
IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

196

Abstract—Protecting the network layer from malicious

attacks is an important and challenging issue in both wired and
wireless networks and the issue becomes even more challenging
in the case of mobile ad hoc networks. In this paper we propose
a solution of self-umpiring system that provides security for
routing and data forwarding operations. In our system each
node in the path from source to destination has dual roles to
perform: packet forwarding and umpiring. In the umpiring
role, each node in the path closely monitors the behavior of its
succeeding node and if any misbehavior is noticed immediately
flags off the guilty node. The umpiring system proposed is
sufficiently general and can be applied to any networking
protocol. For demonstration, we have implemented the
self-umpiring system by modifying the popular AODV protocol.
Simulation studies show vast improvement over the
performance of the conventional AODV protocol, with only
nominal overheads.

Index Terms—MANET, Security, AODV, and Self-Umpiring
system.

I. INTRODUCTION

A mobile ad hoc network (MANET) is a self-created
self-organized and self-administering set of nodes connected
via wireless links without the aid of any fixed infrastructure
or centralized administrator. Each node moves and operates
in a distributed peer-to-peer mode, generating independent
data and acting as a router to provide multi-hop
communication. MANET is ideally suited for potential
applications in civil and military environments, such as
responses to hurricane, earthquake, tsunami, terrorism and
battlefield conditions. Security is an important aspect in
such mission critical applications.

In this paper we tackle the problem of securing the
network layer operations from malicious nodes. Malicious
nodes may disrupt routing algorithms by transmitting a false
hop count; they may drop packets, route the packets through
unintended routes and so on. Our work rests on the
foundations of two excellent systems already proposed: the
twin systems of watchdog and pathrater [1] and SCAN [2].
A brief look at each one of them is in order.

Marti et al. [1] introduced two extensions to the Dynamic
Source Routing Protocol DSR [3 - 5] to mitigate the effect
of routing misbehaviors – watchdog and pathrater. The
watchdog identifies misbehaving nodes while the pathrater
avoids routing packets through these nodes. When a node
forwards packets the node’s watchdog verifies that the next
node in the path also forwards the packet. The watchdog
does this by listening promiscuously to the next hop
transmissions. If the next node doesn’t forward the packet

Manuscript received November 11, 2009.

then it is misbehaving. The watchdog detects the
misbehavior and sends a message to the source, notifying it
of the misbehaving node.

Fig. 1. watchdog mechanism

The watchdog method to detect misbehaving nodes is

illustrated in Fig.1. Assume that, there exists an active path
from source S to destination D through intermediate nodes
A, B and C. Node A cannot transmit all the way to node C,
but it can overhear what B is transmitting. Therefore A is
in a position to tell whether B has correctly forwarded the
packet sent by A to C. If encryption is not performed
separately for each link – a costly proposition – then A can
tell whether B has tampered with the payload or the headers.

The pathrater, run by each node in the network combines
knowledge of misbehaving nodes with link reliability data to
pick the route most likely to be reliable. For this each node
maintains a rating for every other node it knows about; a
node always rates itself with a rating of 1.0; neutral rating is
0.5; the pathrater increments the rating of nodes on all
actively used paths by 0.01 at periodic intervals of 200ms; it
decrements a node’s rating by 0.05 when a link failure is
detected during packet forwarding and the node becomes
untraceable and all misbehaving nodes are assigned a
special negative value of –100. The pathrater doesn’t
modify the ratings of nodes that are not currently in active
use. If there are alternative paths available pathrater
chooses the path having the highest metric.

Using watchdog and pathrater it has been shown that
throughput is increased by 17% in the presence of 40%
malicious nodes during moderate mobility, while increasing
the ratio of overhead transmission to data transmission from
the standard routing protocol’s 9% to 17%.

In SCAN [2] two ideas are exploited to protect the mobile
ad hoc network: (i) local collaboration where the
neighboring nodes collectively monitor each other and (ii)
information cross-validation by which each node monitors
neighbors by cross-checking the overheard transmissions.

In SCAN, each node monitors the routing and
packet-forwarding behavior of its neighbors and
independently detects the existence of malicious nodes in its
neighborhood. This is made possible because of wireless
nature of the medium and all the involved nodes are within
each other’s transmission. In order to enable
cross-checking they have modified AODV protocol and
added a new field next_ hop in the routing messages so that

Self _USS:A Self Umpiring System for Security
in Mobile Ad hoc Network

Ayyaswamy Kathirvel, Member, IACSIT and Rengaramanujam Srinivasan

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

197

each node can correlate the overheard packets accordingly.
While each node monitors it neighbors independently all

the nodes in the neighborhood collaborate to convict a
malicious node. An agreement between a minimum of k
neighboring nodes is required for convicting a malicious
node. Once its neighbors convict a malicious node the
network reacts by depriving it of its right to access the
network. In SCAN each node must possess a valid token
in order to interact with other nodes. They have used
asymmetric key cryptography to prevent forgeries of tokens.
A group of nodes (minimum-k) can collaboratively sign a
token, while no single node can do so. Further each node
has to get its token renewed periodically by its neighbors.
A node which behaves continuously in a good manner can
get its token renewed at less frequent intervals as compared
to a fresh entrant node.

Our self-umpiring system has been strongly influenced by
the above two schemes. In our system all the active nodes
have dual roles just as in watchdog; we also exploit
promiscuous hearing functionality as done by both SCAN
and watchdog. We have adopted the token concept from
SCAN. However we have dropped partially the pathrater
functionality. We believe link reliability assessment of
pathrater may not be correct; a proper reliability metric for
path assessment should consider the direction and velocity
of movement of active nodes. Thus if a source is situated
at south and its destination is situated vertically above at
north and all the nodes are moving with a uniform velocity
from south to north, good communication link will be
maintained; on the other hand if alternate nodes in the path
mentioned above, are moving from east to west there is a
strong probability of link failure. Having dropped the link
reliability factor from the pathrater, the only other
functionality that remains is avoidance of malicious nodes.
We achieve the avoidance of malicious nodes by a system of
tokens, which is similar to the ones used in SCAN. Token is
a pass or validity certificate enabling a node to participate in
the network. It contains two fields: nodeID and status bit;
nodeID is considered to be immutable. Initially the status
bit of all participating nodes is set as 0 indicating “green
flag” with freedom to participate in all network operations.
It is assumed that a node cannot change its own status bit.
When an umpiring node finds its succeeding node
misbehaving it sends a M-Error message to the source and
malicious node’s status bit is changed using M-Flag
message (set to 1 indicating “red flag”). With “red flag” on
the culprit node is prevented from participating in the
network.

Our objective is designing the security system is to keep
the overhead as minimum as possible while optimizing the
throughput. We do not use encryption or key algorithms as
done by SCAN. We find that token issuing and token
renewals and broadcasts to announce convictions create
very large communication overheads and also degrade
energy performance, which SCAN has completely over
looked. There is no token renewal feature in our system. In
our system all the nodes are pre issued with green tokens.
They continue to enjoy the status until any immediate
ancestor node, in its umpiring mode finds its next node
misbehaving, sends the M-Error and M-Flag messages and

red flag is set.
Just like SCAN in order to facilitate cogent promiscuous

hearing we have used “next_hop” field with our AODV
implementation. Our umpiring system can detect any false
reporting of hop count during the route reply process RREP.
In watchdog detection of malicious action is by a single
node while in SCAN it is done by a set of neighbors. In our
system the designated predecessor node in its umpiring role
carries out both detection and conviction.

The rest of the paper is organized as follows: section II
provides an overview of AODV routing protocol; section III
formulates the network and USS models. Section IV
presents simulation results; section V gives an analysis of
simulation results; section VI discusses the related work and
section VII gives the conclusions.

II. AODV ROUTING PROTOCOL
Ad hoc on-demand distance vector (AODV) [6 - 10]

routing protocol uses an on-demand approach for finding
routes, that is, a route is established only when it is required
by a source node for transmitting data packets. In an
on-demand routing protocol, the source node floods the
route request (RREQ) packets in the network when a route
is not available for the desired destination. It may obtain
multiple routes from a single route request. AODV uses
destination sequence number (DestSeqNum) to determine an
up-to date path to the destination. A node updates its path
information if the DestSeqNum of the current packet
received is greater that the last DestSeqNum stored in the
node. If it possess a route towards the destination with a
greater sequence number than the RREQ packet, it unicasts
a route reply (RREP) back to the neighbor from which it
received the RREQ packet, indicating it has a valid route to
the destination. If RREQ is received multiple times, which is
indicated by BcastId, SrcID pair, the duplicate copies are
discarded. All intermediate nodes having valid route to the
destination, or the destination itself are allowed to send
route reply (RREP) to the source. Every intermediate node,
while forwarding a RREQ enters the previous node’s
address and its BcastID. A timer is used to delete this entry
in case a RREP is not received before the stipulated time.

When a node receives RREP packet information about
previous node from which packets was received, it is also
stored in order to forward the data packet to the next node as
the next hop towards the destination. When a link breaks,
which is determined by observing the periodic beacons or
through link level acknowledgements, the end nodes -
source and destination nodes - are notified. When a source
node learns about the path break, it reestablishes a path to
the destination, if required by the higher layers. If an
intermediate node detects the path break, the node informs
the end nodes by sending an unsolicited RREP with hop
count set as infinite value.

III. MODELS AND ASSUMPTIONS
Assumptions made in the design of Self_ Umpiring

system are as follows:

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

198

1) A wireless ad hoc network where nodes are free to move
about or remain at stand still, at their will is assumed.

2) Nodes may fail at any time.
3) There exists a bi-directional communication link

between any pair of nodes, which is a requirement for
most wireless MAC layer protocols including IEEE
802.11 for reliable transmission.

4) Wireless interfaces support promiscuous mode of
operation.

Promiscuous hearing means, over hearing by a node say
A, messages not addressed to it, transmitted by a second
node B, situated in the communication range of A, to a third
node C. Promiscuous hearing is possible because of wireless
nature of communication network. As an example if a
source node S sends a message “Good Morning” to the
destination D, the nodes in the multi hop path hear directly
the messages, when the message is forwarded to them, while
all the neighbors hear the same message promiscuously.
Most of the existing IEEE 802.11 based wireless cards
support such promiscuous mode of operations, to improve
routing protocol performance.

A. Self-Umpiring System Security Model: Self_USS
In the self-umpiring system each node is issued with a

token at the inception. The token consists of two fields:
NodeID and status. NodeID is assumed to be unique and
deemed to be beyond manipulation; status is a single bit flag.
Initially the status bit is preset to zero indicating a green flag.
The token with green flag is a permit issued to each node,
which confers it the freedom to participate in all network
activities. Each node in order to participate in any network
activity, say Route Request RREQ, has to announce its
token. If status bit is “1” indicating “red flag” protocol does
not allow the node to participate in any network activity.
The working of the self-umpiring system is explained with
reference to Fig. 2.

In the self-umpiring system all the nodes have dual roles
– packet forwarding and umpiring. In the forward path
during data forwarding, each node monitors the
performance of immediate next node. That way, node A can
tell correctly whether B is forwarding the packet sent by it,
by promiscuously hearing B’s transmissions. Similarly
during reply process RREP, C can verify whether B is
unicasting the route reply RREP and whether the hop count
given by B is correct. Thus during forward path A is the
umpire for B and C is the umpire for B during reverse path
operations.

Fig. 2. self umpiring system model

When a node is found to be misbehaving – say dropping

packets, the corresponding umpire immediately sends a
M-ERROR message to the source and the status bit of guilty
node is set to “1” – red flag using M-Flag message. In order
to correctly correlate the overheard messages an additional

field next_hop has been introduced in all routing messages
as done in SCAN [2]. Though there are several kinds of
misbehavior that could be captured by promiscuous hearing
we are focusing only on two types of malicious actions:
dropping packets and transmitting false hop count.

The token system is similar to the one adopted by SCAN.
In SCAN token is issued by a set of neighbors; minimum k
neighbors are required to sign tokens; asymmetric
cryptography has been adopted to prevent forgery of tokens.
Further tokens are to be renewed at periodic intervals. In our
system there is no change in the token – it can be used for
the full lifetime of the node, if the node continuously
behaves correctly. At the instance of the first offence the
status of the guilty node is set to 1 preventing its further
participation in the network.

We assume that no node can alter its own status bit. Only
the designated umpire corresponding to the forward or
reverse path under consideration can change the status bit.
For example the status bit of B in Fig.2 can be changed only
by A in the forward path and only by C in the reverse path.
It is also assumed that a node cannot announce wrongly its
token particulars – NodeID and status bit.

Our aim is designing the security system is to limit the
overhead to as minimum as possible while getting a good
improvement in throughput. SCAN system with minimum k
neighbors signing, encryption, periodic renewal of tokens is
definitely robust, but at a huge cost of control overhead and
energy efficiency. There are some other connected issues,
which are being discussed in later sections.

IV. SIMULATION AND RESULTS
TABLE I. PARAMETER SETTINGS

We use a simulation model based on QualNet 4.5 in our

evaluation [11-12]. Our performance evaluations are based
on the simulations of 100 wireless mobile nodes that form a
wireless ad hoc network over a rectangular (1500 X 600 m)
flat space. The MAC layer protocol used in the simulations
was the Distributed Coordination Function (DCF) of IEEE
802.11 [13]. The performance setting parameters are given
in Table 1.

Before the simulation we randomly selected a certain
fraction, ranging from 0 % to 40 % of the network
population as malicious nodes. We considered only two
attacks – modifying the hop count and dropping packets.
Each flow did not change its source and destination for the
lifetime of a simulation run.

We have done two sets of studies. Set 1 corresponds to
10 flows with flows between 10 different source-destination

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

199

pairs. We had kept the simulation time as 1500s, so as to
enable us to compare our results with that of SCAN. We
found that with set 1 all the network activities ceased by
900s and from 900s to 1500s the network was idle.
Therefore in study 2, we introduced another 10 flows,
starting at 900s between different sources and destinations
(total 20 flows). We call this as set 2.

Our experiments are designed to throw light on four
important questions:
1) What is the improvement in throughput with

self-umpiring system as compared to plain AODV?

2) What is the probability that malicious nodes may not get
caught and convicted? This is the failure to deduct
probability, the so-called “False Negative” cases.

3) What is the probability that innocent nodes may get
wrongly convicted? These are the “False Positive” cases.

4) What is the extra control overhead because of
implementation of Self_USS?

Presently we go on to detail experimental results to elicit
answers to each of these questions.

A. Throughput
In the world of MANET, packet delivery ratio has been

accepted as a standard measure of throughput. Packet
delivery ratio is nothing but a ratio between the numbers of
packets received by the destinations to the number of
packets sent by the sources. We present in Tables 2 and 3
the packet delivery ratios, for malicious node percentages of
0, 10, 20, 30 and 40, with node mobility varying between 0
to 20 m/s.

TABLE II. PACHET DELIVERY RATIOS FOR SET 1

TABLE III. PACKET DELIVERY RATIOS FOR SET 2

From Tables 2 and 3 the following conclusions can be

drawn:
5) In general packet delivery ratio decreases as mobility

and percentage of malicious nodes increase.

6) In the case of plain AODV, with 0% malicious nodes,
packet delivery ratio drops from 98.28% (99.89% for set
2), when the nodes are stationary to 93.73% (95.73% for
set 2), when the nodes are moving at 20 m/s.

7) We observe that the same results are obtained with
Self_USS also. With zero percentage malicious nodes,
self-umpiring system and plain AODV have almost
identical performances.

8) With plain AODV, packet delivery ratio has a steep fall
from 98.28 (0% malicious nodes, mobility = 0 m/s) to
26.04 (28.18%) (40% malicious nodes, mobility = 20
m/s). The corresponding values for self-umpiring
system are 98.28, 53.18 for set 1 and 99.89, 75.22 for set
2. Thus throughput is increased by 104.22 % with set 1
and by 166.9% in set 2.

9) We find similar increase in throughput at all other
combinations of malicious node percentages and
mobility values, with self-umpiring system.

From the above results we conclude that self-umpiring
system leads to a substantial improvement over plain AODV,
from the point of view of throughput. The other question to
be answered is how does Self_USS compare with SCAN?
We present the details in Fig. 3, where a comparison
corresponding to 30% malicious nodes with mobility
varying from 0 to 20 m/s is given. The data for SCAN
corresponds to Fig. 8 of the paper [2]. We find that set 1 and
set 2 results are on either side of SCAN results. We make no
claims and offer our comments in the analysis section.

Fig. 3. Comparison of Packet Delivery Ratio (30 % Malicious nodes)

B. Failure to deduct (False Negatives) Probability

Fig. 4. False Negative Probability verses Mobility for Set – I

Fig. 4. Presents failure to deduct probability as a function

of mobility and percentage malicious nodes.
False Negatives Probability can be defined as:

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

200

False Negatives Probability = number of malicious nodes
left undetected/total number of malicious nodes

The above definition requires some elaboration. We can
think of two groups of malicious nodes that are left
undetected. In the first group are those nodes, which never
played a part in the network operation; they were probably
traveling along the boundaries and never had a chance to
participate in the network activity.

The second groups of malicious nodes are those that
played a role as a forwarding node, but went undetected.
Clearly our umpiring system is responsible only for the
second group. The first group of nodes is similar to reserve
players in the sidelines and clearly any umpire cannot show
red flag and march off players in the sidelines.
Appropriately we have done the failure to detect probability
calculation taking into consideration only those nodes,
which took part in the network activity. Other researchers
adopt the same approach also. The results are similar that of
SCAN [2].

We further offer a comparison of set 1 and set 2 results
with 30% malicious nodes in Fig.5. We find that false
negative probability has decreased with set 2.

Fig. 5. Comparison of False Negative Probabilities between Set – I and Set

– II (30 % Malicious Nodes)

C. False Accusation (False Positives) Probability
Fig. 6. Presents false accusation probability as a function

of mobility and percentage malicious nodes for set 1. This
is the probability of wrongly booking innocent nodes. We
find false positive probability increases with increasing
percentage of malicious nodes and increased mobility. The
values vary between 0 to 10% and are similar to the patterns
obtained for SCAN [2].

We present a comparison of False Positive Probability
values between set 1 and set 2 in Fig. 7. It is seen that with
set 2 False Positive Probabilities slightly increase.

D. Communication Overhead
Communication overhead can be evaluated based on the

number of transmissions of control messages like RREQ,
RREP, RERR in the case of plain AODV and in addition
M_ERROR, M-Flag messages in the self umpiring system.
RREQ are to be decimated to the entire network, where as
RREP messages are unicasts.

Fig. 6. False Positive Probability verses Mobility for Set – I

Fig. 7. Comparison of False Positive Probabilities between Set – I and Set –

II (30 % Malicious Nodes)
We have taken appropriate weights for each message. For

example the count of RREP message from destination to
source will be k where k is the hop count. We present the
communication overhead details in Table 4 for both plain
AODV and for our Self_USS.

TABLE IV. COMMUNICATION OVERHEAD FOR SET 1

From Table 4 following inferences can be drawn:

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

201

Fig. 8. Increase in Communication Overhead verses Mobility for Set – I

1) The communication overhead increases with increasing

percentage of malicious nodes and mobility for both
plain AODV and Self_USS.

2) For plain AODV, the increase's from 100% (0%
malicious nodes; mobility = 0) to 191% (40%
malicious nodes and mobility = 20 m/s). The
corresponding variation for Self_USS is from 100 % to
222.5%.

3) Further we find that when there is no malicious nodes
(0% malicious nodes) the nodes in their umpiring role
have very few message packets to send and the
communication overheads for plain AODV and
Self_USS are nearly same.

4) In order to correctly appreciate the increase in
communication overhead because of umpiring system
we have generated Fig.8 from the data presented in
Table 4. Fig.8 presents percentage increase in
communication overhead with umpiring system
corresponding to set 1 as compared to corresponding
AODV situations. We find that maximum increase in
communication overhead is 16.5 %

Fig. 9. Comparison of Communication Overheads between Set – I and Set –

II (30 % Malicious Nodes)

1. Fig. 9. Provides a comparison of increase in

communication overheads between sets 1 & 2
corresponding to 30% malicious nodes. We find that
there is a reduction in communication overhead with set
2.

 For set 1, we find that the largest increase in
communication overhead is 16.5 % corresponding to 40%
malicious nodes and mobility 20m/s. The corresponding
figure for set 2 is 13.3%.We combine the results of
throughput and communication overheads to state that our

umpiring system yields 166.9 % increased throughput, with
an increase in communication overhead of 13.3 % as
compared to conventional AODV (set 2).

V. ANALYSIS OF RESULTS
Let us analyze the detection and conviction performances

of our umpiring system based up on the parameters –
sensitivity, specificity, precision and accuracy [14]. Let TP,
FN, FP and TN be defined as follows:

TP: Number of malicious nodes correctly flagged off by USS

FN: Number of malicious nodes that could not be detected by
USS

FP: Number of innocent nodes wrongly booked by USS

TN: Number of active good nodes left undisturbed by USS

The results from our simulation study with 30% malicious
nodes and mobility is 5 m/s are as follows:

Total number of nodes pre chosen = 100

Number of Active Nodes = 89

Number of malicious nodes = 30

Number of active malicious nodes = 28

Number of innocent nodes convicted= 04

Number of malicious nodes convicted= 24

TABLE V. CONTINGENCY TABLE(SET 1)

The contingency table is presented as Table 5.
1. Sensitivity=True Positive Rate(TPR)= TP/(TP+FN) =
24/(24+4) = 0.8571

2. Specificity=True Negative Rate (TNR)= TN/(TN+FP)
= 57/(57+4) = 0.9344

3. Precision=Recall=TP/(TP+FP)=24(24+4)= 0.8571

4. Accuracy = (TP + TN) / (TP + TN + FP + FN) =
(24 + 57) / (24 + 57 + 4 + 4) = 0.9101

Our umpiring system not only detects but also quarantines
malicious nodes from further participating in the network
activity. Quarantining malicious nodes can be viewed as
mine removal process and if we have started with say 40%
malicious nodes, after a while (in our simulation study 1
after 900s) a large part of the malicious nodes are removed
and any further transmission of messages between sources
and destinations occur relatively at malicious nodes free
atmosphere. Clearly if the simulation is continued for
sufficiently long time, the throughput will incrementally
build up until it reaches levels corresponding to almost 0%

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

202

malicious nodes.
Throughput: The above reasoning explains why throughput
with our set 2 is considerably higher than set 1. SCAN’s
performance will also be similar and as simulation time is
extended, throughput is likely inch towards performance
levels at 0% malicious nodes. Therefore in the absence of
exact details of simulation parameters, it is not possible to
compare the performance of Self_USS with SCAN.
False Negatives Probability: With set 2, a few of the
malicious nodes left undetected during the first 10 flows, are
rounded up during the subsequent 10 flows, resulting in
reduced false negatives probability.
False Positives Probability: Similarly, with in set 2 a few
more innocent nodes are booked thus increasing the false
positives probability.
Communication Overhead: Since with set 2 during latter
portion of simulation time umpiring system operates with
reduced percentage of malicious nodes, there is a decrease in
communication overhead.

Thus for, we have offered justifications for the simulation
results.

There are some other critical questions that we would like
to answer before closing this section.
(i). What happens if umpires happen to be malicious?

For our simulation studies, we have defined two types of
malicious umpires. Type1 (low level) malicious umpires
are those, who when they detect a malicious node simply
will ignore them. They are similar to sleeping umpires.
Type 2 umpires (high level) are strongly malicious in that
when a malicious node is detected they will ignore; further
they will go about booking innocent nodes. We had
experimented with all 3 situations – malicious umpires
being exclusively of Type 1, Type 2 and a mixture of Type
1 and Type2. The results presented in this paper are those
corresponding to Type 2 malicious umpires, i.e. strongly
malicious umpires.
(ii). If that is so, how is that such a high output could be
obtained?

 We have made the assumption, that source and
destination nodes are non-malicious. If source or
destination is malicious in any flow, then the throughput
corresponding to that flow will be zero. In the worst case if
in all the n flows, either the source or destination happens to
be malicious then the throughput of the entire simulation will
be zero.

If source finds its next node malicious, it preempts it
before malicious node can cause harm to the succeeding
node. This works equally well in the reverse path too, with
the destination being non malicious. We also deliberately
made the source as malicious nodes and made our study.
We found that, since we have implemented malicious
umpires of Type 2, the malicious source node succeeds in
killing 2 innocent nodes before regular AODV protocol
packs it off.
(iii). Why are innocent nodes booked?

As discussed if source or destination happens to be
malicious, innocent nodes will be shown red flag. Further
if a genuine node is going out of communication range, its
umpire will view the event as dropping packets. We

propose to make modifications in our future designs so that,
this type of wrong booking could be avoided.
(iv). Why are all malicious nodes not booked?

Some of the malicious nodes are always traveling in the
periphery of the network. Clearly umpires can show red
flag only to players who are within the playing area;
mischievous sideliners as long as they continue to be in
sidelines only, cannot be booked.
(v). What happens if malicious nodes behaves wrongly
during RREQ stage?

The present design does not cater to this situation. We
are working at alternative designs to overcome the above
defect, without much increasing the overhead, which is our
avowed design goal.

VI. RELATED WORKS
The Key Distribution Center (KDC) architecture is the

main stream in wired network because KDC has so many
merits: efficient key management, including key generation,
storage, distribution and updating. The lack of Trusted Third
Party (TTPs) key management scheme is a big problem in
ad hoc network [15 - 32].

Kong et al. [16] describe a solution that supports
ubiquitous services to mobile hosts. In their design they
distribute the certification authority functions through a
threshold secret sharing mechanism, in which each entity
holds a secret share and multiple entities in a local
neighborhood jointly provide complete services. Thus no
single entity in the network knows or holds the complete
system secret (e.g. - a certification authority's signing key).
Instead, each entity holds a secret share of the certification
authority's secret key. Multiple entities, say k in one hop
network locality jointly provide complete security services,
as if a single omni present certification authority provided
them.

Yong et al. [18] propose a novel cryptography for ad hoc
network security, where they present a new digital signature
algorithm for identity authentication and key agreement
scheme. Their scheme has no central administrator. They
have shown that their scheme can withstand man-in-middle
and Byzantine mode conspiracy attacks.

Hubaux et al. [22] make a survey of threats and possible
solutions for one security of ad hoc network. They extend
the idea of public key infrastructure. Their system is similar
to Pretty Good Policy (PGP) in the sense public key
certificates are issued by the users. However they do not
rely on certificate directories for the distribution of
certificates. They present two algorithms in this connection.

All the above schemes only try to protect the system from
the attacker, but not bother about quarantining attackers.
The twin systems of watchdog and pathrater [1] not only
detect the mischievous nodes but also prevent their further
participation in the network. SCAN [2] also has similar
action, but is more comprehensive, in the sense not only
packet dropping but also other misbehaviors like giving
wrong hop count are covered. Our self-USS is an extension
of the above two works.

Routeguard [32] is similar to pathrater and is run by

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

203

each node. Routeguard introduces more detailed and natural
classification system that rates each node into one of the five
classes: fresh, member, unstable, suspect or malicious.
Accordingly each node is treated differently.

VII. CONCLUSIONS
A self-umpiring system for security for mobile ad hoc

network has been proposed. Simulation studies show that
the proposed system increases throughput by 166.9 % with
an increase in communication overhead of 13.3% as
compared to plain AODV, when 40 % of the nodes are
malicious and are roaming with a mobility of 20 m/s. We
envisage that our system can profitably be used in civilian
situations where invariably nodes are lean and energy
starved. Research work is in progress for the development
of an independent system of umpires.

VIII. ACKNOWLEDGEMENTS
We express our thanks to Dr. P. Kanniappan, the Vice

Chancellor, Prof. V. M. Periasamy, the Register and Prof.
K.M.Mehata, the Head, Department of CSE & Dean,
School of Computer and Information Science
B.S.A.Crescent Engineering College Chennai, Tamilnadu,
India for the encouraging environment provided.

REFERENCES
[1] Sergio Marti, T.J. Giuli, Kevin Lai and Mary Baker, “Mitigating

routing misbehavior in mobile ad hoc networks”, in proc. ACM
MobiCom, 2000, pp- 255-265.

[2] Hao Yang, James Shu, Xiaoqiao Meng and Songwu Lu, “SCAN:
Self-Organized Network-Layer Security in Mobile ad hoc networks”,
IEEE Journals on selected areas in communications, vol. 24, No. 2,
February 2006.

[3] D. Johnson, D. Maltz, and J. Jetcheva, DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Network, Ad Hoc
Networking. Reading, MA: Addison-Wesley, 2001, ch. 5.

[4] D.B. Johnson and D.A. Maltz, “Dynamic source routing in ad hoc
wireless networks”, in Mobile Computing, volume 353, Kluwer
Academic Publishers.

[5] D.B. Johnson, D.A. Maltz, and Y.C. Hu, “ The dynamic source routing
protocol for mobile ad hoc networks (dsr). Internet Draft,
draft-ietf-manet-dsr-09.txt, April, 2003.

[6] C. Perkins, and E. Royer, “Ad hoc on-demand distance vector routing”,
in Proc. IEEE WMCSA, 1999, pp. 90-100.

[7] C. Perkins, E. Royer and S. Das, “Ad hoc on demand distance vector
(AODV) routing”, Internet Draft, draft-ietf-manet-aodv-10.txt, 2002.

[8] S. Das, C. Perkins, and E. Royer, “Performance comparison of two
on-demand routing protocols for ad hoc networks”, in Proc. IEE
INFOCOM, 2003, pp. 3-12.

[9] C. Sivaram murthy and B.S. Manoj, “ Ad hoc wireless networks
architectures and protocols”, Pearson Education, First edition, 2007.

[10] Jochen Schiller, “Mobile Communications”, Pearson Education,
Second edition, 2007.

[11] Scalable Networks Technologies: QualNet simulator 4.5
http://www.scalable-networks.com/

[12] L. Bajaj, M. Takai, R. Ahuja, R. Bagrodia, and M. Gerla, “Glomosim :
A scalable network simulation environment. Technical Report 990027,
1999.

[13] IEEE 802.11. Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications, August, 1999.

[14] Pang – Ning Tan, Michael Steinbach, Vipin Kumar, “Introduction to
Data Mining”, Pearson Education, 2007.

[15] Marianne A. Azer, Sherif M. El-Kassas, and Magdy S. El-Soudani,
“Certification and revocation schemes in ad hoc networks survey and
challenges, in proc. IEEE ICSNC 2007.

[16] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing robust and
ubiquitous security support for MANET”, in Proc. IEEE ICNP, 2001,
pp. 251-260.

[17] Lei Feng-Yu, Cui Guo-Hua, and Liao Xiao-Ding, “Ad hoc Networks
security mechanism based on CPK”, in proc. IEEE ICCISW, 2007, pp.
522 – 525.

[18] Pi Jian Yong, Liu Xin Song, Wu Ai, Liu Dan, “A Novel Cryptography
for Ad Hoc Network Security”, in Proc. IEEE 2006, pp. 1448 -1451.

[19] Michael Hauspie, and Isabelle Simplot-Ryl, “Enhancing nodes
cooperation in ad hoc networks”, in proc. IEEE 2007, pp. 130 – 137.

[20] S. Capkun, L. Buttyan and J. Hubaux, “Self-organized public-key
management for mobile ad hoc networks”, IEEE Trans. Mobile
Computing, vol. 2, No. 1, pp. 52-64, January, 2003.

[21] Pi Jian Yong, Liu Xin Song, Wu Ai, Liu Dan, “A Novel Cryptography
for Ad Hoc Network Security”, in Proc. IEEE 2006, pp. 1448 -1451.

[22] J. Hubaux, L. Buttyan, and S. Capkun, “The quest for security in
Mobile ad hoc networks”, in Proc. ACM MobiHoc, 2001, pp. 146-155.

[23] William Stallings, “Cryptography and network Security principles and
Practices”, Pearson Education, First edition, 2007.

[24] Y. Zhang and W. Lee, “Intrusion detection in wireless ad hoc
networks”, in Proc. ACM MobiCom, 2000, pp. 275-283.

[25] S. Capkun, J.Hubaux, and L. Buttyan, “Mobility helps security in ad
hoc networks”, in Proc. ACM MobiCom, 2003, pp 46-56.

[26] Y. Hu, D. Johnson, and A. Perrig, “SEAD: Secure efficient distance
vector routing for mobile wireless ad hoc networks”, in Proc. IEEE
WMCSA, June 2002, pp. 3-13.

[27] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A Secure on-demand
routing for ad hoc networks”, in Proc. ACM MobiCom, 2002, pp.
12-23.

[28] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc
networks”, in Proc. CNDS, 2002, pp. 193-204.

[29] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Royer, “A secure
protocol for ad hoc networks,” in Proc. IEEEICNP, 2002, pp. 78-89.

[30] M. Zapata and N. Asokan, “Securing ad hoc routing protocols”, in
Proc. ACM Wise, 2002, pp.1-10.

[31] Azeddine Attir, Farid Nait Abdesselem, Brahim Bensaou, and Jalel
Ben-Othman, “Logical Wormhole Prevention in Optimized Link State
Routing Protocol”, in proc IEEE GLOBECOM 2007, pp. 1011 – 1016.

[32] Nidal Nasser and Yunfeng Chen, “Enhanced Intrusion Detection
System for discovering malicious nodes in mobile ad hoc networks”, in
proc. IEEE ICC, 2007, pp. 1154- 1159.

A.Kathirvel born in 1976 in Erode, Tamilnadu,
India, received his B.E. degree from the University
of Madras, Chennai, in 1998 and M.E. degree from
the same University in 2002. He is currently with
B.S.A. Crescent Engineering College in the
Department of computer science and Engineering
and pursing Ph.D. degree with the Anna University,
Chennai, India. He is a member of the ISTE. His
research interests are protocol development for

wireless ad hoc networks, security in ad hoc networks.

Rengaramanujam Srinivasan born in 1940 in
Alwartirunagari, Tamilnadu, India, received B.E.
degree from the University of Madras, Chennai,
India in 1962, M.E. degree from the Indian Institute
of Science, Bangalore, India in 1964 and Ph.D.
degree from the Indian Institute of Technology,
Kharagpur, India in 1971. He is a member of the
ISTE and a Fellow of Institution of Engineers, India.
He has over 40 years of experience in teaching and

research. He is presently working as a Professor of Computer Science and
Engineering at BSA Crescent Engineering College, Chennai, India and is
supervising doctoral projects in the areas of data mining, wireless networks,
Grid Computing, Information Retrieval and Software Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

