

Abstract— A software fault prediction is a proven technique

in achieving high software reliability. Prediction of fault-prone
modules provides one way to support software quality
engineering through improved scheduling and project control.
Quality of software is increasingly important and testing
related issues are becoming crucial for software. This
necessitates the need to develop a real-time assessment
technique that classifies these dynamically generated systems as
being faulty/fault-free. A variety of software fault predictions
techniques have been proposed, but none has proven to be
consistently accurate. These techniques include statistical
method, machine learning methods, parametric models and
mixed algorithms. Therefore, there is a need to find the best
techniques for Quality prediction of the software systems by
finding the fault proneness. In this study, the performance of
the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is evaluated for Java based Object Oriented
Software system from NASA Metrics Data Program (MDP)
data repository on the basis of fault proneness of the classes.

Index Terms— DBSCAN, Software Quality, Fault Proneness,
NASA fault dataset.

I. INTRODUCTION
Highly reliable software is becoming an essential

ingredient in many systems. Public safety and the fabric of
modern life depend on software-intensive systems. We can ill
afford for important systems to fail due to inadequate
software reliability. Software reliability engineering is one of
the most important aspect of software quality [1]. A software
fault prediction is a proven technique in achieving high
software reliability. Prediction of fault-prone modules
provides one way to support software quality engineering
through improved scheduling and project control. Quality of
software is increasingly important and testing related issues
are becoming crucial for software. Although there is diversity
in the definition of software quality, it is widely accepted that
a project with many defects lacks quality. Methodologies and
techniques for predicting the testing effort, monitoring
process costs, and measuring results can help in increasing
efficiency of software testing. Being able to measure the
fault-proneness of software can be a key step towards
steering the software testing and improving the effectiveness
of the whole process. The interest of the software community
in program testing continues to grow – as does the demand
for complex, and predictively reliable programs. It is no

Supreet Kaur, Student (M.Tech. CSE Dept.), DAV Institute of

Engineering & Technology, Jalandhar, India. Email:
oberoi.supreet@rediffmail.com.

Dinesh Kumar, HOD CSE Dept., DAV Institute of Engineering &
Technology, Jalandhar, India.

longer acceptable to postpone the assurance of software
quality until prior to a product’s release. As the cost of
removing bugs increases exponent means earlier the bugs
detected lesser is the cost. Recent research in the field of
computer program reliability has been directed towards the
identification of software modules that are likely to be
fault–prone, based on product and/or process–related metrics,
prior to the testing phase, so that early identification of
fault–prone modules in the life–cycle can help in channeling
program testing and verification efforts in the productive
direction. Hence, the quality prediction has become
important.

Software metrics represent quantitative description of
program attributes and the critical role they play in predicting
the quality of the software has been emphasized by Perlis et
al [3]. That is, there is a direct relationship between some
complexity metrics and the number of changes attributed to
faults later found in test and validation [4]. Many researchers
have sought to develop a predictive relationship between
complexity metrics and faults. Crawford et al [5] suggest that
multiple variable models are necessary to find metrics that
are important in addition to program size. Consequently,
investigating the relationship between the number of faults in
programs and the software complexity metrics attracts
researchers’ interesting. There are several different
techniques have been proposed to develop predictive
software metrics for the classification of software program
modules into fault–prone and non fault–prone categories.
Hence, a metric based approach can be investigated for
prediction of software quality by identification of fault prone
modules.

The code metric, design metric and other metrics used in
the literature for the quality prediction are shown in table 1.
When the artificial neural network is applied to model
software reliability, the invalid software time in the software
mistake reports is adopted as the input of software quality
prediction model [6-8], and the software quality metrics is
used as the input of the neural networks [9-11].

Recently, the object-oriented software metrics has been
adopted as the inputs of the neural networks in order to
predict object-oriented software quality [12-16]. By applying
the software quality metrics as the inputs of neural networks,
Khoshgoftaar et al [17-18] proposed some software quality
prediction models using neural network of BP (back
propagation) and compared these models with the one using
nonparametric discriminant, and they found that the software
quality prediction models using neural network of BP
obtained good prediction accuracy. Hu and Zhong [19]
applied the learning vector quantization network to predict
the software quality and proposed a software module risk

Quality Prediction of Object Oriented Software Using
Density Based Clustering Approach

Supreet Kaur, Dinesh Kumar

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

440

model. With consideration of software fault severity, Zhao
and Zhong et al [20] presented a software fault-proneness
prediction model by support vector machine and the
Chidamber-Kemerer (C&K) object-oriented metrics. In most
of the literature of fault-proneness prediction the
performance of the techniques are compared by Accuracy
Percentage, Probability of Detection and Probability of False
Alarms. The details of these performance criteria are given in
the methodology section.

TABLE I: METRICS USED IN THE LITERATURE FOR THE QUALITY PREDICTION

[46]

However, this necessitates the need to develop a real-time

assessment technique that classifies these dynamically
generated systems as being faulty/fault-free. A variety of
software fault predictions techniques have been proposed,
but none has proven to be consistently accurate. These
techniques include statistical method, machine learning
methods, parametric models and mixed algorithms.
Therefore, there is a need to find the best techniques for
Quality prediction of the software systems by finding the
fault proneness.

II. LITEARATURE REVIEW
The following is the literature survey related with the

prediction of faults in software systems:

Saida et al [21] surveyed that the basic premise behind the
development of object-oriented metrics is that they can serve,
as early predictors of classes that contain faults or that are
costly to maintain. In their paper they have shown that size
can have an important confounding effect on the validity of
object-oriented metrics [21].

A critical review of the literature is given by Fenton & Neil
[22] and they also made heroic contributions to the subject. In
their study, most of the wide range of prediction models used
size and complexity metrics to predict defects. Others are
based on testing data, the “quality” of the development
process, or take a multivariate approach. They also argued for
research into a theory of “software decomposition” in order
to test hypotheses about defect introduction and help
construct a better science of software engineering. The
comparison of Fault-Proneness Estimation Models and
conclusion that software quality has become one of the most
important requirements in the development of systems and
fault-proneness estimation could play a key role in quality
control of software products. The main objective was to find
a compromise between the fault-proneness estimation rate
and the size of the estimation model in terms of number of
metrics used in the model itself [23].

With the existence of a correlation between a reasonable
set of static metrics and software fault-proneness. Static
metrics, e.g., the McCabe's cyclomatic number or the
Halstead's Software Science, statically computed on the
source code, try to quantify software complexity. Dynamic
metrics, e.g., structural and data flow coverage measure the
thoroughness of testing as the amount of elements of the
program covered by test executions. Such metrics only
partially reflect the many aspects that influence the software
fault-proneness, and thus provide limited support for tuning
the testing process [24].

The conclusion to remain competitive in the dynamic
world of software development, organizations must optimize
the usage of their limited resources to deliver quality
products on time and within budget. The proposed fault
prediction model used in his study was based on supervised
learning using Multilayer Perceptron Neural Network and the
results were analyzed in terms of classification correctness
and based on the results of classification, faulty classes were
further analyzed and classified according to the particular
type of fault [25].

Yan Ma [26] suggested that accurate prediction of fault
prone modules in software development process enables
effective discovery and identification of the defects. Thomas
Zimmermann and Nachiappan Nagappan [27] in their paper
suggested that in the software development, the resources for
quality assurance are limited by time and by cost.

Bindu Goel et al [31] as suggested in their book published
in 2008 that the predictions can be used to target
improvement efforts to those modules that are likely to be
faulty during the operation. The basic hypothesis of software
quality prediction is that a module currently under
development has defects if a module with the similar product
or process metrics in an earlier project (or release) developed
in the same environment had defects [32]. Therefore, the
information available early within the current project or from
the previous project can be used in making predictions. The

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

441

empirical study detailing software maintenance for web
based java applications can be performed to aid in
understanding and predicting the software maintenance
category and effort [33]. Software maintenance organizations
are no exception. Visual approach [34] can be used to
uncover the relationship between evolving software and the
way it is affected by software bugs. By visually putting the
two aspects close to each other, we can characterize the
evolution of software artifacts. Software maintenance is
central to the mission of many organizations. Thus, it is
natural for managers to characterize and measure those
aspects of products and processes that seem to affect cost,
schedule, quality, and functionality of a software
maintenance delivery [35].

Statistical, machine learning, and mixed techniques are
widely used in the literature to predict software defects.
Khoshgoftaar used zero-inflated Poisson regression to
predict the fault-proneness of software systems with a large
number of zero response variables. He showed that
zero-inflated Poisson regression is better than Poisson
regression for software quality modeling.

Munson and Khoshgoftaar [36] also investigated the
application of multivariate analysis to regression and showed
that reducing the number of “independent” factors (attribute
set) does not significantly affect the accuracy of software
quality prediction. Menzies, Ammar, Nikora, and Stefano [37]
compared Decision Trees, Naïve Bayes, and 1-rule classifier
on the NASA software defect data. A clear trend was not
observed and different predictors scored better on different
data sets. However, their proposed ROCKY classifier
outscored all the above predictor models.

Emam, Benlarbi, Goel, and Rai [38] compared different
case-based reasoning classifiers and concluded that there is
no added advantage in varying the combination of parameters
(including varying nearest neighbor and using different
weight functions) of the classifier to make the prediction
accuracy better.

Salah Bouktif et al [39] presented how the general problem
of combining quality experts, modeled as Bayesian
classifiers, can be tackled via a simulated annealing
algorithm customization. The general approach was applied
to build an expert predicting object-oriented software
stability, a facet of software quality. The findings
demonstrate that, on available data, composed expert
predictive accuracy outperforms the best available expert and
it compares favorably with the expert build via a customized
genetic algorithm.

Ping Guo et al. [40] showed Expectation-Maximum
likelihood (EM) algorithm to build the quality model. By
only employing software size and complexity metrics, this
technique can be used to develop a model for predicting
software quality even without the prior knowledge of the
number of faults in the modules. The technique was
successful in classifying software into fault-prone and non
fault-prone modules with a relatively low error rate,
providing a reliable indicator for software quality prediction.

III. PROBLEM FORMULATION
Fault-proneness of a software module is the probability

that the module contains faults. A correlation exists between

the fault-proneness of the software and the measurable
attributes of the code (i.e. the static metrics) and of the testing
(i.e. the dynamic metrics). Early detection of fault-prone
software components enables verification experts to
concentrate their time and resources on the problem areas of
the software system under development. Software quality
models ensure the reliability of the delivered products. It has
become important to develop and apply good software
quality models early in the software development life cycle,
especially for large-scale development efforts. Software
quality prediction models seek to predict quality factors such
as whether a component is fault prone or not.

Faults in software systems continue to be a major problem.
Many systems are delivered to users with excessive faults.
This is despite a huge amount of development effort going
into fault reduction in terms of quality control and testing. It
has long been recognized that seeking out fault-prone parts of
the system and targeting those parts for increased quality
control and testing is an effective approach to fault reduction.
A limited amount of valuable work in that area has been
carried out previously. Despite this it is difficult to identify a
reliable approach to identifying fault-prone software
components. The aim of software metrics is to predict the
quality of the object oriented software products. Various
attributes, which determine the quality of the software,
include maintainability, defect density, fault proneness,
normalized rework, understandability, reusability etc.

In the literature density clustering based approach is not
experimented. There are a number of advantages of Density
based clustering approach particularly DBSCAN:

• It does not require you to know the number of clusters
in the data a priori, as opposed to k-means.

• It can find arbitrarily shaped clusters.
• The algorithm has a notion of noise.
• It requires just two parameters and is mostly

insensitive to the ordering of the points in the
database.

Hence, due to the advantages of Density based clustering
approach, the proposed work is aimed at “Quality Prediction
of Object Oriented software using Density Based Clustering
Approach”.

IV. OBJECTIVES
Use The following are the objectives that are proposed to

be covered in the study:
1. Studying the Code and Design attributes of Object

oriented ware systems
2. Collection of metric and fault proneness data for the

object oriented systems
3. Evaluates the worth of a subset of attributes by

considering the individual predictive ability of each
feature means finding the important subset of
attributes.

4. Use Density clustering based modeling approach
with Object Oriented metrics for predicting faulty
classes.

5. Calculate the performance of the proposed approach
using Accuracy, Probability of Detection and
Probability of false Alarm.

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

442

V. PROPOSED METHODOLOGY
The proposed methodology will consist of the following

steps:
1. First of all, find the structural code attributes of

software systems.
2. Select the suitable metric values as representation of

statement
3. Collect the metric data of structural code attributes
4. Analyze, refine metrics and evaluates the worth of a

subset of attributes by considering the individual
predictive ability of each feature along with the
degree of redundancy between them. Subsets of
features that are highly correlated with the class
while having low intercorrelation are preferred.

5. Apply the Density Based Clustering algorithm to find
the Fault Proneness:

Clustering is an approach that uses software measurement
data consisting of limited or no fault-proneness data for
analyzing software quality. In this study, Density based
clustering algorithm is being used for predictive models to
predict faulty/non faulty modules. Density-based approaches
apply a local cluster criterion. Clusters are regarded as
regions in the data space in which the objects are dense, and
which are separated by regions of low object density (noise).
These regions may have an arbitrary shape and the points
inside a region may be arbitrarily distributed. Density based
clustering is based upon two parameters.

• Eps: Maximum radius of the neighborhood
• MinPts: Minimum number of points in an

Eps-neighbourhood of that point.
The key idea of a density-based cluster is that for each

point of a cluster its Eps-neighborhood for some given Eps >
0 has to contain at least a minimum number of points, i.e. the
“density” in the Eps-neighborhood of points has to exceed
some threshold[23].

 In a density based clustering a cluster is defined as
maximal set of density connected points. The main feature of
density based clustering is that it discovers features of
arbitrary shape and it can handle noise.

6. Implementing the model and test the performance of
the model.

7. Compare the result using the following Performance
Criteria and deduce conclusions.

A. Performance Criteria
The set of evaluation measures that are being used in

carried out the results are discussed below:

TABLE II: A CONFUSION MATRIX OF PREDICTION OUTCOMES [47]

As shown in Table 2, let a is the number of modules that

actually have no fault and classifier predicts no defects in
those modules, b is the number of modules that actually have
defects and classifier predicts no defects in those modules, c

is the number of modules that actually have no defects and
classifier predicts no defects in those modules, and d is the
number of modules that actually have defects and classifier
predicts defects in those modules.

• Accuracy: It indicates proximity of measurement results
to the true value, precision to the repeatability or
reproducibility of the measurement. The accuracy is the
proportion of true results (both true positives and true
negatives) in the population. As represented in equation
below:

() ()dcbadaAcc ++++= /

(1)

• Probability of detection: Probability of detection is the
probability of system failure. That means that the probability
of any component B failing given that a component A has
already failed is the same as that of B failing when A has not
failed. Probability of detection is calculated as shown below:

()dbdPd += / (2)

• Probability of false alarm: Intuitively probability of
false alarm is the fraction of buggy execution that raises an
alarm. The formula for Probability of false alarm is given
below:

()cacPf += / (3)

VI. RESULTS AND DISCUSSIONS
The datasets used in this study come from the NASA

Metrics Data Program (MDP) data repository [44] named as
KC3. The KC3 software is written in Java programming
Language for Storage management for ground data in the
safety critical project.

There are 39 metrics values calculated for the 458 instances
and for each exemplar the last column tells whether the fault
exists in the module or not. There are 415 modules that are
having no fault and 43 modules are faulty modules as shown
in the table below:

TABLE III: COUNT OF FAULTY AND NON-FAULTY MODULE SIN THE

DATASET

The following are the parameters used in the DBSCAN

algorithm implementation in the WEKA as shown in figure
1:

• database_Type – It is the used database name and path
• database_distanceType – It tells us the type of distance

used. It is set to Euclidian Distance.
• epsilon – It is radius of the epsilon-range-queries. It is

set to 0.9 value.
• minPoints – This parameter tells the minimum number

of DataObjects required in an epsilon-range-query. It is set to
6 values.

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

443

Fig. 1. Snapshot of the Parameters Set for DBSCAN

The DBSCAN clustering algorithm has created clusters

numbered as 0 to 1 and assigned the 412 (means 93%)
examples to cluster number 0 and 31 (means 7%) examples
to cluster number 1. The confusion matrix calculated is
shown below:
TABLE IV: CONFUSION MATRIX OF PREDICTION OUTCOMES OF DBSCAN

ALGORITHM.

Predicted Value
Modules actually has faults

No Yes
No 376 36
Yes 31 0

As evidenced from the confusion matrix the incorrectly

clustered instances are 67 means 14.6288% is the inaccurate
percentage value and Accuracy of prediction is 85.3712%.

Thereafter, we have used the WEKA open source software
for the attribute evaluation that evaluates the worth of a
subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy
between them. It is considered that subsets of features that are
highly correlated with the class while having low
intercorrelation are preferred [45].

The parameters used in the attribute evaluation are:
• locallyPredictive -- Identify locally predictive attributes.

Iteratively adds attributes with the highest correlation with
the class as long as there is not already an attribute in the
subset that has a higher correlation with the attribute in
question. Set as true.

• missingSeparate -- Treat missing as a separate value.
Otherwise, counts for missing values are distributed across
other values in proportion to their frequency. Set as false.

The search method used in the attribute evaluation is
BestFirst that searches the space of attribute subsets by
greedy hillclimbing augmented with a backtracking facility.
Setting the number of consecutive non-improving nodes
allowed controls the level of backtracking done. Best first
may start with the empty set of attributes and search forward,
or start with the full set of attributes and search backward, or
start at any point and search in both directions (by
considering all possible single attribute additions and
deletions at a given point).

The output of the attribute evaluation shows that the
following 8 attributes/metrics are more important in
prediction of the faulty modules:

• LOC_BLANK
• BRANCH_COUNT

• LOC_CODE_AND_COMMENT
• ESSENTIAL_COMPLEXITY
• LOC_EXECUTABLE
• HALSTEAD_LENGTH
• NORMALIZED_CYLOMATIC_COMPLEXITY
• PERCENT_COMMENTS
The WEKA’s DBSCAN algorithm is run for the selected 8

attributes as mentioned above and the following confusion
matrix is created:

TABLE V: CONFUSION MATRIX OF PREDICTION OUTCOMES FOR THE

DBSCAN ALGORITHM WITH SELECTED ATTRIBUTES.

Predicted Value

Modules actually has faults
No Yes

No 415 43
Yes 0 0

As evidenced from the confusion matrix the incorrectly
clustered instances are 43 means 9.3886% is the inaccurate
percentage value and Accuracy of prediction is 90.6114%.

Probability of detection for Non-faulty modules is the ratio
of the number of modules identified as non-faulty and those
are actually non-faulty to the total Number of modules that
are actually have no fault means the probability with which
the system is able to detect the non-faulty modules out of total
non-faulty modules present. Probability of detection for
non-faulty modules is 1 means the system can perfectly
identify the non-faulty modules. Probability of false alarm
for the faulty modules is 0 means that the system has zero
buggy execution that raises an alarm.

VII. CONCLUSION
In this study, the performance of the Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) is
evaluated for Java based Object Oriented Software system
from NASA Metrics Data Program (MDP) data repository
on the basis of fault proneness of the classes. Here, the
metric based approach is used for prediction. First, thirty nine
metrics are used and later the worth of a subset of attributes is
calculated and the number of metrics are reduced to eight.
The metric values for the exmaplars is used as Input and
clusters are formed using DBSCAN, thereafter 10 fold cross
validation performance of the system is recorded. As
deduced from the results it is clear that the performance of the
proposed algorithm is better in case of reduced set of
attributes. The Accuracy of prediction is improved from
85.3712% to 90.6114% with reduced set of attributes. With
reduced set of the factors the density based clustering
provides Probability of detection for non-faulty modules
equal to 1 and Probability of false alarm for the faulty
modules equal to 0 means the it is satisfactory enough to use
the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) technique for the prediction of the object
oriented software components based on the fault proneness.

REFERENCES
[1] M. R. Lyu, Handbook of software Reliability Engineering IEEE

Computer Society Press, McGraw Hill, 1996.
[2] B. W. Boehm and P. N. Papaccio, “Understanding and controlling

software costs,” IEEE Trans. on Software Engineering, vol. 14, no. 10,
pp. 1462–1477, October 1988.

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

444

[3] F. G. Sayward A. J. Perlis and M. Shaw, Software Metrics: An Analysis
and Evaluation, MIT Press, Cambridge, MA, 1981.

[4] V. Y. Shen, T.Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying
error-prone software—an empirical study,” IEEE Trans. on Software
Engineering, vol. SE-11, pp. 317–323, April 1985.

[5] S. G. Crawford, A. A. McIntosh, and D. Pregibon, “An analysis of
static metrics and faults in C software,” J. Syst. Sofyware, vol. 5, pp.
27–48, 1985.

[6] Liang Tian, Afzel Noore, “On-line prediction of software reliability
using an evolutionary connectionist model”, Journal of System and
Software, Vol.77, NO.2, pp.173-180, 2005.

[7] Liang Tian, Afzel Noore, “Evolutionary neural network modeling for
software cumulative failure time prediction”, Reliability Engineering
and System Safety, Vol.87, No.1, pp. 45-51, 2005.

[8] Q.P. Hu, M. Xie, S.H. Ng, G. Levitin, “Robust recurrent neural
network modeling for software fault detection and correction
prediction”, Reliability Engineering and System Safety, Vol.92, No.3,
pp.332-340, 2007.

[9] T. M. Khoshgoftaar, E. B. Allen, Zhiwei Xu, “Predicting testability of
program modules using a neural network”, In Proc. of 3rd IEEE
Symposium on Application-Specific Systems and Software
Engineering Technology, pp.57-62, 2000.

[10] Zhiwei Xu, T. M. Khoshgoftaar, “Software quality prediction for
high-assurance network telecommunications systems”, Computer
Journal, Vol.44, No.6, pp.557-568, 2001.

[11] Donald E. Neumann, “An Enhanced Neural Network Technique for
Software Risk Analysis”, IEEE Transactions on software engineering,
Vol.28, No.9, pp.904-912, 2002.

[12] S. Kanmani, V. Rhymend Uthariaraj, V. Sankaranarayanan, P.
Thambidurai, “Object-oriented software fault prediction using neural
networks”, Information and Software Technology, Vol.49, No.5,
pp.483-492, 2007.

[13] Jon T. S. Quah, Mie Mie Thet Thwin, “Prediction of Software
Readiness Using Neural Network”, In Proceedings of 1st International
Conference on Information Technology & Applications, Bathurst,
Australia, pp. 2312-2316, 2002.

[14] Mie Mie Thet Thwin,Tong-Seng Quah, “Application of neural
networks for software quality prediction using Object-oriented
metrics”, Journal of systems and software, Vol.76, No.2, pp.147-156,
2005.

[15] S.Kanmani, V. Rhymend Uthariaraj, V. Sankaranarayanan, P.
Thambidurai, “Object oriented software quality prediction using
general regression neural networks”, ACM SIGSOFT Software
Engineering Notes, Vol.29, No.5, pp.1-6, 2004.

[16] Atchara Mahaweerawat, Peraphon Sophatsathit, Chidchanok
Lursinsap,Petr Musilek, “Fault Prediction in Object-Oriented Software
Using Neural Network Techniques”, Journal of Advanced
Computational Intelligence and Intelligent Informatics, Vol.10, No.3,
pp. 312-322, 2006.

[17] T. M. Khoshgoftaar, R. M. Szabo, “Using neural network to predict
software faults during testing”, IEEE Transactions on reliability,
Vol.45, No.3, pp.456-462, 1996.

[18] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, S. J. Aud,
“Application of neural networks to software quality modeling of a very
large telecommunications system”, IEEE Transactions on neural
networks, Vol.8, No.4, pp.902-909, 1997.

[19] Qiu-suo HU and Cheng Zhong, “Model of predicting software module
risk based on neural network”(in Chinese), Computer Engineering and
Applications, Vol.43, No.18, pp.106-110, 2007.

[20] Yan ZHAO, Cheng ZHONG, Zhi LI, Tie YAN, “Object-Oriented
Software Fault-Proneness Prediction Using Support Vector Machine”
(in Chinese), Computer Engineering & Science, Vol.30, No.11,
pp.115-117,2008.

[21] Saida Benlarbi,Khaled El Emam, Nishith Geol (1999), “Issues in
Validating Object-Oriented Metrics for Early Risk Prediction”, by
Cistel Technology 210 Colonnade Road Suite 204 Nepean, Ontario
Canada K2E 7L5

[22] Fenton, N. E. and Neil, M. (1999), “A Critique of Software Defect
Prediction Models”, Bellini, I. Bruno, P. Nesi, D. Rogai, University of
Florence, IEEE Trans. Softw. Engineering, vol. 25, Issue no. 5, pp.
675-689.

[23] Bellini, P. (2005), “Comparing Fault-Proneness Estimation Models”,
10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS'05), vol. 0, 2005, pp. 205-214.

[24] Giovanni Denaro (2000), ”Estimating Software Fault-Proneness for
Tuning Testing Activities” Proceedings of the 22nd International
Conference on Software Engineering (ICSE2000), Limerick, Ireland,
June 2000.

[25] Mahaweerawat, A. (2004), “Fault-Prediction in object oriented
software’s using neural network techniques”, Advanced Virtual and
Intelligent Computing Center (AVIC), Department of Mathematics,
Faculty of Science, Chulalongkorn University, Bangkok, Thailand, pp.
1-8.

[26] Ma, Y., Guo, L. (2006), “A Statistical Framework for the Prediction of
Fault-Proneness”, West Virginia University, Morgantown.

[27] Thomas Zimmermann, Nachiappan Nagappan, “ Predicting Defects
Using Social Network Analysis on Dependency Graphs”, International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany.

[28] Audris Mockus, Nachiappan Nagappan and Trung T.Dinh-Trong “Test
Coverage and Post-Verification Defects: A Multiple Case Study,”
ACM-IEEE Empirical Software Engineering and Measurement
Conference (ESEM), Orlando, FL, 2009

[29] Cagatay Catal & Banu Diri , “ A Systematic Review of Software Fault
Prediction Studies” Journal of Expert Systems with Applications,
Volume 36, Issue 4,May 2009.

[30] Jonas Boberg , “ Early Fault Detection with the Model-based Testing” ,
7th ACM SIGNPLAN workshop on ERLANG, 2008.

[31] Bindu Goel & Yogesh Singh ,“Emperical Investigation of Metrics for
Fault Prediction on Object Oriented Software” the Book series in
Computational Intelligence, 2008.

[32] Khoshgoftaar, T. M., Allen, E. B., Ross, F. D., Munikoti, R., Goel, N.
& Nandi, A., "Predicting fault-prone modules with case-based
reasoning". ISSRE 1997, the Eighth International Symposium on
Software Engineering (pp. 27-35), IEEE Computer Society (1997).

[33] Min-Gu Lee and Theresa L. Jefferson, "An Empirical Study of
Software Maintenance of a Web-based Java Application", Proceedings
of the 21st IEEE International Conference on Software Maintenance
(ICSM’05), IEEE (2005).

[34] Marco D' Ambros and Michle Lanza, "Software Bugs and Evolution: A
Visual Approach to uncover their relationship", Proceedings of IEEE
Conference on Software Maintenance and Reegineering (CSMR' 06),
IEEE (2006).

[35] George E. Stark, "Measurements for Managing Software Maintenance",
IEEE computer Society (1996).

[36] Khoshgoftaar, T.M. and Munson, J.C., “Predicting Software
Development Errors using Complexity Metrics”, Selected Areas in
Communications, IEEE Journal on, Volume: 8 Issue: 2, Feb. (1990),
Page(s): 253 -261.

[37] Menzies, T., Ammar, K., Nikora, A., and Stefano, S., “How Simple is
Software Defect Prediction?” Submitted to Journal of Empirical
Software Engineering, October (2003).

[38] Eman, K., Benlarbi, S., Goel, N., and Rai, S., “Comparing case-based
reasoning classifiers for predicting high risk software components”,
Systems Software, Journal of, Volume: 55 Issue: 3, Nov. (2001),
Page(s): 301 – 310.

[39] Salah Bouktif, Houari Sahraoui, Giuliano Antoniol, "Simulated
Annealing for Improving Software Quality Prediction", GECCO’06,
July 8–12, 2006, Seattle, Washington, USA, pp. 1893-1900.

[40] Ping Guo and Michael R. Lyu, “Software Quality Prediction Using
Mixture Models with EM Algorithm”, Proceedings of the First
Asia-Pacific Conference on Quality Software,(APAQS 2000), Hong
Kong, pp. 69-78.

[41] http://webdocs.cs.ualberta.ca/~zaiane/courses/cmput690/slides/Chapte
r8/sld044.htm.

[42] Yue Jiang, Bojan Cukic, Tim Menzies, Nick Bartlow , “Comparing
Design and Code Metrics for Software Quality Prediction”, Proceeding
PROMISE '08 Proceedings of the 4th international workshop on
Predictor models in software engineering, ACM New York, NY, USA
©2008

[43] Kaur, A. Brar, A.S. Sandhu, P.S, “An empirical approach for software
fault prediction”, International Conference on Industrial and
Information Systems (ICIIS), 2010, July 29 -Aug. 1 2010, Mangalore,
pp. 261 – 265.

[44] Metric data program. NASA Independent Verification and Validation
facility, Available from http://MDP.ivv.nasa.gov.

[45] M. A. Hall (1998). Correlation-based Feature Subset Selection for
Machine Learning. Hamilton, New Zealand.

[46] Yue Jiang, Bojan Cukic, Tim Menzies, Nick Bartlow , “Comparing
Design and Code Metrics for Software Quality Prediction”, Proceeding
PROMISE '08 Proceedings of the 4th international workshop on
Predictor models in software engineering, ACM New York, NY, USA
©2008

[47] Kaur, A. Brar, A.S. Sandhu, P.S, “An empirical approach for software
fault prediction”, International Conference on Industrial and
Information Systems (ICIIS), 2010, July 29 -Aug. 1 2010, Mangalore,
pp. 261 – 265.

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

445

