

Abstract—We focus in this paper to improve the level of

intrusion detection system (IDS). This improvement is based on
three research areas: classification of attacks, generation of
attack scenarios and finally evaluation methods. We will discuss
in this article the second area, which consists on the research of
meaningful scenarios in order to minimize false and positive
alerts reported by an IDS. We will present two algorithms
generating these scenarios. The first one allows the conversion
of the problem to a constraint programming problem (CSP)
and the second one is based on an algorithm to search the
shortest path. We will also compare the results of these two
algorithms.

Index Terms—Scenario, attack, evaluation, IDS, CSP,
CHOCO.

I. INTRODUCTION
Our main research area is to test and evaluate IDS

(Intrusion Detection Systems). The objective is to develop a
classification model of attacks (class model of attacks) then
model the attack process and generate attack scenarios.

Regarding the classification model attacks in Saber and al.
[1, 2] we have presented a better classification model attacks
Gad and al. [3] by eliminating duplication of classes. This
allowed us to reduce the number of meaningful classes by
using the method CTM (Classification Tree Method) [4]
using the tool CTE (Classification Tree Editor) [5].

The purpose of classification is to minimize false and
positive alerts reported by IDS. But attacks follow several
scenarios depending on the nature and purpose of the attack
which makes the implementation of these different
classifications very hard on IDS.

In this paper, we focus on the generation of attack
scenarios. We adopted the process model of malware attacks
Gad and al. [6]. We propose two algorithms for generating
attack scenarios from this model. Our goal is to generate a
significant minimum number of attack scenarios in a minimal
time, which will facilitate the integration model in an IDS,
and thus facilitate its evaluation. Indeed, the aim is that the
IDS can detect an attack as quickly as possible before it
becomes an intrusion.

This paper is composed as follows: in section two we will
make a description of the attack process model of Gad and al.
[6]. We will detail in section three the modeling problem, we
will present the two algorithms used to generate attack
scenarios in Section four. In the fifth section we will present
the results and then we will start a discussion. We will end

Manuscript received April 9, 2012; revised May 1, 2012.
M. Saber and T. Bouchentouf are with the Department of Computer

Science, National School of Applied Sciences, Mohammed First University,
Oujda, Morocco (e-mail: mosaber@gmail.com, tbouchentouf@gmail.com).

A. Benazzi is with the Department of Computer Science, High School of
Technology, Mohammed First University, Oujda, Morocco (e-mail:
benazzihamid@yahoo.fr).

with a conclusion and future works.

II. MODEL OF ATTACKS PROCESS
There are several models of attacks [7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17]. They are generally specific to the runtime
environment, and therefore require a precise and detailed
knowledge of the architecture, topology and network
vulnerabilities and considered system. Moreover, these
models are based primarily on known vulnerabilities and
ignore the attacks that may exploit still unknown
vulnerabilities, which would constitute a serious limitation,
since the robustness of IDS depends also on unknown
vulnerabilities and new attacks.

In this paper we have adopted the model of the attack
process of Gad and al. [6] which is based on a preliminary
analysis of malware attacks like the most prevalent viruses
and worms. This choice is justified by the fact that this model
is the result of the analysis of more than 70 malware from the
CME List (Mitre's Common Malware Enumeration list) [18],
which are representative of the most dangerous and more
widespread attacks. Indeed, given that worms are
autonomous, they must include all the steps in an attack
process. In addition, viruses such as worms can be seen as a
class of automated attacks developed by skilled attackers,
and this can help to understand how interactive attacks can be
conducted.

This model is described in Figure (Fig. 1). It distinguishes
the following steps:
1) Recognition (Reconnaissance): it is logical for an

attacker to find the necessary information on potential
victims before targeting them with the most appropriate
attack tools (exploit codes, toolkits).

2) Gain access: to achieve their objectives, attackers
usually need access to victims resources, the level of
access required will obviously depend on the attack.
However, some types of attacks such as denial of service
attacks do not need access to the victim machine.

3) Privilege Escalation: Access originally obtained by the
attacker is sometimes insufficient to achieve the attack,
in which case, the attacker tries to increase its privileges
to have more power (for example, switch from user
mode to administrator mode to access the system
resources).

4) Browsing Victim: after having acquired sufficient
privileges, the attacker usually tries to explore the
machine or the target network (eg, searching files and
directories), to search for a particular account (as a guest
account or an anonymous ftp account), to identify the
hardware components, to identify installed programs or
to search for trusted hosts (typically, those with
certificates installed on the victim machine).

Generation of Attack Scenarios for Evaluating IDS

Mohammed Saber, Toumi Bouchentouf, and Abdelhamid Benazzi

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012

298

5) Principal Actions: as shown in Figure (Fig. 1), this step
may take different forms, for example, an attacker can
execute a denial of service attacks, install malicious code,
compromising the integrity of data or run a program.

6) Hiding Traces: the most experienced attackers
generally use this last step to erase their tracks, thereby
making detection more difficult.

Fig. 1. Model of attack process.

To generate attack scenarios, Gad and al. proposed a
simplified model called the state machine, illustrated in
Figure (Fig. 2). The steps taken by the malware attacks can be
classified into only 8 primitives and each identified by a
symbol, as indicated below:
1) R: Recognition (Reconnaissance)
2) VB: Exploration of the machine /or the network of the

victim (Victim Browsing)
3) EP: Program execution (Execute Program)
4) GA: Gain Access
5) IMC: Implementation of malicious code (Implant

Malicious Code)
6) CDI: Compromise of integrity (Compromise Data

Integrity)
7) DoS: DoS (Denial of Service)
8) HT: erasing traces (Hide Traces)

Fig. 2. State machine representing the attack process.

The graph in Figure (Fig. 2) allows the generation of attack
scenarios at an abstract level. By applying constraints on the
paths between nodes and consecutive repetition of the same
action (loops), as shown in the connection matrix of Figure
(Fig. 3), we can find a set of valid abstract scenarios. A valid
scenario is a combination of these nodes with constraints that

lead to an attack or intrusion. Here are some examples of
scenarios that we can generate from the graph in Figure (Fig.
2):
1) Scén_1 = (R, GA, DoS): Begins recognizing then

obtaining gain access and end with a DoS attack.
2) Scén_2 = (R, DoS): Begins recognizing and ends with a

DoS attack.
3) Scén_3 = (R, R, R, DoS): Begins recognizing several

times and end with a DoS attack, this scenario is
equivalent to the scenario Scén_2 = (R, back).

Fig. 3. Connection matrix.

1) 1: there is a relationship between two nodes; a node is
the son of another node.

2) 0: no relationship between two nodes, one node is not
the son of another node.

It is important to note that this iterative approach for
generating attack scenarios has overcome the problem of
combinatorial explosion, inherent problem to conventional
approaches to generating attack scenarios.

The problem we want to solve is to find efficient
algorithms that can generate valid meaningful attack
scenarios. It would be easier to incorporate the state machine
model in an IDS, to test and evaluate it. The modeling of our
problem is presented in the next section.

III. MODELING THE PROBLEM
In order to facilitate the modeling we will use Figure (Fig.

4), And the Correspondence table (TABLE I):

TABLE I: MATCHING STATE TABLE.

Node Corresponding value Node Corresponding value
R 1 EP 5

GA 2 IMC 6
DoS 3 HT 7
VB 4 CDI 8

Fig. 4. Matching state machine.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012

299

ND is the set of all nodes : ND={1,2,3,4,5,6,7,8}
NDdeparture is the set of starting nodes NDdeparture = {1,2,3}
NDfinal is the set of final nodes NDfinal = {3,4,7,8}
L (ND) is the set of the subset of ND, i.e

() NDXNDLX ⊂⇔∈ R is the relation defined by:
()
() XxRxR
NDLND

=→
→

:

X is the set of the nodes son of x.
Example : R(1)={1,2,3}; R(2)={2,3,4,5,6,8}; R(3)= ∅//
empty set; R(4)={3,4,5,6}; R(5)={3,4,5,7}; R(6)={5,7};
R(7)= ∅// empty set; R(8)={4,6,7}.

A. Definition 1: Scenario

A scenario SNk of size K is k-uple (x1, x2, x3, …, xk) such as:
xi is the son of node xi-1, one notes:

()kk xxxSN ,....,, 21= with () 11 ≠∀∈ − ixRx ii

For example: () () ()DoSxGAxRx ⇒⇒⇒⇒= 321

B. Definition 2: Valid Scenario

kSN is a valid scenario if and only if:

kSN is a scenario

finalk

departure

NDx

NDx

∈

∈1

SVk is the set of valid scenarios having k nodes:

We have SVk = {SNk / SNk is a valid scenario of size k}

cardND = card(ND) : the number of the ND elements.

SV is the set of all valid scenarios:

kSVSV U= or +∞≤≤ k1

C. Definition 3: Equivalent Scenarios
Two scenarios A and B are equivalent if and only if:

nNDp∈∃ and mNDq∈∃ with () Ν×Ν∈mn, Such as:
),,(qppA = and),(qpB = or),,(pqqA= and

),(pqB =
SEk is the set of the valid equivalent scenarios, we notes:

SEk = {SVk / SVk is a valid scenario of size k}

SE is the set of valid equivalent scenarios, given:

kSESE U= or cardNDk ≤≤1

D. Particular Case K=1
SN1 = (x1) is valid if and only if:

finaldeparture NDNDX I∈1 thus finaldeparture NDNDx I1

We propose in the next section to presentation of the two
algorithms for generation of attack scenarios. The first
algorithm reduces the generation of scenarios to solve a
problem of constraint programming (CSP) and the second
algorithm is based on a modified algorithm shortest path
(MASP).

IV. PRESENTATION OF THE TOW ALGORITHMS

A. Presentation of CSP (CSPA) and CHOCO
A CSP “constraint satisfaction problem” is modeled as a

set of constraints imposed on variables, each of these
variables taking values in a domain. More formally, a CSP
will be defined by a triplet (V, D, C) such that:
1) The set of variables (unknowns) of the problem is:

{ }kxxxV,,, 21=
2) D is the function that maps each variable xi to its domain

D(xi), wich means all possible values of xi.

() () kiandiorxDyyRxD

NDx

NDx

ii

finalk

depature

≠≠∈∀=

∈

∈

− 1)(1

1

U

3) C = {ci / xi ∈ R(xi-1) or ∀ i≠1 and i≠k} is the set of
constraints. Each constraint is a relation between certain
variables V, restricting the values that these variables can
take simultaneously.

The implementation of solving algorithms for this problem
uses several languages such as Mozart [19], Jacop [20],
ILOG [21] and the java library of Choco solver [22]. We
have adopted the CHOCO library to generate our algorithm.

The resolution of the CSP thus formulated, has been
implemented in Java using the API (Application
Programming Interface) CHOCO library. This solver
requires the submission of a description of the variables, their
domains and the set of constraints as shown in Figure (Fig.
5).

Fig. 5. CHOCO Operating principle.

B. Modified Algorithm Shortest Path (MASP)
Principle of the algorithm:

1) Input: node name of a departure “departure” (list of
visited nodes “ListVisitedNode” used to avoid infinite
recursion (infinite loop), this list is initially empty.

2) Output: list of valid scenarios for this departure.
Begin algorithm:
list ListDepartureNodes ← {“R”,”GA”,”DoS”};
list ListValidScenarios ← empty;
list AValidScenario ← empty;
For each element “departure” from the list
“ListDepartureNodes” do:
 list ListVisitedNodes ← empty;

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012

300

 list
ListValidScenarios←GetAchievinObjectiveBy(departure,
ListVisitedNodes);

For each scenario “AValidScenario” from the list
“ListValidScenarios” do:

Print (AValidScenario);
End for

End for
Return ListValidScenarios ;
End algorithm.
GetAchievinObjectiveBy function is defined as follows:
Function GetAchievinObjectiveBy (departure,
ListVisitedNodes)
 ListVisitedNodes.add(departure);
 For each node “SonNode” directly reaches the node

“departure” do:
 If ListVisitedNodes does not SonNode then:

list ListSemiScenario ←GetAchievinObjectiveBy
(SonNode, ListVisitedNodes);

For each scenario “SemiScenario” from the list
“ListSemiScenario” do:

ListFinalSenario.add (departure + “==>“ +
SemiScenario);

 End For
 End If
 End For

If the node “departure” is a final node then:
 ListSenarioFinal.add (departure);
 End If
Return ListFinalSenario;
Fin Function

V. OBTAINED RESULTS AND DISCUSSION
We implemented both algorithms CSPA and MASP by

developing an application DIA (Detector Intrusion
Automatic) (Fig. 6) using the framework Zk [23]. This
application allows data acquisition and results display. The
algorithm CSPA was implemented using the CHOCO library
and Java language and the algorithm MASP was
implemented in Java language. Indicating the size of the
desired valid scenario, we get the number of valid scenarios
and the time taken in search by the two algorithms
implemented. So we have calculated the number of valid
scenarios of size k, k varying from 1 to 8, and the time needed
to find a scenario of size k. The following table summarizes
the results.

Fig. 6. DIA: Detector intrusion automatic.

TABLE II: OBTAINED RESULTS.

Scenario
size k

Number of
valid
scenarios

CSPA Time needed
in milliseconds (ms)

MASP Time needed
in nanoseconds (ns)

1 1 1 5
2 4 10 80
3 13 15 150
4 34 24 200
5 63 49 270
6 73 68 410
7 42 63 450
8 8 213 600

Scenarios thus generated are 238 valid scenarios for the

two algorithms, and required an average of 405 milliseconds
for CSPA and 2 milliseconds for MASP. We also found in
the two algorithms that the largest the scenario is, the more
time the generation of valid scenarios takes (Fig. 7).

Fig. 7. Senarios MASP and CSPA.

We infer that the MASP algorithm is better than the CSPA

algorithm in terms of performance per cons it requires more
resources because the data are stored on the RAM (Random
Access Memory), while the CSPA algorithm makes all the
combinations according to the size k and then extracts the
valid scenarios within the constraints (Fig. 8).

Fig. 8. Time MASP and CSPA.

So that the two solutions can be implemented in an IDS, it

is first necessary to implement the model cited in Figure (Fig.
1) and then evaluate it in relation to other IDS that deal
malware attacks like antivirus.

VI. CONCLUSION AND FUTURE WORKS
In this paper we presented an algorithm based on CSP to

generate meaningful attack scenarios based on the model
proposed by Gad and al. [6] to represent attacks like malware
(viruses, Trojan.). The first is named CSPA, it is based on
constraint programming by modeling the problem as a CSP
problem, and the second one is MASP, it is based on a search
algorithm of the shortest path. We implemented the CSPA
through the CHOCO library and Java language and the
MASP in Java language.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012

301

We then developed an application using ZK framework to
compare the two algorithms. So we have calculated the
number of valid scenarios of size k, k varying from 1 to 8, 8
the maximum number of nodes in the model proposed by
GAD for malware, and the time needed to find a scenario of
size k.

We deduced that MASP algorithm is better than CSPA
algorithm in terms of performance per cons it requires more
resources.

A very interesting perspective would be to take inspiration
from the two algorithms and apply them on other models of
attacks. It is also interesting to look for other algorithms to be
able to find the best performing one. Another perspective is
to implement an IDS prototype implementing the GAD
model for malware and integrating these two algorithms so
that we can compare the prototype such built with other IDS
like antivirus.

REFERENCES
[1] M. Saber, T. Bouchentouf, A. Benazzi, and M. Aziz “Amelioration of

Attack Classifications for Evaluating and Testing Intrusion Detection
System,” Journal of Computer Science vol. 6, no. 7, pp. 716-722 , 2010

[2] M. Saber, T. Bouchentouf, A. Benazzi, and M. Azizi, “Attacks
classification for evaluating intrusion detection system,” Proceeding of
IADIS International Conferences Informatics 2010, Wireless
Applications and Computing 2010 and Telecommunications, Networks
and Systems 2010, pp. 166 – 170.

[3] Mohammed S. Gadelrab, Anas Abou El Kalam, and Yves Deswarte,
“Defining categories to select representative attack test-cases,”
Proceedings of the 2007 ACM workshop on Quality of protection (QoP
'07), Alexandria, Virginia, USA, pp. 40-42, 2007.

[4] Classification Tree Method 2010 : http://www.systematic-testing.com.
[5] Classification Tree Editor 2010 : http://www.systematic-testing.com.
[6] Mohammed S. Gadelrab, Anas Abou El Kalam, and Yves Deswarte,

“Execution Patterns in Automatic Malware and Human-centric
Attacks,” NCA 2008: Proceedings of the 2008 Seventh IEEE
International Symposium on Network Computing and Applications vol.
29-36.

[7] L. Chen, “Modeling Distributed Denial of Service Attacks and
Defenses,” PhD thesis, Carnegie Mellon University, USA, 2003.

[8] S. Cheung, U. Lindqvist, and M. Fong, “Modeling Multistep Cyber
Attacks for Scenario Recognition,” Proceedings of the Third DARPA
Inofrmation Survivability Conference and Exposition (DISCEX III),
Washington, DC, USA, pp. 284-292, 2003.

[9] A. Garg, S. Upadhyaya, and K. Kwiat, “Attack Simulation
Management for Measuring Detection Model Effectiveness,”
Proceedings of The Second Secure Knowledge Management Workshop
(SKM 2006), Brooklyn, NY, USA, 2006.

[10] T. Tidwell, R. Larson, K. Fitch, and J. Hall, “Modeling Internet
Attacks,” Proceeding of the IEEE Workshop on Information Assurance
and Security, West point, NY, USA, pp. 54-59, 2001.

[11] B. Schneier, “Attack Trees: Modeling Security Threats,” Dr. Dobb's
Journal, vol. 24, no. 12, pp. 21-29, 1999.

[12] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs,” Proceeding of
2002 IEEE Symposium on Security and Privacy, Oakland, California,
USA, pp. 273-284, 2002.

[13] J. Steven Templeton, and Karl Levitt, “A requires/provides model for
computer attacks,” Proceedings of the 2000 workshop on New security
paradigms (NSPW '00), NY, USA, pp. 31- 38, 2000.

[14] J. P. McDermott, “Attack net penetration testing,” Proceedings of the
2000 workshop on New security paradigms (NSPW '00), New York,
USA, pp. 15-21, 2000.

[15] Ole Martin Dahl and Stephen D. Wolthusen, “Modeling and Execution
of Complex Attack Scenarios using Interval Timed Colored Petri
Nets,” Proceedings of the Fourth IEEE International Workshop on
Information Assurance (IWIA '06), Washington DC, USA, pp. 157-
168, 2006.

[16] Marc Dacier and Yves Deswarte, “Privilege Graph: an Extension to the
Typed Access Matrix Model,” Proceedings of the Third European
Symposium on Research in Computer Security(ESORICS '94), London,
UK, pp. 319-334, 1994.

[17] Mohamed Kaaniche, Y. Deswarte, Eric Alata, Marc Dacier, and
Vincent Nicomette, “Empirical analysis and statistical modeling of
attack processes based on honeypots,” Proceeding of Workshop on
Empirical Evaluation of Dependability and Security (WEEDS),
DSN'2006,Philadelphia, USA, pp. 119-124, 2006.

[18] Mitres Common Malware Enumeration list http://cme.mitre.org/
[19] The Mozart Programming System. [Online]. Available:

 http://www.mozart-oz.org.
[20] JaCoP. [Online]. Available: http://jacop.cs.lth.se/
[21] IBM. [Online]. Available:

http://www-01.ibm.com/software/integration/optimization/cplex-cp-o
ptimizer/

[22] HOCO. [Online]. Available: http://www.emn.fr/z-info/choco-solver/
[23] ZKOSS. [Online]. Available: http://www.zkoss.org/

Mohammed Saber Engineer in networks and system at the Computer
Science Department, National School of Applied Sciences, Mohammed First
University Oujda (Morocco), and doctoral researcher at the MATSI
laboratory (Applied Mathematics, Signal Processing and Computer Science
Laboratory) in the field of computer security. I am interested in intrusion
detection system and attacks.

Toumi Bouchentouf Professor in computer science, responsible for the
computer engineering department. From the National School of Applied
Sciences, Mohammed First University Oujda (Morocco). Interested in
software engineering, management and monitoring of IT project, computer
security in intrusion detection system and attacks, and multi-agent system.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012

302

