
 
 

 

  
Abstract—With the advent of 3G mobile communication 

system, the traffic of wired and wireless networks become 
voice/video - data integrated service. For real time operation of 
voice and video signals, circuit switch traffic or Markovian 
traffic is the best fitted but for data traffic where small amount 
of delay is tolerable, the non-Markovian traffic like service time 
of general distribution with finite buffer is preferable. In this 
paper, Markov modulated Poisson process (MMPP) traffic, 
which is in concise form of Markovian chain, is used for 
multimedia traffic and M/D/1 traffic of fixed length packet is 
considered for asynchronous transfer mode (ATM) cell. The 
combined model becomes MMPP + M/D/1 traffic, which is used 
to get the probability density function and mean delay of a 
voice/video-integrated network. 
 

Index Terms— ATM cell, voice-data integrated service, mean 
delay, moment generating function, non-Markovian traffic.  
 

I. INTRODUCTION 
The aim of the 3G mobile network is to provide high speed 

packet communication for real time operation of 
voice/video-data integrated traffic [1]-[4]. The circuit 
switched network can carry the traffic at high bit rates at the 
expense of working with fixed bandwidths. It is suitable for 
real-time operation but incurs a huge waste of link 
capacity/bandwidth for the case of burst traffic or the traffic 
of variable bit rate.  The packet switched network on the 
other hand offers bandwidth when necessary; for example, 
asynchronous transfer mode (ATM) offers both high and low 
bit rates and ensure efficient use of the available bandwidth 
[5]. The most widely used mathematical model of traffic 
analysis is the Markovian chain. One of the major drawbacks 
of Markov chain lies in the incorporation of large number of 
probability states which complicates the analysis of the 
traffic parameters of a network. Markov arrival process 
(MAP) provides an equivalent state transition chain of few 
probability states with some assumption as discussed in [6]. 
Teletraffic engineering adopts three most widely used cases 
of MAP which are as follows: phase-type (PH) Markov 
renewal process (PH-MRP), Markov modulated Poisson 
process (MMPP) and batch Markovian arrival process 
(BMAP). 

The MMPP is a doubly stochastic Poisson process where 
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arrival rate of any traffic depends on its probability state 
which forms a continuous-time Markov chain. In a 
continuous-time Markov chain, sojourn time/life time in any 
state i is exponentially distributed with parameter λi. At the 
end of the sojourn time in state i, a transition takes place to 
another state or to the same state. The transition may or may 
not correspond to an arrival. Let us consider the simple case 
of two-state MMPP, also known as MMPP(2) system, where 
the arrival rate, iλ (i=1, 2) appears alternately with 

exponentially distributed life time, 1−
ir (i=1, 2). These are 

shown in Fig. 1 where the transition between level-1 and 
level-2 occurs without any arrival. The two-state MMPP is 
characterized by the matrix pair (Q, D), where Q is the 
infinitesimal generator matrix and D is the arrival matrix. 
Here, both Q and D are 22 × square matrices. The generator 
matrix Q, is expressed as the sum of matrix D and another 
matrix C; all the off-diagonal elements of C and all the 
elements of D are nonnegative but the diagonal elements of C 
are negative: 
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(a)  Packet arrival and sojourn time 

 

 
(b) State transition chain 

 
Fig. 1. The two-state MMPP. 

 
The n-state MMPP is also characterized by (Q, D), where 

now each matrix is an n×n square matrix. The MMPP traffic 
model is being widely used in recent times as found in the 
current literature. In [7] the authors deal with waiting time of 
MMPP(2) traffic, which is applicable to real-time ATM 
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network. The paper first shows the evaluation technique of 
the waiting time, based on the generator matrix and Laplace 
transform [8]. The authors finally suggest an approximate 
technique following two-term exponential function. The 
results of both the techniques are found to be very close. In 
[9], the authors determine the performance of transmission 
for telemedicine using ATM network. The paper shows the 
profile of the probability of overflow of queue versus buffer 
size based on MMPP model. In [10], the authors determine 
packet loss rate of MMPP/M /1/ K traffic where variable 
length packet is considered. In [11], performance of voice 
over Internet (VoIP) traffic is analyzed for a cognitive radio 
system using a two-state MMPP model. In [12], the average 
queue length and packet dropping probability of VoIP traffic 
is analyzed based on statistical multiplexing (talk spurt and 
silent periods) of two-state MMPP. In [13], authors have 
claimed the development of an approximate method to 
evaluate the performance of voice and MMPP video traffic. 
In [14], constant and variable bit rate traffic is modeled under 
ATM network and the throughputs for videoconferencing are 
calculated.  

The traffic in circuit switched telecommunications 
network usually follow exponential arrival and exponential 
service time distribution like M/M/n/K/N as complete 
notation. In ATM network, service time of each cell/packet is 
fixed; hence deterministic service time traffic like 
M/D/n/K/N is applicable to detect traffic parameters for that 
network. In case of single server case, ATM traffic can be 
modeled as M/D/1 of infinite queue which is a special case of 
M/G/1 [15].  

In our present paper, the combined traffic of voice/video 
and data is modeled by MMPP+M/D/1 based on the concept 
of MMPP/D/1 and M/G/1 traffic models to determine the 
mean waiting time of the individual traffic.  

The paper is organized as follows: Sec II deals with the 
traffic model of statistical multiplexing for the case of ATM 
packet link and its combination with exponential traffic. 
Section III provides the results of the system model described 
in Sec. II. Finally, Sec. IV concludes the entire analysis. 

 

II. SYSTEM MODEL 
When voice or video signals are sent in packetized form, 

the system is modeled as of ON-OFF pattern. In case of a 
single source, the spurt and silence periods are assumed to be 

exponentially distributed with mean 1−α  and 1−β  
respectively. If the sampling period of voice/video is T (cells 
/ packets are formed for a fixed duration T of the analog 
signal), then three statistical parameters of the traffic are [16], 
[17]: 
   the packet arrival rate,  
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The two-phase MMPP parameters are determined as [11],  
[17]: 
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Equations (1)-(5) provide parameters of the MMPP traffic 
model. Again the actual and virtual waiting time of 
MMPP/G/1 model as explained in [17] and [18] are: 
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respectively, where WM is the mean waiting time of M/G/1 
traffic and is expressed as  
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The parameter tλ  and u are given below in Eqs. (9) and (16) 
respectively. Now for voice data integrated traffic of MMPP 
+ M/D/1 case, let pλ be the Poisson’s arrival rate of the 

voice traffic. We have pλλλ +′= 11  and pλλλ +′= 22 , 

where expressions of  1λ′  and 2λ′  are given by Eq. (5). To 
determine mean waiting time, we note that 
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which can be simplified to  
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For MMPP/ D/1 model, we have 

        .))(( )(zhWezWbz −∗ ==                  (11) 

Solving the above equation, we get the value of z. Let us 
evaluate the probabilities of transitions 01P and 02P , we 
obtain 
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The mean waiting time is 
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Now the mean waiting time of the individual traffic is given 
by 
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III. RESULTS 
    It is to be noted here that the steady state probability states 
of M/G/1 traffic are given by the following expression 
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where j = 0, 1, 2, 3… and the moment generating function 
G(z) is expressed in generalized form as 
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In M/D/1 model, { }.)1((exp)(* zhzb −−=− λλλ The detailed 

derivation of the steady state probability *
jΠ  in terms of the 

moment generating function G(z) is given in Appendix A. 

Varying the traffic intensity ρ , the probability of states of 
the M/D/1 traffic model is plotted in Fig. 2. The tail of the 
probability density function (PDF) increases with increase in 
the offered traffic intensity, ρ .   
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Fig. 2.  The probability of state of the M/D/1 traffic. 
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Fig. 3.  Graphical solution of ( )zhWezzf −−=)( . 
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Fig. 4.  The variation of virtual, actual and mean waiting time 

against offered traffic intensity. 
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Fig. 5.  Waiting time profile of video and data traffic of the combined model. 
 
 

In the MMPP/D/1 traffic model, the following set of 
practically realizable traffic parameters are used: 1λ  = 0.36 
cells/ms, 2λ  = 0.2 cells/ms, h = 2ms, r1 = 0.015 and r2 = 
0.125. For the above physical parameters, we obtain 

( ) ( )211221 / rrrrt ++= λλλ  = 0.343 cells/ms. Now solving 
the relation, )}(exp{)( zhWzzf −−= for the case of 
deterministic service time, we get z = 0.62. The graphical 
solution of Eq. (11) is shown in Fig. 3, where z = 0.62 
corresponds to the zero crossing point. The variation of 
virtual, actual and mean waiting time [17], [18] against the 
offered traffic intensity ρ  is shown in Fig. 4, where each of 
the three parameters rises exponentially with increase in the 
traffic intensity, ρ . 

Let us now go for the combining scheme of M/D/1 and 
MMPP/D/1, known as MMPP+M/D/1, applicable to voice- 
data integrated service through ATM network. Let, h = 
2.718×10-6s, T = 3.397×10-6 s and n = 3, we get the MMPP 
traffic parameters in per ms as: r1 = 0.414, r2 = 0.071, λb1 = 
3.657×102 cells/ms and λb2 = 6.239cells/ms. Therefore, we 
get,  λb = (λb1r2+λb2r1)/(r1+r2) = 58.499cells/ms. Taking λp = 
100 cells/ms we can evaluate: λ1 = λb1 + λp = 465.652 cells/ms, 
λ2 = λb2 + λp = 106.239 cells/ms, λt = (λ1r2 + λ2r1)/(r1 + r2) 
=158.499 cells/ms and ρ = λth = 0.431 Erls. From the 

graphical solution of ( )zhWezzf −−=)( , shown in Fig. 3, 
we get z = 0.62. From the expressions of the transition 
probabilities, given by Eqs. (12) and (13), we obtain  
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Now the mean, virtual and actual waiting time of Eqs. (6) 
and (7) are WM=λth2/2(1-ρ) = 1.029E-3 ms, Wa= WM + 
uh/ρ(1-ρ) = 0.321ms, Wv = WM + uh/(1-ρ) = 0.139ms. The 

mean waiting times, Wj (j=1,2), of Eq. (14) are: W1 = P1{ Wv 

+ u(λ1-λt)/G } = 0.1ms and W2 = P2{Wv + u(λ2-λt)/G } = 
0.038ms. The individual waiting times are: for video, Wb = 
(W1 λb1+W2 λb2)/ λb = 0.632 ms and for data Wp = W1+W2 = 
0.139 ms. 

The variation of the mean waiting time of the video and 
data traffic is shown in Fig. 5 against the offered traffic. 
Initially, the waiting time of each of the traffic rises slowly, 
and after 0.8 Erls, they rise rapidly since packet traffic starts 
to rise asymptotically there, after ρ = 0.88Erls [16]. When 
offered traffic tends to be in saturation, i.e., above 0.95 Erls, 
we find the waiting time to approach infinity since the rate of 
service falls below the arrival of packets, hence queue will 
increase continuously. 

 

IV. CONCLUSION 
The paper shows the profile of mean waiting time, virtual 

and actual waiting times of MMPP/D/1 against offered traffic, 
where all of them are found to be very close to each other and 
exponentially distributed as is visualized from Fig. 4. Finally, 
combined model of MMPP+M/D/1 is applied for video-data 
integrated traffic and waiting time of individual traffic is also 
evaluated. Both video and data traffic can tolerate the offered 
traffic below 0.88 Erls/trunk; which satisfies the asymptote 
of packet traffic. Similar analysis can also be applied in other 
MAP, like batch arrival process, phase type renewal process 
along with M/G/1 model to support traffic of variable packet 
length. 

 

APPENDIX A 
In queuing system, moment generating function or 

z-transformation is used to derive statistical parameters of a 
network traffic. The moment generating function is defined 
as [19]: 
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If k calls exist in a M/G/1 system just after a call departure, 
the call at the front of the queue (FIFO case) enters service 
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and j calls arrive during its service time, then the number of 
calls present at its departure is k+j-1.  

Let *
jΠ  is the probability that j calls exist just after 

departure of a call in M/G/1 system and pj is the probability 
that j calls arrive during the service time [17]. 
 
Therefore,  
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Let us consider the second part of the above relation: 
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Taking, k-j+1=k′ when k=0 and  j=1, then k′ = 0-1 + 1 = 0, the 
above expression can be written as 
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We know the LST of F(x) as  
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Now the probability states of M/G/1 are 

)(
!

1
0

* zG
dz
dLt

j j

j

zj →=Π ; j = 0, 1, 2, 3… 

In M/D/1 model, { })1((exp)(* zhzb −−=− λλλ . 
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