
  

 

Abstract—In [1], we have introduced a lightweight SBML 

protocol to address the following two problems of the original 

SBML recovery algorithm; it may no longer be progressing in 

some transient communication error cases and all the message 

send operations generated after having received some unstable 

messages should be delayed until they are known to be stable. 

However, it may make the full log information of each 

application message recorded on its sender’s buffer as well as 

on the buffer of its immediate dependent. In this paper, we 

design a novel stable message log purging algorithm to 

eliminate useless recovery information from immediate 

dependents’ buffers without resulting in any extra control 

messages. It only piggybacks a variable on original control 

messages for logging each application message. Finally, we 

prove the correctness of our algorithm. 

 
Index Terms—Distributed systems, fault-tolerance, 

sender-based message logging, consistency, log purging. 

 

I.  INTRODUCTION 

Despite its beneficial features such as requiring no 

specialized hardware and lowering highly failure-free 

overhead of synchronous logging [11, 15] with volatile 

logging at sender’s memory, two problems of the original 

SBML [2, 6, 8, 14] may occur when some transient 

transmission errors happen [1]. First, when these errors make 

some received messages be in partially logged states, but 

their subsequent messages received, in fully logged states, 

the original SBML’s recovery procedure may not progress 

any longer in case of their receiver’s failure. Second, if 

temporary communication failures force some messages not 

to be currently fully logged, all the message send operations 

generated after having received them should be delayed until 

their receiver can know that they become fully logged on 

their senders’ volatile memories. To address the problems, 

we have introduced a lightweight SBML protocol to allow a 

receiver to piggyback small log information for messages 

received, but not yet fully logged, on each return message for 

giving the receive sequence number(rsn) assigned to a 

message to its sender. However, it may make the full log 

information of each application message recorded on its 

sender’s buffer as well as on the buffer of its immediate 

dependent. In this paper, we design a novel stable message 

log purging algorithm to eliminate useless recovery 

information from immediate dependents’ buffers without 

resulting in any extra control messages. It only piggybacks a 

variable on original control messages for logging each 

application message. 

 
Manuscript received June 3, 2012; revised July 5, 2012.   

Jinho Ahn is with the Dept. of Computer Science, Kyonggi University, 

Suwon Gyeonggi, Korea（e-mail: jhahn@kgu.ac.kr). 

II.    PRELIMINARIES AND MAIN CONCEPTS 

A. Previous SBML Protocols 

In [1], we have designed a lightweight consistent recovery 

algorithm for sender-based message logging in distributed 

systems. Before describing our message log information 

purging algorithm, let us explain the previous algorithm 

where the first will be integrated in this section.  

The algorithm addressed the following two problems of 

the original SBML protocol; its recovery procedure may not 

progress any longer in case of sequential process failures, and 

all the message send operations generated after having 

received some unstable messages should be delayed until 

they are known to be stable. For better understanding, let us 

explain when the two problems mentioned above may be 

incurred using Fig. 1 respectively. In this Fig, four processes 

p1, p2, p3 and p4 are communicating with each other while 

executing their corresponding tasks. Process p2 takes its 

latest checkpoint, Chk2
i, and then receives message m1 from 

p1, which currently records the partial log information of m1, 

pl(m1), on its volatile memory. Thus, p2 increments its rsn 

variable, RSN2, by one, assigns it to m1 and then returns the 

rsn value of m1 to p1. Afterwards, p2 receives m2 and m3 

from p3 and p4 in order and informs p3 and p4 of their 

corresponding rsn values respectively in the same manner. 

However, the two return messages including the rsn values of 

m1 and m2 cannot still be delivered to their senders, p1 and 

p3 because of transient communication errors that may 

normally occur in the distributed system models assumed in 

this literature [4]. In contrast, p4 receives the rsn value of m3, 

fully logs m3 on its volatile memory(fl(m3)) and then sends 

an acknowledgement about the receipt of m3's rsn to p2. At 

this point, suppose p2 fails and attempts to recover its 

pre-failure state. The recovery algorithm of the original 

SBML has p2 restore its state using its latest checkpoint and 

then obtain all the fully logged messages from their senders. 

However, p2 can only get the rsn value of m3 from p4 and so 

not know which messages have been sent to p2 before m3 

after checkpoint Chk2
i. The original SBML couldn't consider 

this situation and so progress its execution any longer. In 

order to perform consistent recovery in this example, m3's rsn 

must be invalidated and all the three messages, handled as 

partially logged messages. 

Second, suppose the original SBML executes according to 

the scenario of Fig. 1. In this case, due to several transient 

communication errors from p2 to p1 and p3, p2 may first be 

informed of p4's receipt of m3's rsn value without knowing 

whether m1 and m2 are fully logged on their senders properly. 

Therefore, all message send operations delayed after having 

received m1 should not be sent even in case of this situation 

to ensure system consistency. These deferred send operations 

Low-Cost Stable Message Log Purging Algorithm for 

SBML 

 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

409

Jinho Ahn



  

can begin executing only after p2 have received all the 

acknowledgements about the receipt of both m1's and m2's 

rsns in this Fig. This feature can considerably degrade 

failure-free performance of the entire system.  

 

Fig. 1. An illustration of execution of the our SBML algorithm 

When the return message including the rsn of an 

application message m received by process p may be lost, 

there occur two cases our algorithm handles like the original 

SBML. First, if m's sender q cannot receive the return 

message within some period of time after having transmitted 

m, the message m partially logged on q's volatile memory 

should be retransmitted. Second, if the return message isn't 

delivered to q after having sent it, p cannot receive any 

acknowledgement of its receipt from q, retransmitting it to q. 

When q receives the return message and then sends the 

acknowledgement to p, the acknowledgement may be lost. In 

this case, p re-sends the return message to q, which can give p 

the acknowledgement without causing any unintended 

effects. 

However, our proposed SBML algorithm solves the two 

problems of the previous SBML by ensuring consistent 

recovery while handling delayed messages scheduled to be 

sent much earlier with very low extra overhead even if 

temporary transmission errors occur. In our algorithm, when 

p returns the rsn value of the message m to q, it piggybacks on 

the return message log information for all unstable messages 

received before m after its latest checkpoint. 

In here, unstable message means the message whose 

receiver cannot currently know whether the rsn of the 

message is saved on its sender's volatile log properly. On the 

contrary, a message is called stable that has the opposite 

property of unstable message. 

Also, the log information of each unstable message 

piggybacked consists of three fields, sender's identifier(SID), 

send sequence number(SSN) and receive sequence 

number(RSN) of the message. When receiving the return 

message, q has to maintain the log information for the 

unstable messages included in the return message on its 

volatile memory in addition to updating the rsn value of m 

into its corresponding log element. As soon as p has received 

the acknowledgement for m's rsn receipt from q, all the send 

message operations delayed due to the unstable messages 

received before m can be performed. For example, as soon as 

p2 is notified of fully logging m3 on p4's volatile memory in 

Fig. 1, our algorithm enables all delayed messages scheduled 

to be sent to be transmitted out because p2 could obtain all the 

rsn values of the three messages from p4 during recovery 

unlike the original SBML. If p attempts to take a local 

checkpoint, it can also allow all the send message operations 

delayed before this checkpoint to begin executing. 

B. Stable Message Log Purging Algorithm 

The previous SBML protocol in [1] may save not only the 

full log information of each application message on its 

sender’s buffer, Sendlgsndr, but also on the buffer of another 

process directly depending on the message, UMLgP. The 

latter is called immediate dependent. For example, in Fig. 1, 

after process p2 has received the confirmation messages 

 

 

 

Fig. 2. 4 steps of our message log purging algorithm. 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

410



  

 

 

 

Fig. 3. Algorithmic description of our SBML protocol including the proposed message purging algorithm. 

The previous SBML protocol in [1] may save not only the 

full log information of each application message on its 

sender’s buffer, Sendlgsndr, but also on the buffer of another 

process directly depending on the message, UMLgP. The 

latter is called immediate dependent. For example, in Fig. 1, 

after process p2 has received the confirmation messages 

about the receipt of the RSNs of m1 and m2 from p1 and p3, 

the log information of each message exists on both buffers of 

its sender and immediate dependent. Thus, it requires an 

effective log purging algorithm to eliminate useless recovery 

information from immediate dependents’ buffers, which is 

the focus of our paper that should be addressed. For this 

purpose, we design a stable message log purging algorithm 

not to result in any extra control messages with a variable 

lastRSNp like in Fig. 2. In here, lastRSNp is the RSN of the 

last message which process p has received and seen that was 

recorded on its sender’s buffer. For example, if process p4 

sends p2 a new message m4, p2 increments its RSN and 

return it with lastRSN2 to p4, which can remove the log 

information of m1 and m2 from its buffer.  

Also, if there exist some messages previously received by 

p4 and p2 is the immediate dependent of them, p2 can 

eliminate the redundant log information of the messages from 

its buffer UMLg2 after p4 sends p2 the acknowledgement of 

m4’s RSN with lastRSN4. From this example, we can see that 

our proposed algorithm doesn’t need any extra interaction 

among processes. 

The formal algorithmic description of our log purging 

algorithm is integrated into the previous protocol of [1] in Fig. 

3. Parts 1 to 4 in Fig. 2 are highlighted with underlines in Fig. 

3. 

C. Correctness Proof 

Theorem 1. Even after the proposed message log purging 

algorithm has performed in our SBML protocol, no useful log 

information for recovering future failures will be eliminated. 

Proof: Let us prove this theorem by contradiction. Suppose 

that the proposed algorithm may purge the log information 

useful for future recoveries. As mentioned in section IV, the 

algorithm forces each process p to eliminate log information 

from its volatile memory only in the following two cases. 

Case 1: p receives the return message with the RSN of an 

application message m p has sent to another process q.  

Module Msg-Send(data, rcvr) at Psndr 

increment Ssnsndr by one ;  assign Ssnsndr to data ;  send m(data, Ssnsndr) to Prcvr ; 

Sendlgsndr ← Sendlgsndr ∪ {(rcvr, Ssnsndr, -1, data)} ; 

 

Module Msg-Recv(m(ssn, data, sndr)) at Prcvr (including Part 1) 

if(SsnVectorrcvr[m.sndr] < m.ssn) then 

Rsnrcvr ← Rsnrcvr + 1 ;   SsnVectorrcvr[m.sndr] ← m.ssn ; 

for all e  RSNVectorrcvr st (e.rsn > stableRSNrcvr) do 

UnstableMsgs ← UnstableMsgs ∪{(e.sid, e.ssn, rcvr, e.rsn)} ; 

send return(m.ssn, Rsnrcvr, lastRSNrcvr) with UnstableMsgs to Pm.sndr ; 

RSNVectorrcvr ← RSNVectorrcvr ∪{(m.sndr, m.ssn, Rsnrcvr)} ; 

delay all the send message operations generated after having received m ; 

deliver m.data to its corresponding application ; 

else 

find e  RSNVectorrcvr st ((i.SID = m.sndr) ^ (i.SSN = m.ssn)) ; 

for all e  RSNVectorrcvr st ((e.rsn < i.RSN) ^ (e.rsn > stableRSNrcvr)) do 

UnstableMsgs ← UnstableMsgs ∪{(e.sid, e.ssn, rcvr, e.rsn)} ; 

send return(m.ssn, i.RSN, lastRSNrcvr) with UnstableMsgs to P m.sndr ; 

 

Module RSN-Rcvr(return(ssn, rsn, lastRSNrcvr, rcvr, UnstableMsgs)) at Psndr (including Parts 2 and 3) 

find e  Sendlgsndr st ((e.rid = return.rcvr) ^ (e.ssn = return.ssn)) ;   e.rsn ← return.rsn ; 

UMLgsndr ← UMLgsndr ∪ return.UnstableMsgs ;   send ack(return.rsn)  with lastRSNsndr to Preturn.rcvr ; 

call Module Remove-LogForstableMsgs(return.rcvr, return.lastRSNrcvr) at itself ; 

 

Module RSN-Ack(ack(rsn, sndr, lastRSNsndr)) at Prcvr (including Part 4) 

if(stableRSNrcvr < ack.rsn) then 

allow all the send message operations delayed before receiving the message whose rsn value is (ack.rsn+1) to  

begin executing ; 

stableRSN rcvr ← ack.rsn ;   call Module Remove-LogForstableMsgs(ack.sndr, ack.lastRSNsndr) at itself ; 

 

Module Checkpointing() at P 

take its local checkpoint with (RsnP, SsnP, SsnVectorP, SendlgP, UMLgP) on the stable storage ; 

allow all the send message operations delayed before this checkpoint to begin executing ; 

stableRSNP ← RsnP ;   make RSNVectorP an empty set ; 

 

Module Remove-LogForstableMsgs(pid, lastRSNpid) at P 

for all e  UMLgP st ((e.rid = pid) ^ (e.rsn ≤lastRSNpid)) do 

UMLgP ← UMLgP – {e} ;  

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

411



  

In this case, lastRSNq was piggybacked on the return 

message. Thus, p removes from UMLgp all lge(o)s such that 

lge(o).rid is q and lge(o).rsn is less than or equal to lastRSNq. 

In here, lge(o) consists of four fields, (sid, ssn, rid, rsn), of 

message o. As every field value of lge(o) is also recorded on 

Sendlglge(o).sid, all these lge(o)s need no longer be kept in 

UMLgp in case of failure of process q. Thus, lge(o) isn’t 

useful for its future recoveries. 

Case 2: p receives the confirmation message about the 

receipt of the RSN of an application message m p has 

received from another process q.  

In this case, lastRSNq was piggybacked on the 

confirmation message. It is similar to case 1. 

Therefore, the proposed algorithm removes only redundant 

log information on buffers of immediate dependents in any 

case. This contradicts the hypothesis.    

 

III. CONCLUSION 

This paper presented a redundant stable message log 

purging algorithm only to piggyback a variable on the return 

message and confirmation message of the RSN of each 

application message without requiring any extra message 

interaction. Also, we proved that our algorithm never violates 

consistency condition in any case. Therefore, we believe that 

this algorithm can considerably improve availability of the 

buffer of each process with little overhead if the SBML 

protocol in [1] is combined with the proposed one. 

 

REFERENCES 

[1] J. Ahn, “Lightweight Consistent Recovery Algorithm for Sender-based 

Message Logging in Distributed Systems,” IEICE Transactions on 

Information and Systems. 2011, vol. E94-D, no. 8, pp. 1712-1715. 

[2] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and 

F. Magniette, “MPICH-V2: a fault tolerant MPI for volatile nodes 

based on pessimistic sender based message logging,” In: Proc. of the 

Int’l Conf. on High Performance Networking and Computing, 2003. 

[3] D. Buntinasd, C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. 

Rezmerita, E. Rodriguez, and F. Cappello, “Blocking vs. non-blocking 

coordinated checkpointing for large-scale fault tolerant MPI Protocols,” 

Future Generation Computer Systems. 2008, vol. 24, pp.73-84. 

[4] K. M. Chandy and L. Lamport, “Distributed snapshots: determining 

global states of distributed systems,” ACM Transactions on Computer 

Systems. 1985, vol. 3, no. 1, pp. 63-75. 

[5] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A survey of 

rollback-recovery protocols in message-passing systems,” ACM 

Computing Surveys. 2002, vol. 34, no. 3, pp. 375-408. 

[6] D. Johnson and W. Zwaenpoel, “Sender-based message logging,” In: 

Proc. of Int’l Symp on Fault-Tolerant Computing. 1987, pp. 14-19. 

[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed 

system,” Communications of the ACM. 1978, vol. 21, pp. 558-565. 

[8] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok, “VolpexMPI: an 

MPI library for execution of parallel applications on volatile nodes,” 

Lecture Notes in Computer Science. 2009, vol. 5759, pp. 124-133. 

[9]  H. F. Li, Z. Wei, and D. Goswami, “Quasi-atomic recovery for 

distributed agents,” Parallel Computing. 2009, vol. 32, pp. 733-758. 

[10] Y. Luo and D. Manivannan, “FINE: a fully informed and efficient 

communication-induced checkpointing protocol for distributed 

systems,” J. Parallel Distrib. Comput. 2009, vol. 69, pp. 153-167. 

[11] M. Powell and D. Presotto, “Publishing: a reliable broadcast 

communication mechanism,” In: Proc. Of the 9th International 

Symposium on Operating System Principles. 1983, pp. 100-109. 

[12] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: an 

approach to designing fault-tolerant distributed computing systems,” 

ACM Transactions on Computer Systems. 1985, vol. 1, pp. 222-238. 

[13] R. E. Strom and S. A. Yemeni, “Optimistic recovery in distributed 

systems,” ACM Transactions on Computer Systems. 1985, vol. 1, pp. 

204-226. 

[14] J. Xu, R. B. Netzer, and M. Mackey, “Sender-based message logging 

for reducing rollback propagation,” In: Proc. of the 7th International 

Symposium on Parallel and Distributed Processing. 1995, pp. 

602-609. 

[15] B. Yao, K. Ssu, and W. Fuchs, “Message logging in mobile computing,” 

In: Proc. of the 29th International Symposium on Fault-Tolerant 

Computing. 1999, pp. 14-19. 

 
 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

412


