



Abstract—Software defect predictive model can efficiently

help improve software quality and lessen testing effort. A large

number of predictive models are proposed in a software

engineering literature, but this paper presents the proposed

method in software defect prediction with the comparative

results based on two classifiers, i.e., backpropagation neural

network and radial basis functions with Gaussian kernels as

classifiers. Comparative results on NASA dataset are

demonstrated and analyzed on the basis of mean square error

and percent of accuracy. Experimental results show that the

neural network performs better prediction than the RBF in

almost subsets of data from 5.76% to 6.75%.

Index Terms—Software quality, software defect prediction,

Software classifiers, fault-prone software modules

I. INTRODUCTION

Development and testing of a large software system

consumed resources and time. Software development

managers often experience problems of allocating sufficient

time and resources for software testing and quality assurance

activities. Recently, much work has been researched in a

software engineering literature about fault-prone classifiers

for software quality assessment. Many well-known

classification techniques in machine learning, data mining,

statistics such as neural network, Bayesian network, radial

basis function (RBF), clustering, probabilistic relational

model, decision trees, and naive bayes are used to evaluate

software modules. Studies are reported in the literature [2, 3].

In addition, parsimonious classifier of software quality

assessment using Gaussian kernel radial basis functions is

studied in [4]. A model reported in [5] has been developed by

using Bayesian network to assess and predict software quality.

Unsupervised learning technique such as clustering is used in

prediction of faults in software systems [6, 7]. Moreover,

other data mining techniques such as feature subset selection,

classifying feature description and associate rule are

respectively applied to classify software engineering dataset

in [8, 9, 10].

The common point of such studies is that their works focus

on the insight and the analysis of their own techniques. They

pay very little attention to the comparative results and no

recommendation of the software defect classifiers is

suggested. Moreover, the heavy metrics of the software

engineering dataset is used without performance testing on

attribute reduction. Therefore, our work aims to present

comparative results of the backpropagation neural network

Manuscript received June 3, 2012; revised July 3, 2012.

The authors are with the Department of Computer Science, Faculty of

Science, Prince of Songkla University Hatyai, Songkhla, Thailand 90112

(e-mail:sunida.r@psu.ac.th,chouvanee.s@psu.ac.th,sirirut.v@psu.ac.th,ladd

a.p@psu.ac.th)

and the RBF. An experimental comparison of the proposed

methods is provided in this paper. Different experiments in

this research are conducted by using smaller subsets of NASA

software engineering dataset [1]. The quality of our models is

evaluated based on classification accuracy and mean square

error (MSE). Models obtained from each presented technique

are analyzed and then selected. The comparative results

within the same size of networks and the difference of

average percent of accuracy between them are also presented.

Then, the recommendation is suggested to software

developers.

The rest of paper is organized as follows. Section II

discusses about the classification techniques. In Section III,

the proposed method is described. The dataset, model

implementation, the software predictive results and

comparison are discussed in Section IV. Finally, conclusions

are reported in Section V.

II. MODEL DESCRIPTION

A. Backpropagation Neural Network

To obtain predictive models, the algorithm of the

backpropagation neural network with multihidden layer [12]

is applied to software engineering dataset. In the neural

network architecture with a perceptron, inputs are activated

with the sum of the product of the inputs and the weights .

Its output becomes the input of each hidden units. In each

hidden unit, the inputs are computed to obtain a predictive

output (O) by a sigmoid function, a non linear function

defined by the equation (1).

 (1)

In the training process, using given inputs training data

with corresponding output value , an error can be

computed by the equation (2).

 ← - (2)

Then, the neural network weight can be updated in the

equation (3).

) (3)

A derivative of is = and is a learning rate.

In multilayer case, errors are approximated by

backpropagating the final output error. The algorithm of the

backpropagation neural network [12] is described in the

following procedure in Fig. 1.

Comparative Classifiers for Software Quality Assessment

Sunida Ratanothayanon, Chouvanee Srivisal, Sirirut Vanichayobonand,

and Ladda Preechaveerakul

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

404

Input: Given input training data

Output: Output from each output unit

1. Initialize the weight to small numbers until satisfied do
2. For each training example, do

2.1 Input the training example to the networks and compute actual outputs. (forward pass)
2.2 Compute weight change (backward pass)

 For each output unit k

) Where is a target output and is an output of each

output unit k.

 For each hidden unit h

 Where is an output of each hidden unit h.

2.3 Update each network weight

 Where =

3. The algorithm is stopped when the value of the Mean Square Error (MSE) is acceptable.

Fig. 1. The backpropagation neural network algorithm [12].

B. Radial Basis Function (RBF)

The SG RBF algorithm, which is a recent RBF algorithm

proposed by the author, Shin and Goel [4, 11] is applied to the

datasets. RBF architecture is similar to the neural network,

but using the Gaussian function as the nonlinearity for the

hidden layer. The RBF network consists of three layers, (i.e.,

input, hidden and output.)

n d input vector is nonlinearly transformed by the basis

function to the hidden layer.

 where n is an input data size,

and d is a dimensional input data vector.

In practice, the Gaussian function gives a good

approximation and is easy to control parameter , which is a

width of the basis function. The RBF model for the Gaussian

case can be described as equation (4)

 where n is an input data

size, and d is a dimensional input data vector.

In practice, the Gaussian function gives a good

approximation and is easy to control parameter , which is a

width of the basis function. The RBF model for the Gaussian

case can be described as equation (4).

 (4)

where is the input vector and
 is the basis

function center. Then, the transformed output is

linearly weighted to produce the final output. A mapping of

 is in equation (5).

 (x)=

 (5)

From equation (5), m is the number of basis function. s

are weight and is the Euclidean distance. A parameter set

for the RBF model is defined by . In the SG

RBF algorithm, a global parameter that users control the

value is given. The algorithm selects the number of basis

function for a given . The center of the basis function ’s

are determined for a pair of selected m and Next, the

weight parameters are determined by the pseudo-inverse

method.

III. PROPOSED METHOD

Three core steps of our proposed method are illustrated in

Fig 2. They are 1) Data gathering and preprocess, 2) Model

building and evaluation, and 3) Model comparison.

 In data gathering and preprocess step, dataset is gathered

by selecting from the collection of public software

engineering data repository. Then, the data are preprocessed

by removing redundant data. Outliers are also removed from

the dataset by observing from thplot of the attribute values,

and data are normalized within the range between 0 and 1.

The labels of output are classified as 1 (fault-prone) and 0

(non fault-prone). Null or zero value attributes are eliminated

from the dataset. In model building and evaluation step, the

backpropagation neural network and RBF are applied to

build the models. Two new subsets of data are created under

the assumption that subset of attributes contain only

important feature will give better result. Only class relevant

attributes or only method relevant attributes are selected for

class-level dataset or method-level dataset respectively. The

experimental results are compared in the last step.

Problem Definition

Remove Redundancy
data

Step 1
Data Gathering and Preprocess

Remove outlier data

Remove null or zero
attribute

Normalize data with the
range between 0 and 1

Select attribute and
Create subsets of dataset

Step 2
Model Building and Evaluation

Train Model

Create Model

Test Model

Evaluate and
Interpret model

Select the best
model

Train Model

Create Model

Test Model

Evaluate and
Interpret model

Select the best
model

Backpropagation Neural
Network

RBF Compare the results

Step 3
Model Comparison

Fig. 2. The proposed method.

IV. IMPLEMENTATION AND ANALYSIS

A. Dataset

The dataset KC1 (defective or not) is taken from the

NASA software database as reported in the PROMISE data

repository [1]. This dataset can be categorized into two data

subsets, which are class-level and method level data.

Attributes of the dataset are presented in Table I. A set of

static measures are used as a predictor variables. The

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

405

numbers of instances are 145 records. The first 31 attributes

are input, and the last attribute is output classified into a

discrete value as 0 and 1. If the class or the method of the

program module contains one or more defects, the output is 1

and 0 otherwise. There are 60 records in class 1 and 85 record

in class 0. In modeling process, the dataset is partitioned to

three data subsets: class-level, method-level and all

attributes.

B. RBF Model

The dataset used is randomly selected 50% for training, 25%

for validation and 25% for testing. The RBF model is selected

based on low value of MSE on testing data, but it should have

moderate number of basis function to avoid overfitting

problem. From the experiments, 95% and 99% of the

confidential level are assigned for testing and comparing the

results. The models with a small number of the Gaussian

function that have high value of and large training error are

considered to be underfitting models because they do not

learn enough. However, the complex models with the large

number of the Gaussian function with small value of and

large testing error are overfitting models because it is unable

to provide good generalization on unseen data. The results of

the RBF classifiers on three data subset: class-level,

method-level and all attributes are presented in Table IIa)-IIc)

and their MSE plots are shown in Fig. 3a)-3c), respectively.

TABLE I: ATTRIBUTES OF THE INPUT DATASET

Features at Class Level

1. PERCENT_PUB_DATA: The percentage of data that is public and

protected data in a class.

2. ACCESS_TO_PUB_DATA: The amount of times that a class's

public and protected data is accessed.

3.COUPLING_BETWEEN_OBJECTS: The number of distinct non-

inheritance-related classes on which a class depends.

4. DEPTH: The level for a class.

5. LACK_OF_COHESION_OF_METHODS: This metric indicates

low or high percentage of cohesion.

6. NUM_OF_CHILDREN: The number of classes derived from a

specified class.

7. DEP_ON_CHILD: Whether a class is dependent on a descendant.

8. FAN_IN: This is a count of calls by higher modules.

9.RESPONSE_FOR_CLASS: A count of methods implemented within

a class plus the number of methods accessible toan object class due to

inheritance.

10. WEIGHTED_METHODS_PER_CLASS: A count of methods

implemented within a class

Features Transformed to Class Level (Originally at Method Level)

11. sumLOC_BLANK: Lines with only white space or no text content.

12. sumBRANCH_COUNT: This metric is the number of branches for

each module.

13. sumLOC_CODE_AND_COMMENT: Lines that contain both code

and comment.

14. sumLOC_COMMENTS:The number of lines in a module including

all blank lines, comment lines, and source lines.

15. sumCYCLOMATIC_COMPLEXITY: It is a measure of the

complexity of a modules decision structure. It is the number of linearly

independent paths.

16. sumDESIGN_COMPLEXITY: Design complexity is a measure of a

module's decision structure as it relates to calls to other modules.

17. sumESSENTIAL_COMPLEXITY: Essential complexity is a

measure of the degree to which a module contains unstructured

constructs.

18. sumLOC_EXECUTABLE: Source lines of code that contain only

code and white space.

19. sumHALSTEAD_CONTENT: Complexity of a given algorithm

independent of the language used to express the algorithm.

20. sumHALSTEAD_DIFFICULTY: Level of difficulty in the

program.

21.sumHALSTEAD_EFFORT: Estimated mental effort required to

develop the program.

22. sumHALSTEAD_ERROR_EST: Estimated number of errors in the

program.

23. sumHALSTEAD_LENGTH: This is a Halstead metric that includes

the total number of operator occurrences and total number of operand

occurrences.

24. sumHALSTEAD_LEVEL: Level at which the program can be

understood.

25. sumHALSTEAD_PROG_TIME: Estimated amount of time to

implement the algorithm.

26. sumHALSTEAD_VOLUME: This is a Halstead metric that

contains the minimum number of bits required for coding the program.

27. sumNUM_OPERANDS: Variables and identifiers Constants

Function names when used during calls.

28. sumNUM_OPERATORS: Number of operators.

29. sumNUM_UNIQUE_OPERANDS: Variables and identifiers

Constants (numeric literal/string) Function names when used during

calls

30. sumNUM_UNIQUE_OPERATORS: Number of unique operators.

31. sumLOC_TOTAL: Total Lines of Code.

TABLE II: RESULTS OF THE RBF CLASSIFIERS

After analyzing the choice of models (A to J) with different

parameters (sigma and basis function) along with their MSE

plots shown in Fig. 3, the best model is chosen based on low

validation and testing error. The best model should be the

best compromise point between the training error and the

validation error. Therefore, the model C is the best model for

two data subsets: class-level and method-level (see Table IIa

and 2b). For all attributes, model H is selected because it also

has the best compromise point between training and

validation error when compared to other models.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

406

a) Class-level

b) Method-level c) All attributes

Fig. 3. Mean square error (MSE)

A comparison among three data subsets shows that the

selected model using the method-level dataset gives better

result than others because this model has the lowest testing

error, which is 0.1675, and it is less complex than models

from other subsets of data.

C. Backpropagation Neural Network Model

The backpropagation neural network is applied, and the

datasets are randomly partitioned in to 50% for training and

another 50% for testing. Learning rate = 0.1 is assigned, and

the starting point for the momentum is at 0.9. The

feedforward backpropagation algorithm is repeated up to

2000 epochs to update weight and the obtained results are in

Table III.

From Table IIIa)-IIIc), the class-level dataset with the

network size 20 has the best result with the lowest MSE on

testing data and the highest percent of correct classification,

which are 0.165 and 81.69% respectively. For the

method-level dataset, the network size 60 gives the best result

with the MSE testing 0.17 and 72.7% correct classification.

For dataset using all attributes, the network size 30 gives the

best result with the MSE testing 0.177 and 80% correct

classification. Among three datasets, the class-level has the

best modeling result.

TABLE III: RESULTS OF THE NEURAL NETWORK CLASSIFIERS

Networ

k size

MSE

trainin

g

MSE

testin

g

% correct

classificatio

n

5 0.1560 0.173

0

78.8800

10 0.1570 0.166

0

80.2800

20 0.1480 0.165

0

81.6900

30 0.1520 0.184

0

77.4700

40 0.1470 0.178

0

78.8800

50 0.1530 0.165

0

78.8800

60 0.1480 0.188

0

76.0600

a) Class-level

Networ

k size

MSE

trainin

g

MSE

testin

g

% correct

classificatio

n

5 0.1820 0.196

0

69.8700

10 0.1790 0.198

0

67.1300

20 0.1800 0.200

0

68.4900

30 0.1770 0.184

0

69.8700

40 0.1860 0.184

0

68.4900

50 0.1770 0.180

0

69.8700

60 0.1700 0.170

0

72.7000

100 0.1700 0.180

0

72.0000

b) Method-level

Networ

k size

MSE

trainin

g

MSE

testin

g

% correct

classificatio

n

5 0.1290 0.200

0

75.4000

10 0.1280 0.188

0

74.0000

20 0.1280 0.196

0

74.0000

30 0.1220 0.177

0

80.0000

40 0.1230 0.184

0

76.8200

50 0.1230 0.189

0

74.0000

60 0.1190 0.193

0

79.7100

c) All attributes

D. Comparative Results of Models

When considering the values of MSE testing and

percentage of correct classification, the models from the

neural network size 20 is the best (MSE = 0.165 and accuracy

= 81.69%). Beside, the models from the neural network have

better results than the RBF in all datasets except the

method-level. The neural network on the class-level dataset

gives the lowest MSE testing and the highest percentage of

correct classification. However, our observation is that to

obtain almost the same MSE value, the models from the

neural network approach are more complicate than the RBF

because the models from the neural network approach have

more number of hidden units than the RBF, leading to

consume more processing time.

 When considering the same size of network, the

models from the neural network have better results than the

RBF in all datasets except the method-level. The neural

network has lower MSE testing and higher percentage of

correct classification. Considering m = 10 in Table IIa) and

the network size 10 shown in Table IIIa), the MSE testing of

the model from the neural network is only 0.166 while one

from the RBF is 0.214.

Overall, the neural network performs better than the RBF.

To confirm the fact that the neural network has better percent

of accuracy in most subsets of data, average percent of

accuracy of three datasets are computed and the comparative

results between two approaches are presented in the graph in

Fig. 4.

0

20

40

60

80

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m

Mean Square Error of Software Engineering Dataset (Class Level, 8 inputs)

sigma

M
S

E

Training Data

Validation Data

Testing Data

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m

Mean Square Error of Software Engineering Dataset (Method Level, 21 inputs)

sigma

M
S

E

Training Data

Validation Data

Test Data

Training Data

Validation Data

Test Data

0

10

20

30

40

50

60

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m

Mean Square Error of Software Engineering Dataset (29 inputs)

sigma

M
S

E

C

C

H

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

407

Fig. 4. Average percent of accuracy results of the RBF and the neural

network (NN).

From Fig. 4, the neural network achieves 5.76% of

accuracy higher than the RBF in the class-level. However, in

the method-level, the RBF is slightly better than the neural

network, which is 2.01% more accurate. In all attributes

dataset, the neural network performs better than the RBF

6.75%.

V. CONCLUDING REMARKS

The software defect predictive models using the neural

network and the RBF techniques are developed in our

proposed method. Overall, the selected models from both

approaches offer impressive result. The comparative results

show that the performances are better by using subset of data

with some features. Based on our results compared with the

same size of network, the backpropagation neural network

performs better classification than the RBF with lower MSE

and higher percent of accuracy in most subsets of data. In the

future work, the research will be focus on feature subset

selection on software engineering dataset to seek for the best

and simplest model as possible. It is therefore; conclude that

the backpropagation neural network is the best classifier in

our experiment. This approach is recommended to help to

identify software fault-prone classes or modules that are

required immediate attention from the software developers.

REFERENCES

[1] KC1/Software defect prediction (2012, June 3). Retrieved from

promise.site.uottawa.ca/SERepository/datasets.

[2] Z. Jianhong, S. P Sandhu, and S. Rani, “A Neural Network Based

Approach for Modeling of Severity of Defects in Function Based

Software Systems,” International Conference on Electronics and

Information Engineering (ICEIE 2010), vol. 2, pp. 568-575.

[3] E. R. M. Bezerra, L. I. A. Oliverira, and R. L S. Meira, “A Constructive

RBF Neural Network for Estimating the Probability of Defects in

Software Modules,” Proceedings of International Joint Conference on

Neural Networks 2007.

[4] A. Goel, M. Shin, S. Ratanothayanon, and A. P. Raymond,

“Parsimonious Classifiers For Software Quality Assessment,” High

Assurance Systems Engineering Symposium, HASE '07. 10th

IEEE.2007, pp. 411-412.

[5] S. A Wagner, “Bayesian network approach to assess and predict

software quality using activity-based quality models,” ACM 2009.

[6] S. P. Sandhu, R. Goel, S. A. Brar, J. Kaur, and S. Anand, “A model for

early prediction of faults in software systems,” IEEE 2010, vol4, pp.

281-285.

[7] X. Tan, X. Peng, S. Pan, and W. Zhao, “Aessing Software Quality by

Program Clustering and Defect Prediction,” IEEE 2011, pp. 244-248.

[8] S. S. Kamaruddin, Yahaya, Jamaiah. A. Deraman, and R. Ahmad,

“Feature Subset Selection Method for Dynamic Software Quality

Assessment,” IEEE 2011, pp. 304-306.

[9] L. Zhang and Z. Shang, “Classifying feature description for software

defect prediction,” IEEE 2011, pp.138-143.

[10] Q. Song, M. Shepperd, M. Cartwright, and M. Carolyn, “Software

defect association mining and defect correction effort prediction,”

IEEE transactions on Software Engineering, 2006, vol. 32, no. 2, pp.

69-82.

[11] A. Goel and M. Shin, “Radial basis functions: An algebraic approach

(with data mining applications),” Tutorial at the 15th European

Conference on Machine Learning, (ECML 2004), Pisa, Italy, 2004.

[12] T. Mitchell, Machine Learning: Neural Network (2012, May 10).

Retrieved from [Online]. Available: http://www.cs.cmu.edu

/project/theo-20/www/mlbook/ch4.pdf

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012

408

http://promise.site.uottawa.ca/SERepository/datasets/kc1.arff
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4404711
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4404711
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4404711

