithm for
numeric conversion is used which converts all attributes data
either string, date, or numeric into a standard numeric form.
Numeric form of attribute value is used to create clusters
which are helpful in reducing the number of comparisons. On
the basis of these clusters, divide and conquer technique is
used parallel in all these clusters to identify and remove the
duplicated records.

In the proposed technique, only single table is used instead
of multiple sorted tables. Our technique not only detects fully
duplicated records but also partially duplicated records.

REFERENCES
[1] P. Poonniah, Data Warehousing Fundamentals- A comprehensive

guide for IT professionals, 1st ed., 81-265-0919- 8, Glorious Printers:
New Delhi, India, 2006.

[2] R. Arora, P. Pahwa, and S. Bansal, “Alliance Rules for Data
Warehouse Cleansing,”in Proceeding of International Conference of
Signal Processing Systems, IEEE, 2009.

[3] M. Rehman and V. Esichaikul, “Duplicated Record Detection for
Database Cleansing,” in Proceeding of Second International
Conference on Machine Vision, 2009.

[4] T. E. Ohanekwu and C. I. Ezeife, “A Token-Based Data Cleaning
Technique for Data Warehouse System,” University of Windsor, in
Proceeding of 9th International Conference on Database Theory ICDT,
Siena, Italy 2003.

[5] A. D. Chapman, “Principals and methods of data cleaning: Primary
Species and Species-Occurrence Data,” version 1.0. Report for the
Global Biodiversity Information Facility, Copenhagen Australia 2005.

[6] A. K. Elmagrmid, P. G. Ipeirotis, and V. S. Verykois, “Duplicated
Record Detection: A Survey,” IEEE Transaction on Knowledge and
Data Engineering, vol. 19, no. 1, IEEE, 2007.

[7] C. I. Ezeife and A. O. Udechukwu, “Data position and profiling in
domain independent warehouse cleaning,” Canada: University of
Windsor, in ICEIS. 2003.

[8] H. Muller and J. C. Freytag, “Problems, methods, and challenges in
comprehensive data cleansing,” Humboldt-Universität zu Berlin,
Institut fur Informatik 2003.

[9] J. J. Tamilselvia and V. Saravanan, “Handling noisy data using
attribute selection and smart tokens,” in Proceeding of International
Conference on Computer Science and Information Technology, IEEE,
2008.

[10] S. O. A. Pei, “A comparative study of record matching algorithms,”
RWTH Aachen, Thesis, Germany, University of Edinburgh, Scotland
2008.

Input: Table with appended column and duplicated
records,
Output: Cleaned table

Algorithm
Begin
For row i = 1 to last row, n

1. for v, p =1 to q
2. if v>1 then go to step 7
3. else compare all the value with the

corresponding value of other row
4. if match found b/w values then
5. calculate the δ and go to step 8
6. else go to step 13

7. divide(p+q)/2 and go to step 2

8. if δ = 100% then discarded the duplicated

record and go to step 13
9. else if δ >= ξ then
10. display the records and mention the

attributes values having difference b/w
values

11. if difference is due to data quality then
correct the entities and go to step 8

12. else go to 13

13. exit

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

753

[11] X. Zhu, P. Zhang, X. Wu, D. He, C. Zhang, and Y. Shi, “Cleansing
noisy data streams,” in Proceeding of Eighth IEEE International
Conference on Data Mining, 2008.

[12] J. Jebamalar, Tamilselvi, and V. Saravanan, “Detection and elimination
of duplicate data using token-base method for data warehouse: a
clustering based approach,” in Proceeding of International Journal of
Dynamics of Fluids, vol. 5, pp. 145–164, 2009.

[13] D. Bitton and D. J. Dewtt, “Duplicate record elimination in large data
files,” ACM Transactions on Database Systems, vol. 8, pp. 255-265,
1983.

[14] M. A. Hernandez and S. J. Stolfo, “The merge/purge problem for large
databases,” Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 127-138, 1995.

[15] E. Rahm and H. I. Do, “Data cleaning: Problem and current
approaches,” In proceedings of IEEE Bulletin of Technical Committee
on Data Engineering, vol. 23, no.4, pp. 3-13. Germany: IEEE 2000.

[16] W. Su, J. Wang, and F H. Lochovsky, “Record matching over query
results from multi web databases,” IEEE Trabsactions on Knowledge
and Data Engineering Manuscript TKDE- 2008- 12-0639, 2009.

[17] O. Benjelloun, H G. Molina, D Menestrina, Q. Su, S. E. Wang, and J.
widom, “Swoosh: a generic approach to entity resoulation,” The VLDB
Journal, 2009, vol. 18, pp.255-276.

[18] C. Batini, C. Cappliello, C. Francalanci, and A. Maurino,
“Methodologies for data quality assessment and improvement,” ACM
Computing Survey, vol. 41, no. 3, Article 16. July 2009.

[19] M. Bilenko, RIDDLE, Repository of information on duplicate
detection, record linkage, and identity uncertainty (2002). [Online]
Available: http://www.cs.utexas.edu/users/ml/riddle/index.html.

Bilal Khan did his MS / M.Phil in computer science in
2012 from Department of Computer Science, University
of Peshawar, Pakistan. He has published different
papers in International and National Conferences and
Journals. Currently he is working as Programmer of the
Finance Department, Khyber Pakhtunkhwa, Pakistan.
His research interests are Data Mining, Data
warehousing, Data Quality and Clustring.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

754

