
  

  
Abstract—A system identification technique is presented for 

estimation of parameters associated with the dynamic model of 
the mass loaded honeycomb paperboard system. The 
honeycomb paperboard is modeled as a linear material with 
viscoelastic property, whose constitutive law is expressed by an 
exponential hereditary relaxation kernel. The free response of 
the mass loaded honeycomb paperboard system is expressed as 
the sum of complex exponentials, the system poles and residues 
are identified by the modified Prony method, the parameters of 
the dynamic model are identified by a substitution strategy. An 
experiment system is fabricated to record the free response of 
the mass-material system. Finally, the parameters identification 
technique is applied to the experimental data to obtain the 
relevant stiffness, viscous and viscoelastic parameters 
associated with the system. Variations in values of these 
parameters as function of static load level is also investigated 
and presented. Honeycomb paperboard dynamic properties 
model and the parameters presented in this paper can provide 
theoretical and design basis for the proper use of honeycomb 
paperboard in packaging. 
 

Index Terms—Honeycomb paperboard, Modified Prony 
method, Parameter identification, Viscoelastic property. 
 

I. INTRODUCTION 
Honeycomb paperboard is a kind of sandwich panel, it is 

made up of three parts: the upper and lower liners, between 
which is the honeycomb core. All parts are made of reusable 
paper. Because of its specific structure, it has many 
advantages over other materials, such as the high 
strength-to-weight ratio, high stiffness-to-weight ratio, light 
weight, the ease to be processed, and it is recyclable, reusable 
and biodegradable. Because of these advantages, honeycomb 
paperboard has been used in many fields. In resent years, 
because of the environment protection concerns and the 
command for reducing the plastic wastes, people began to use 
honeycomb paperboard in protective packaging as the 
cushion material to substitute the foam. The realization of the 
potential of honeycomb paperboard as an important cushion 
material has inspired a close scrutiny of its properties. 

Guo and Zhang[1] investigated the cushion properties and 
vibration transmissibility properties of honeycomb 
paperboard with different thickness by a series of 
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experiments, the experiment results are fitted by polynomials, 
the results provided basic data for protective packaging 
design. Wang[2] investigated the cushioning properties of 
honeycomb paperboard by experimental analysis, the effects 
of the honeycomb paperboard structures, relative density of 
paper honeycomb cores, liners and layouts on cushioning 
properties have been studied. The impact behavior and 
energy absorption properties of honeycomb paperboard were 
presented in [3], the experimental results indicated that the 
increase of the relative density of paper honeycomb cores can 
efficiently improve the dynamic cushioning properties, the 
experimental results also indicated that the thickness of paper 
honeycomb cores has a fluctuant effect on the cushion 
properties. Hidetoshi Kobayashi et al. [4] studied the effect of 
loading rate on the strength and absorbed energy of paper 
honeycomb cores through the quasi-static and dynamic 
compression experiments. The critical buckling load of 
honeycomb paperboard under out-of-plane pressure was 
investigated by analyzing the structure and the collapse 
mechanism [5], the models and the calculation method in the 
paper can be used to predict the static critic buckling load. 
Because honeycomb paperboard is sensitive to the ambient 
humidity, in [6,7], the mathematical models are developed to 
predict the plateau stress of axially loaded paper honeycombs 
in various humidity environments, and describe the 
relationship between the energy absorption properties of 
paper honeycombs and ambient humidity. 

In this paper, the viscoelastic property of honeycomb 
paperboard is taken into account, the constitutive law of the 
viscoelastic material is modeled as a linear differential 
equation. The mass loaded honeycomb paperboard system is 
used to simulated the packaging system, an experiment 
system is formulated to record the free response data of mass 
loaded honeycomb paperboard system, a parameter 
identification procedure is presented to obtain the dynamic 
property parameters under different load conditions. The 
model and the identified parameters presented in this paper 
provides theoretical and design basis for the proper use of 
honeycomb paperboard in packaging. 

 

  
Viscoelasticity is an important aspect of the dynamic 

behavior of honeycomb paperboard. The response of a 
viscoelastic material can different significantly from linear 
elasticity. For example, in studies of the dynamics of a 
viscoelastic beam[8] and the absorption characteristics of a 
vibrational damper[9]. Physical manifestation of the 
honeycomb paperboard’s viscoelastic properties can be seen 
in its force relaxation behavior and the creep phenomenon. If 
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the honeycomb paperboard is subjected to a constant 
compressive strain, the force in the material decreases over 
time, logarithmically approaching its steady state value. Also, 
if honeycomb paperboard specimen is loaded with a given 
mass, the compressive strain increases over time from the 
initial value. A typical force relaxation measurement for the 
honeycomb paperboard specimen is shown in Fig. 1. A 
constant deformation of 0.95mm was applied to the 
honeycomb paperboard specimen, the resulting force was 
measured over a period 1000 seconds. Although this 
relaxation behavior is similar to plasticity, a viscoelastic 
material typically recovers to its undeformed state once the 
loading is removed. 

Fig. 1. Typical force relaxation under constant displacement 

In addition to the static effects, viscoelasticity also 
influences the behavior of honeycomb paperboard. When 
subjected to a dynamic excitation, a mass loaded honeycomb 
paperboard system is seen to display additional dynamic 
creep beyond its static equilibrium. It has been shown that the 
stiffness and damping characteristics of honeycomb 
paperboard undergoing forced vibration depend on the length 
of time that the length of time that the honeycomb paperboard 
specimen has been exercised[10]. The linear stiffness is seen 
to increase, whereas the linear viscous damping coefficient is 
seen to decrease, both approaching their final steady state 
values logarithmically with increasing excitation time. The 
behavior of the viscoelastic material under dynamic load 
conditions is also called dynamic creep. 

There are several approaches to modeling the viscoelastic 
nature of honeycomb paperboard. One model that has 
received much attention involves the use of fractional 
derivatives[11,12]. This approach has been shown to predict 
the frequency dependence of linear viscoelastic dampers 
fairly well. The fractional model requires fewer parameters 
for comparable prediction compared with models using 
derivatives of integer order. A related approach involving 
fractional integrals has also been propose[13]. A different 
type of model involving a nonlinear spring in series with an 
in-parallel linear spring and damper combination has also 
been investigated[14]. To account for nonlinear elastic and 
creep properties, and a multiplicative decomposition model 
has been developed[15]. 

In this work, In the theory of viscoelasticity, one of the 
models is a constitutive law of the form[16]: 
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ε is the strain in the viscoelastic material and σ is the 
resulting stress response. It can be assumed that at t=0, the 
material was unstressed and undeformed. Taking the Laplace 
transformation of the equation above, one can obtain: 
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σ(s) and ε(s) are the counterparts of σ, ε in Laplace domain 
respectively. Because of the considerably big stiffness 
coefficient[1,2] of honeycomb paperboard, the deformation 
of the honeycomb paperboard specimen is very small if 
excited by a shock, one can obtain the basic relationship 
between the stress σ and strain ε

σ=Eε

where E is the instantaneous Young’s modulus. Thus, one 
can assume that in (1), m=n. then, (2) can be represented as a 
sum of fractions. i.e., 
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Using the inverse Laplace transformation and the 
convolution theorem, one obtains from (3) 
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The weight function Γ(t-τ) is the sum of exponential terms: 
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Г(t-τ) is called the relaxation kernel. (4) and (5) are the linear 
governing equation for stress and strain under uniaxial 
loading of honeycomb paperboard. 

III. FREE RESPONSE OF MASS LOADED HONEYCOMB 
PAPERBOARD SYSTEM

In the packages, the product and the honeycomb 
paperboard in the package formulate a mass loaded 
honeycomb paperboard system, the honeycomb paperboard 
serves as the elastic and dissipative element in the system and 
its mass is negligible compared to that of the product. When 
the mass loaded honeycomb paperboard system is exerted the 
force f(t),the summation of elastic force and the viscoelastic 
force can be written in the following form according to (4) 
and (5) 
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where k is the stiffness coefficient, x is the deformation of the 
honeycomb paperboard. A linear viscous damping term is 
included in this model to account for the viscous losses in the 
material, thus, the equation of motion for the dynamic 
response of the mass in the mass loaded honeycomb 
paperboard system can be expressed as 
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where m is the mass of the system, c is the viscous damping 
coefficient, ai and αi, i=1,2,…n are the n viscoelastic 
parameters, f(t) is the force exerted on the mass. In the free 
response phase of the material-mass system, f(t)=0, the 
equation of motion of the system is 
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The free responses are generated by means of suitable 
initial conditions x(0) and. )0(x& . 

Applying the Laplace transformation to (6), one obtains: 

0)(

)()]0()([)]0()0()([

1

2

=
−

−

+−+−−

∑
=

n

i i

i

s
A

skx

skxxssxcsxxsxsm

α

&
 

where x(s) is the counterpart of x(t) in Laplace domain. Thus,  
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where R(s) is a polynomial of order n+1, and T(s) of order 
n+2. Knowing the roots pi(i=1,2,…,n+2) of polynomial T(s), 
and assuming pi are simple(multiplicity of 1), one can express 
(7) as the sum of fractions: 
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Taking inverse Laplace transform of (8), one obtains: 

∑
+

=

=
2

1

)(
n

i

tp
i

iectx
                 (9) 

where ci and pi are real or complex conjugate, the coefficient 
ci are called residues, pi are the system eigenvalues, n is the 
number of terms in the relaxation kernel. Thus, the free 
response of honeycomb paperboard system can be expressed 
as the sum of n+2 complex exponential terms. 

 

  
Prony method is a technique for modeling data of equally 

spaced samples by a linear combination of exponentials. 
Assuming one has the N data samples x[1],x[2],…x[N], the 
Prony method estimates the x with a n+2-term complex 
exponential model 
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where the caret denotes an estimate, zm is called system poles 
and 

zm=exp(pmΔt) (11) 
Δt denotes the time interval between successive samples. 

The Prony algorithm can be summarized as follows[17]: 
Step 1: Record the free response data of mass loaded 

honeycomb paperboard x[1],x[2],…x[N], let pe>>n+2, 
compute matrix R  given by  
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Determine the effective rank n+2 of matrix R and the AR 
coefficients a1,a2,…,an+2 by use of SVD-TLS method[20]; 

Step 2: Form the polynomial 
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and solve to find the roots which are the system poles zi in the 
series of complex exponentials in (10), system eigenvalues pi 
can be obtain by (11); 

Step 3: Rewrite (10) as matrix form: 
xZC ˆ=  
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Because N>n+2, then, vector C can be obtained by 
xZZ][ZC 1 ˆTT −=                                                                       (13) 

where the superscript T and -1 denote the transpose and 
inverse operation of the matrix respectively. 

Using the steps outlined above, one can obtain the order of 
viscoelastic terms n, the system poles pi and residues ci, but 
the measurement noise makes the estimates of the system 
residues and system poles inaccurate, both in terms of 
variance and bias. Therefore, modifications to the 
methodology that improve the accuracy of estimation of 
system poles and residues should be made. Several 
modifications to the Prony method have been suggested over 
the past few years to overcome the problems arising due to 
noise. Significant among these techniques are: use of high 
prediction orders[18], use of both forward and backward 
linear prediction polynomial zeros, singular value 
decomposition(SVD) based methods, and some non-linear 
schemes. In this work, the high prediction orders method, as 
well as the use of both forward and backward linear 
prediction methods are adopted to obtain system poles and 
residues accurately. 

The estimation bias can be reduced by choosing a linear 
prediction order much higher than the number of 
exponentials actually present in the signal. It has been 
observed the if models of several different order are fitted to 
the data, the signal poles change very little at high model 
orders. However, the extraneous poles, which in effect 
attempt to model the noise, change significantly as the model 
order is changed. Thus, as the prediction order pe in (11) 
changes, the system poles calculated from (12) will cluster 
around the positions correspond to the signal poles in the 
z-domain. The average of the clustered system poles can be 
regarded as the estimate of the system poles.  

However, the selection of higher linear prediction order 
has a negative effect, making it difficult to separate the zeros 
due to the actual exponential signals from the zeros due to 
noise. The use of both forward and backward linear 
prediction can be utilized to separate the two kinds of zero 
clusters[19]. When one identifies the signal zeros with the 
high linear prediction order, the forward linear prediction 
characteristic polynomial has roots at z=exp(piΔt), i=1,2,…,n, 
while the backward linear prediction characteristic 
polynomial has roots at z=exp(-pi

*Δt), i=1,2,…,n, the asterisk 
denotes conjugation, thus, the roots of the forward linear 
prediction characteristic polynomial fall inside the unit 
z-plane circle, while the roots of the roots of the backward 
linear prediction characteristic polynomial fall outside the 
unit circle. 
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Choose different pe in (11), estimate the system poles by 
(12) using the recorded time sequence and the time-reversed 
data respectively, the predicted forward and backward 
system poles will cluster inside and outside unit circle in 
z-plane respectively. The clustered poles inside the unit circle 
can be used as the estimation of the system poles. System 
residues can be obtained by (13). A typical predicted forward 
and backward poles cluster condition in the z-plane is shown 
in Fig. 2. 

Fig. 2. Forward and backward pole positions in complex z-plane for model 
orders of 20-80 

V. PARAMETERS IDENTIFICATION PROCEDURE

The free response of the mass loaded honeycomb 
paperboard is express as the sum of n+2 complex exponential 
terms shown in (9), substituting (9) in (6), one obtains 
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In this equation, there is a sum of exponential functions. 
To satisfy this equation, one can set all the coefficients of 
these function to zero, namely: 
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For the system identification problem, the task is to use the 
samples of free response data to obtain the honeycomb 
paperboard dynamic parameters k, c, αi, ai. This can be 
achieved through the process described below: 

Step 1: Record the free response data of the mass loaded 
honeycomb paperboard system, express the data as a sum of 
complex exponentials, as given in (9), estimate the system 
poles and residues by use of the modified Prony method. It is 
important to note that the samples of displacement response 
x(t) are not directly available. In actual experiments, the 
acceleration response )(tx&&  is first expressed as a sum of 
complex exponentials 
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Therefore, the system poles and residues of the acceleration 

data can be obtained by using modified Prony method, the 
coefficients ci in (9) can be calculated by 2/ iii pdc = . 

Step 2: Use the estimates of system poles and residues to 
calculate αi. (15) can be rewritten as  

0)(
2

1

2

,1

=+∑ ∏
+

=

+

≠=

n

j

n

jii
ijj pc α           (16) 

Finding the roots of (16), one obtains αi. 
Step 3: The remaining honeycomb paperboard parameters 

can be determined by use of (14), which leads to n+2 
simultaneous equations of k, c, ai. These equations can be 
written in matrix form as 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
−

+
−

+
−

+
−

+
−

+
++

+
2

2

2
3

2
2

2
1

1

212
2

212
2

111
1

111

111

111

nn
nnn

n

n

n

p

p
p
p

m

ka

ka
k
c

pp
p

pp
p

pp
p

MM

L

MMMMM

L

L

αα

αα

αα

VI. EXPERIMENT SYSTEM AND RESULTS

An experiment system is fabricated to record the free 
response data of the mass loaded honeycomb paperboard 
system, as shown in Fig. 3. 

Fig. 3. Schematic diagram of experiment system 

The honeycomb paperboard is sandwiched between a 
variable mass block and rigid base. Before the experiment, 
the honeycomb paperboard specimens are cut to be 
250mm×250mm, and are preprocessed for 24 hours at 
temperature 21℃, and relatively humidity 64%. The 
specimen is glued to thin metal plates, which are in turn 
bolted to the base plate and the top mass block to prevent the 
top mass block from losing contact with the honeycomb 
paperboard specimen during the tests. The specimens are 
provided by Xi’an Hongda packaging material company, in 
this paper, the thickness of the honeycomb paperboard is 
40mm. The upper and lower face sheets are Kraft linerboard 
paper with substances of 300g/m2, and the honeycomb core 
are made of reusable paper whose weight is 100g/m2. The 
shape of the honeycomb core unit is regular hexagon, the 
length of each sides is 5mm. A piezoelectric shock hammer 
with a rubber tip is used to generate and measure the 
impulsive input to the mass loaded honeycomb paperboard 



  

system. The acceleration response of the mass block is 
recorded by the piezoelectric accelerometer attached on the 
mass. The acceleration data from the shock hammer and from 
the accelerometer attached on the mass is passed through the 
low pass anti-aliasing filter. The charge amplifier is used to 
transform the charge signal from the piezoelectric 
accelerometers into voltage signal. A dynamic data 
acquisition equipment is used to transform the voltage signal 
from charge amplifier into digital data, and transmit the data 
to the computer. All the equipments above are provided by 
Sinocera Piezotronics company, a YE3760A filter is used, 
the cut-off frequency is set to be 500Hz, the roll-off is 
36dB/OCT, A YE6230B dynamic data acquisition 
equipment(16 bit) is used, the sampling frequency is set to be 
5000 samples/s. All the data collection process in this work 
was under the control of the YE7600 software package. 

In the tests, record the time histories of the shock hammer 
and accelerometer, the time at which the shock hammer ends 
can be seen as the beginning of the free response of the mass 
loaded honeycomb paperboard system. After recording the 
free response data of the system, one can obtain the residues 
and poles of the system by use of modified Prony method 
discussed above, and identify the dynamic parameters using 
the method presented in Ⅴ. The estimated values of the 
system parameters under different load conditions, along 
with the maximum and minimum estimates of these 
parameters from different tests are shown in Fig. 4. 

 

 

 
From the free response data recorded by experimental 

system shown in Fig. 3 under different load conditions, two 
pairs of complex conjugate poles could be distinguished, thus, 
one pair of viscoelastic parameters α1,2, a1,2 can be used to 
predict the viscoelastic behavior of honeycomb paperboard. 

The estimates of the honeycomb paperboard parameters 
are based on data from five independent response realizations. 
With the increase of the static load, the stiffness values, the 
real and imaginary part of viscoelastic parameter α tend to 
decrease, while the damping value, the real part of a tend to 
decrease. No definitive trends could be observed in the 

imaginary part of a. The error bounds of damping value is 
bigger comparing with other values, this means the linear 
viscous damping model is not a perfect model for honeycomb 
paperboard. 

 

VII. CONCLUSION 
1. The honeycomb paperboard is regarded as linear 

material with viscoelastic property, the viscoelastic term in 
the material model is a convolution of the response with a 
sum of exponentials kernel function. 

2. The free response of the mass loaded honeycomb 
paperboard system is developed, the free response is 
expressed as the sum of complex exponentials. Prony method 
is modified to identify the system poles and residues of free 
response data in noise. 

3. A experimental system is fabricated to record the free 
response of the mass loaded honeycomb paperboard system, 
a parameter identification procedure based on the 
substitution strategy is presented to estimate the dynamic 
parameters in the material model under different load 
conditions. 

The model for the dynamic property of honeycomb 
paperboard and the identified parameters presented in this 
paper provide theoretical and design basis for proper use of 
honeycomb paperboard in protective packaging. This is 
important for reducing the losses caused by the 
over-packaging or the insufficient packaging. 
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