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Abstract—This paper presents power disturbance 

recognition using back-propagation neural networks (BPNN). 

First, the discrete wavelet transform is used to extract the 

features of the power disturbance waveforms in the form of 

series coefficients of several levels. The Parseval theory is then 

utilized to calculate the energy of each level so that the number 

of coefficients can be reduced; then, the extracted results are 

used for recognition by the BPNN. Multi-event power 

disturbances are also fed to the recognition system for testing. 

From experiment results, the recognition rate is at least 83.67%. 

It proves the feasibility of the proposed method. 

 
Index Terms—Discrete wavelet transforms (DWT), power 

quality, back-propagation neural networks, parseval theory.  

 

I. INTRODUCTION 

Due to the rapid increasing usage of precision instruments 

in recent years, high power source quality is necessary to 

avoid the malfunction or breakdown of equipment. Scientists 

need some electronic detection, classification, and recording 

devices to monitor the power system behavior, so that we can 

find out the causes and the kinds of power quality events and 

then try to improve the quality. 

According to the periodicity of power disturbances, the 

power disturbance waveforms can be classified as stationary 

or non-stationary signals [1-2]. For stationary signals or 

periodic waveforms, Fast Fourier transform (FT) is good for 

signal analysis. Practical measurements using FFT assume 

infinite periodicity of the signal to be transformed. 

Furthermore, the time-domain information in the signal 

would be spread out on the whole frequency axis and become 

unobservable. Therefore, FFT is not suitable for analyzing 

non-stationary signals.  

To improve this deficiency of FFT, the Short-Time Fourier 

Transform (STFT) is proposed, which maps a signal into a 

two-dimensional function of time and frequency. The STFT 

extracts time-frequency information. However, the 

disadvantage is that the size for the time-window is fixed for 

all frequencies. The wavelet transform represents a 

windowing technique with variable-sized regions to improve 

the deficiency of STFT [3-4]. 

Therefore, this paper uses discrete wavelet transform 

(DWT) to extract the features of power disturbance 

waveforms and associates with back-propagation neural 

networks (BPNN) to recognize single power quality events 

and multi-events. 

 
Manuscript received May 19, 2012; revised June 28, 2012.  

The author is with the Department of Electrical Engineering, National 

Changhua University of Education, Chang-hua, Taiwan (e-mail: 

cswang@cc.ncue.edu.tw).  

II. WAVELET ANALYSIS 

The wavelet transform has been applied in variety of 

research areas such as signal analysis, data processing and 

compression. The main feature of wavelets is the oscillating 

and has average value of zero as well as the major advantage 

afforded by wavelets is the ability to perform local. Wavelet 

analysis is capable of revealing aspects of data that other 

signal analysis techniques miss, aspects such as trends, 

breakdown points etc. 

Generally, smooth wavelets indicate higher frequency 

resolution than wavelets with sharp steps; the opposite 

applies to time resolution. One of the most widely used 

mother wavelets suitable for power quality analysis is the 

Daubechies (db) wavelet. The mother wavelets function is 

define as: 
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This wavelet analysis is particularly suitable for detecting 

low amplitude, short duration, fast decaying and oscillating 

type of signals, encountered frequently in power systems, 

which is a popular signal analysis method, offers continuous 

and discrete wavelet transforms (CWT and DWT). The DWT 

is defined as: 
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The DWT can realize a time domain signal into 

time-frequency domain using a multi-stage filter to 

implement, low frequency filter g(t) and high frequency filter 

h(t). The filters g(t) and h(t) can be calculated using Matlab, 

defined as: 
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With the mother wavelet function
)(t

as the low pass 

filter and the scaling function
)(t

as the high pass filter. The 

mother wavelet and scaling function are defined as: 
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The multi-stage filter technique, called Multi-resolution 

analysis (MRA)[5-6], is described by Fig. 1: 

 

Fig. 1. Multiresolution signal decomposition (MSD) diagram 

From the Multi-Resolution Analysis (MRA), we can 

obtain decomposed signal at scale one, where the 

approximate parameter )(1 nc is the smooth version of the 

original signal and detail parameter )(1 nd is the detailed 

version. They are defined as: 
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And then the high pass filter is based on approximate 

parameter )(1 nc , the decomposed )(2 nc and )(2 nd at scale 

two are given as: 
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Therefore, the output of the high pass filter gives the 

detailed version of the high-frequency component of the 

signal. In contrast, the low pass filter provides the 

approximate version of the low-frequency component, which 

is then further split to go through other high pass and low 

pass filters to obtain the next level of the detail and 

approximation versions. By conducting this process, the 

DWT can be implemented to extract the feature of detected 

signal. 

The DWT results are initially a series of coefficients in 

each level. The Parseval theory, defined in (7), is utilized to 

calculate the energy of each level so that the number of 

coefficients can be reduced. Then, the Probabilistic Neural 

Network (PNN) is adopted to recognize the power 

disturbances. 
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III. BACK-PROPAGATION NEURAL NETWORKS 

Artificial neural network is made of many neurons 

connected with each other. In this paper, the proposed 

recognition system is carried out in a Back-propagation 

neural network (BPNN).The BPNN has been the most widely 

used and representative  neural network, presented by 

Rumelhart, Hinton and Williams in 1985. The BPNN uses 

the gradient decent theory to adjust each weight in neurons 

based on the form of back propagation style. The output error 

of the BPNN is back-propagated and spread into each 

neuron.  

 

Fig. 2. Architecture of a three-layers BPNN.  

 

IV. DISCRETE WAVELET TRANSFORM RESULTS 

The mother wavelet used in this study is Daubechies (D8). 

We applied LabVIEW to generate the desired power 

disturbance waveforms, such as 60Hz pure sinusoidal signal, 

voltage swell, sag, harmonic, interruption, surge, and voltage 

flicker. The generated power disturbance waveform is 

captured and sampled by the A/D device. The sampling rate 

is set at 20000Hz. The captured power signal is sent to PC for 

the 16-level discrete wavelet transform. Table 1 represents 

the corresponding frequency of each level of DWT results. 

As known, higher level is the lower frequency is. The main 

frequency (60Hz) is located in scale 7.  The transformed 

results are shown in the following figures. Fig. 2a contains 

100 pure sinusoidal voltage waveforms, Fig. 2b contains 100 

voltage swell waveforms, and so on. As seen in Fig. 2(f) the 

voltage flicker presents certain energy in the higher levels 

and no values in the lower level, that tells the voltage flicker 

is a low-frequency vibration. 

TABLE I: THE CORRESPONDING FREQUENCY OF EACH LEVEL OF DWT RESULTS 

Scale Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 

Freq 444.66Hz 222.33Hz 148.22 Hz 111.17Hz 88.93Hz 74.11 Hz 63.52 Hz 
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Scale Scale 8 Scale 9 Scale 10 Scale 11 Scale 12 Scale 13 Scale 14 

Freq 55.58 Hz 49.41 Hz 44.46 Hz 40.42 Hz 37.05 Hz 34.21 Hz 31.76 Hz 

 

 
(a) Pure sinusoidal voltages 

 
(b) Voltage swells 

 
(c) Voltage sags 

 
(d) Harmonics 

 
(e) Voltage interrupts 

 
(f) Voltage flickers 

 
(g) Voltage surges 

 
Fig. 3. Analysis results of DWT for power disturbance events. 

V. EXPERIMENTAL RESULTS 

A. Figures and Tables 

The structure of BPNN in this study includes one input 

layer with 16 neurons, one hidden layer with 25 neurons and 

output layer with 12 neurons. The learning rate is 0.1. Hidden 

layer contains Gauss transfer functions; output layer contains 

constant functions. Each event has 70 waveforms for training 

and 30 for testing. The recognition result is shown in table2. 

The experimental result tells that the BPNN combined with 

the discrete wavelet transforms has ability to recognize 
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power disturbances accurately. The training recognition rates 

are all above 90%, and the testing recognition rates are above 

83.67% for both single and multiple power disturbance 

events. 
 

TABLE II: BPNN RECOGNITION RATE OF SINGLE AND MULTIPLE EVENTS. 

 BPNN Recognition Rate 

Training samples Testing samples Training recognition 

rate (%) 

Testing recognition 

rate (%) 

Flicker+Harmonic 70 30 98.33 85.96 

Flicker 70 30 99.31 94.8 

Harmonic 70 30 92.88 86.63 

Interruption 70 30 92.88 87.88 

Interrupt+ Harmonic 70 30 100 83.67 

Pure sinusoidal  70 30 98.19 92.71 

Sag 70 30 100 93.75 

Sag + Harmonic 70 30 98.19 88.96 

Surge+ Harmonic 70 30 98.19 88.96 

Surge 70 30 94.87 91.45 

Swell 70 30 100 93.95 

Swell+ Harmonic 70 30 100 89.75 

 

VI. CONCLUSION 

The purpose of this paper is to use DWT based BPNN to 

recognize power disturbance events, including multiple 

events. To test the recognition rate of the proposed method, 

we successfully used LabVIEW to generate the power 

disturbance waveforms and utilized Matlab on PC to conduct 

DWT and BPNN for power disturbance recognition. From 

the experiment results, the recognition rates are above 

83.67 %. It proves the feasibility of the proposed method. 
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