
IACSIT International Journal of Engineering and Technology, Vol.3, No.2, April 2011 
 
 

 

  
Abstract—In this issue we try to control the free vibration 

response of aluminum or iron or other substance cantilever 
beam with 2 Piezoelectric patches (Actuator & Sensor) attached 
on the top and bottom surfaces of the beam. On the other hand 
we also want to reduce the amplitude of the vibrating beam in a 
controlled manner. In order to achieve these tasks we model 
the smart structure by using the Euler-Bernoulli beam theory. 
The concept of finite element (FE) theory is used in this issue. In 
this method the beam is divided into several equal segments (for 
example in this paper the beam is divided into 4 equal part), 
which is also equal to the length of the actuator and sensor or 
not equal to them and Piezoelectric patches are attached to the 
second element. In this method the beam is divided into several 
equal segments (for example in this paper the beam is divided 
into 4 equal part), which is also equal to the length of the 
actuator and sensor or not equal to them and Piezoelectric 
patches are attached to the second element. 
 

Index Terms — Beam, Vibration, suppression, Piezoelectric 
 

I. INTRODUCTION 
From the technical point of view, recently most of the 

structures such as helicopter blades, space mirrors and wings 
of the aircrafts are consist of beams. Most of the time, 
undesirable vibrations result in poor functionality and 
inadequate performance of the system. In most of these 
applications, particularly in aerospace applications it is very 
vital for us to have the ability of damping these vibrations in a 
controlled manner, even for a short period of time.  Due to 
this fact, the “Smart Structures” are introduced by the 
researchers. “Smart Structures” are consisted of host 
structure, smart material and the controlling system. Smart 
materials are able to act as sensor and actuator. 

II. METHODOLOGY 
 In the table you can see the geometric and material 

properties for the smart beam; also we can change the feature  
 
TABLE 1 : GEOMETRIC AND MATERIAL PROPERTIES FOR THE 

SMART BEAM 
 
Physical 

Parameters 
 

Cantilever Beam
 
Piezoelecteric(PZT) 
(sensor/actuator) 

Length Lb=0.3 (m) lp=0.075 (m) 
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Width b=0.03 (m) b=0.03 (m) 

Thicknes
s tb=0.5 (m) ta=ts=0.35(m) 

Density ߩ௕ୀ଼଴ଷ଴ ௄௚ ௠యൗ ௣ୀ଻଻଴଴ߩ  ௄௚ ௠యൗ  

Young's 
Modulus Eb =193.06 Gpa Ep =68 Gpa 

Damping 
Constants 
used in C* 

ן ൌ ߚ 0.001 ൌ 0.0001 _______ 

PZT 
Strain 
Constant 

________ d31 = 125ൈ 10-12 (m/v) 

PZT 
Strain 
Constant 

________ g31 = 10.5ൈ 10-3(VmN-1)

and value of them. 
(1) Equivalent Young’s Module:                                                          

(E)eq ൌ  ா್ . ா೛௏೛.ா್ା ௏್.ா೛ 

Where Vb and Vp are the volume fractions of the base 
material and the PZT respectively. 

(2) Equivalent (EI):                                                                     
(EI)eq ൌ  ଵଷ . ∑ ௘௤ܧ  . ሺݖ௞ାଵଷ െ ݖ௞ଷሻ 

(3) Moment of inertia of Piezoelectric layer:                                          ܫ௣ ൌ 112  ൈ ௔ଷݐܾ ൅ ௔ݐܾ ൬ݐ௕ ൅ ௔2ݐ ൰ଶ
 

(4) Stiffness matrix of beam element:                                     

[Kb] = ଶா್ூ್௟್య ൦ 6 3݈ െ6 3݈3݈ 2݈ଶ െ3݈ ݈ଶെ6 െ3݈ 6 െ3݈3݈ ݈ଶ െ3݈ 2݈ଶ ൪ 

(5) Stiffness matrix of Piezoelectric beam element :                        

[Kp] = ଶாூ೐೜௟೛య ൦ 6 3݈ െ6 3݈3݈ 2݈ଶ െ3݈ ݈ଶെ6 െ3݈ 6 െ3݈3݈ ݈ଶ െ3݈ 2݈ଶ ൪ 

(6) Mass matrix of beam element:                             

[Mb] = ெ್ସଶ଴ ൦ 156 22݈ 54 െ13݈22݈ 4݈ଶ 13݈ െ3݈ଶ54 13݈ 156 െ22݈െ13݈ െ3݈ଶ െ22݈ 4݈ଶ ൪ 

(7) Stiffness matrix of Piezoelectric beam element:                 

[Mp] = ெ೛ସଶ଴ ൦ 156 22݈ 54 െ13݈22݈ 4݈ଶ 13݈ െ3݈ଶ54 13݈ 156 െ22݈െ13݈ െ3݈ଶ െ22݈ 4݈ଶ ൪ 

(8)  Mass of the piezoelectric element:                                                  ܯ௣ ൌ  ॕ ௣t୮ ℓߩ 
(9) Mass of the beam element:                                                                ܯ௕ ൌ  ॕ ௕tୠ ℓߩ 
(10) Mass of the piezoelectric beam element:                                       ܯ௣ ൌ ௕൅ 2ܯ ൈ  ௣௭௧ܯ
Assembling will result in: 
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ܯ (11) ൌ ێێۏ
₁ܿ₁ܽۍێ ܾ₁ 0݀ଵ ൅ ܽ₂ ܾ₂ 0           00            000  ܿ₂ ݀ଶ ൅ ܽ₃     0 ܿ₃ ܾ₃ 0݀ଷ ൅ ܽ₄ ܾ₄0    0    0 ܿ₄ ݀₄ ۑۑے

 ېۑ
By applying boundary conditions these matrixes will 

become: 

ܯ (12) ൌ ൦݀₁ ൅ ܽ₂ ܾ₂ܿ₂ ݀₂ ൅ ܽ₃ 0       0ܾ₃        00         ܿ₃0         0 ݀₃ ൅ ܽ₄ ܾ₄ܿସ    ݀₄൪ 

Natural frequency is the square of the Eigen vectors of 
these 2 matrixesሺඥܳ௜ሻ and the Modal matrix V is the Eigen 
vectors of these 2 matrixes. 

(13)Sensor constant:   ܵ௖ ൌ  ܾݖ௖݁ଷଵܩ
Where Gc=40000 and e31 is equal to g31and  ݖ ൌ ௧ଶ್ ൅   ௔ݐ
(14)Actuator constant:        ܽ௖ ൌ  ҧݖ௣݀ଷଵܾܧ
Where  ݖ ൌ ௧್ା ௧ೌଶ       
(15) ்݄ ൌ ܽ௖ሾെ1 0 െ1  0      0      0     0ሿ 
(16) ்ܲ ൌ ܵ௖ሾ0 െ1 0 1     0     0     0     0ሿ 
ሶ ݔ  (17) ൌ ሻݐሺݔ ܣ ൅ ݕ      ሻ    andݐሺݑ ܤ  ൌ ሻݐሺݔ ்ܥ ൅ ݑ ܦሺݐሻ 
(18) A=ቂ 0 ܯെܫ כ ˉଵܭ כ െܯ כ ܥ¹ˉ ቃ         B=ቂכ ܯ0 כ ˉଵܶ ݄ ቃ                

Cᵀ=[0   pᵀT],          D=0 
       

(19)൦ݔሶ12ݔሶݔሶ3ݔሶ4൪ ൌ ቂ 0 IെM כ ˉଵܭ כ െM כ ˉଵܥ ቃכ ൦4ݔ3ݔ2ݔ1ݔ൪ ൅
ቂ 0െM כ  ଵT hቃ uሺtሻ ൅ ቂ 0െM כ  ଵT fቃ  ሻݐሺݎ

כܯ (20) ൌ ்ܸ ൈ ܯ  ൈ ܸ 

כܭ (21) ൌ ்ܸ ൈ ܭ ൈ ܸ 

כܥ (22) ൌןൈ כܯ ൅ ߚ ൈ כܭ
 

(23) Changing the Modal coordinate to Physical coordinate:                                                                                      ݀ ൌ  ∑ ߮ଵ ்  ߞ

III. NUMERICAL ANALYSIS 
First of all we have divided the beam into 4 equal elements. 

The sensor and actuator are integrated on the top and bottom 
surfaces of the second element of the beam. 

 
Figure 1 – Beam with one actuator and one sensor 

 
In this step we use the equation (1) to calculate (EI)eq. Then 

by using equations (4), (5), (6) and (7) Kb, Kp, Mb, Mp are 
calculated respectively. We have assembled the stiffness 
matrixes of those 4 elements by equation (11).The same 
procedure has carried out for the mass matrix. Due to the fact 
that w1 and Θ1 are equal to zero (in the fixed end of the beam), 
we can eliminate the 2 first rows and columns of the M and K 
matrixes. 

M = [  0.0112       0.0000      0.0027     -0.0000         0                
0                0                  0; 

           0.0000       0.0000      0.0000     -0.0000         0                
0                0                  0; 

           0.0027       0.0000      0.0112     -0.0000         0.0012      
-0.0000       0                  0; 

          -0.0000     -0.0000     -0.0000      0.0000          0.0000      
-0.0000      0                  0; 

           0               0                0.0012      0.0000          0.0067       
0                0.0012       -0.0000; 

           0               0               -0.0000     -0.0000         0                
0.0000       0.0000       -0.0000; 

           0               0                0               0                   0.0012       
0.0000       0.0034      -0.0000; 

           0               0                0               0                  -0.0000     
-0.0000     -0.0000        0.0000  ]. 

 
K = 1.0e+004 *  
        [  1.2914      0.0226     -0.9472       0.0355         0               

0                0                  0;  
           0.0226      0.0024     -0.0355       0.0009         0               

0                0                  0; 
          -0.9472     -0.0355      1.2914      -0.0226       -0.3442      

0.0129       0                  0; 
           0.0355      0.0009     -0.0226       0.0024        -0.0129      

0.0003       0                  0; 
           0               0              -0.3442      -0.0129         0.6884      

0               -0.3442        0.0129; 
           0               0               0.0129       0.0003         0                

0.0013      -0.0129        0.0003; 
           0               0               0                0                 -0.3442     

-0.0129        0.3442      -0.0129; 
           0               0               0                0                  0.0129       

0.0003      -0.0129        0.0006  ]. 
By applying the following equation we can easily 

determine the Eigen vectors and Eigen values of the system. 
The square of these Eigen values are the Natural frequencies 
of the system. 

 [T,Q]=eig(K,M) 
Natural_Frequency = sqrt (Q) 

T is the Modal matrix. The first and second columns of the 
T matrix give us the 2 first modes of the beam respectively. 
We can see these 2 modes by using the following command: 

plot (V(1:2:end,1)) 
hold on 

plot (V(1:2:end,2)) 
By using the equations (20), (21) and (22) we can calculate 

the M* , K* and C*. 
M* = [ 1.0000    0.0000; 0.0000    1.0000 ]             
K* =  1.0e+004 * [  0.1690    0.0000; 0.0000    5.3039] 
C* =  [ 0.1700    0.0000; 0.0000    5.3049 ] 
In this stage we are able to form the state space matrixes of 

the system. hT and PT must be calculated with equation (15) 
and (16), and then substituted in the B and C matrixes. 

A = 1.0e+004 * [ 0               0                 0.0001           0                   
B =  1.0e-003  * [  0         0       0.2678     -0.2331] 

                               0               0                0                     0.0001                 
C =  [ 0         0       0.0454      0.3724 ]  

                             -0.1690    -0.0000     -0.0000         -0.0000                 
D = [ 0 ] 

                             -0.0000    -5.3039     -0.0000         
-0.0005]    

Now we can form our system by using these matrixes and 

Actuator

Sensor
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apply an initial condition (initial displacement) with “lsim” 
function to draw the behavior of the vibrating beam. 

Model=ss(A,B,C,D) 
x0=zeros(4,1); 

x0(1,1)=0.01/V(end-1,1); 
[y,t,x]=lsim(Model,u,t,x0); 

By using the following MATLAB command we can 
change the Modal coordinate to the Physical coordinate. This 
is the displacement of the tip of the beam. 

Tipdis = (V(end-1,1)*x(:,1)+V(end-1,2)*x(:,2))*1000; 
Here output of the system (y) is the voltage of the sensor 

and we can draw it as follow: 
plot(t(1:4:end),y(1:4:end,1),'r') 

In this step we are going to design the controlling system in 
order to suppress the free vibration response and amplitude in 
a controlled manner. To achieve this task we must change the 
poles of the system in order to stabilize it. Due to this fact, we 
can implement the State Feedback method. The new model 
would become as follow: 

Ac = (A-B*Gc*C) 
Model_New=ss(Ac,B,C,D) 

Again we plot the behavior of the system with “lsim” and 
compare the results with the uncontrolled system. 

In addition, some other kinds of controllers can also be 
used, for instance, PID, PI, …. 

In PID controller we have 3 different gains ( Kd,  KI,  Kp ). 
We are able to set these gains in order to control both the 
damping time and vibration amplitude. 

Kp1 = 0.2; 
Ki1 = 0.001; 
Kd1 = 0.01; 

num_PID = [Kd Kp Ki]; 
den_PID = [1 0]; 

contr_PID = tf (num_PID,den_PID); 
sys_PID = feedback(TF*contr_PID,-1) 

step(sys_PID,t) 
If we want to compare the results which are obtained from 

the PID, PI controller and the initial system with each other, 
we have to plot them  with a same MATLAB command, for 
example, “step” function. 

IV. RESULTS 
Here in Figure 1 we can clearly see the first and second 

vibrating modes of the beam. The red line indicates the first 
mode, while, the black one shows the second mode. Both 
these 2 figures begin from the origin but due to the fact that 
we eliminate w1 and Θ1, the first points have cancelled out. 

 
Figure 2 - First & second modes of the beam 

In Figure 3 we have compared the vibration of the 
cantilever beam with and without the controller. In this figure 
the red and the cyan lines include the controllers. We use 2 
different types of Pole Placement method to control the 
vibration. In the first method we set a Gain for the controller, 
while, in the second one we enter the desired poles personally. 
The damping time and amplitude can be changed by choosing 
different gains and poles. So this method enables us to damp 
our system within the desired time.  

 
Figure 3 –Vibration of the cantilever beam with and without the 

controller 
 
As you can see in Figure 4, we compare the influences of 

PID and PI controllers on the vibration of the beam. It is 
obvious that PI controller (the green line) has the most 
effective role. We can reduce the damping time by changing 
the gains of the controllers. 

 
Figure 4 –Comparison between the influences of the PID and PI 

controllers on the system 
 

V. CONCLUSION 
In conclusion we can say that we are able to successfully 

suppress the vibration of the cantilever beam using 2 
piezoelectric patches as a sensor and actuator. We found out 
the Pole Placement method is an applicable way to eliminate 
the vibration of the beam in a controlled manner. On the other 
hand it is possible to implement Classical controllers, such as 
PID and PI to control the amplitude and time of the vibration. 
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