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Abstract— This paper, presents a method to find the  
shortest distance path between two vertices on a fuzzy 
weighted graph, that is vertices (or nodes) and edges (or 
links) remain crisp, but the edge weights will be fuzzy 
numbers.. We propose an algorithm to deal with fuzzy 
shortest path problem. The algorithm first finds the 
shortest path length and then a similarity measure 
degree is taken to find out the   shortest paths. 

 
Index Terms— Fuzzy sets, Shortest path problem, Similarity 

measure, Weighted graph.  

I. INTRODUCTION 
Shortest path problems are very helpful in road network 

applications namely, transportation, communication routing 
and scheduling. We consider a directed network consisting 
of a finite set of vertices and a finite set of directed edges. It 
is assumed that there is only one directed edge between any 
two vertices. Now in any network path the arc length may 
represent time or cost .Therefore in real world, it can be 
considered to be a fuzzy set. 

Fuzzy sets theory, proposed by Zadeh, is frequently 
utilized to deal with the uncertainty problem.  

II. RELATED WORK 
The fuzzy shortest path problem was first analyzed by 

Dubois and Prade. He used Floyd's algorithm and Ford's 
algorithm to treat the fuzzy shortest path problem. Although 
in their method the shortest path length can be obtained, 
maybe the corresponding path in the network doesn't exist. 
Klein [5] proposed a dynamical programming 
recursion-based fuzzy algorithm. Lin and Chen [6] found the 
fuzzy shortest path length in a network by means of a fuzzy 
linear programming approach. Chuang and kung [7], 
proposed fuzzy shortest path length procedure that can find 
fuzzy shortest path length among all possible paths in a 
network. It is based on the idea that a crisp number is the 
minimum if and only if any other number is larger than or 
equal to it. 

III. PRELIMINARY DEFINITIONS 
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A. Fuzzy Set Theory 
A fuzzy set a  in a universe of discourse X is characterized 
by a membership function ( )a xµ  which associates with 
each element x  in X, a real number in the interval [0, 1]. 

The function value ( )a xµ   is termed the grade of 

membership of x ina  . 

B. Fuzzy number and its arithmetic 
A fuzzy number is a quantity whose value is imprecise, 

rather than exact as is the case with "ordinary" (single-valued) 
numbers. Any fuzzy number can be thought of as a function 
whose domain is a specified set usually the set of real numbers, 
and whose range is the span of non-negative real numbers 
between, and including, 0 and 1. Each numerical value in the 
domain is assigned a specific "grade of membership" where 0 
represents the smallest possible grade, and 1 is the largest 
possible grade. 
 

In this article trapezoidal fuzzy numbers are used. In 
general, a trapezoidal membership function is described by a 
Quadruple A (a, b, c, d) as shown in fig 1: 
 
 
 
 
 
 
 
 
 
 
 
 
                 Fig.1  

 
Where c and d are respectively the lower and the upper 

bounds of the fuzzy number, and [a, b] is the core. A 
trapezoidal fuzzy number A(a1, a2, a3, a4)  is defined by the 
following membership function: 
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Let ),,,( 4321 aaaaA=  and ),,,( 4321 bbbbB =  be two 
trapezoidal fuzzy numbers written in quadruple form, then 
the fuzzy sum of these two is 

 

     ).,,,( 44332211 babababaBA ++++=+  
                                                   (1) 

And in the same way other operations can be defined. 
 

C. Fuzzy Weighted Graph 
 

A fuzzy weighted graph G =(V, E, c)  consists of a set V of 
vertices or nodes vi and a binary relation E of edges ek =(vi, 
vj)  ЄV* V; we denote  tail(ek)= vi  and head(ek)= vj . vi  is 
sometimes called a parent of  v j, whereas vj is a child of vi . 
With each edge (vi, vj ), a weight or cost  ci, j= c(vi, 
vj)=( c(vi, vj )1, ……..c( vi, vj) r ) a vector of fuzzy numbers 
with r>= 1, is associated. 
Each fuzzy number can be seen as the evaluation of a given 
criterion. 

  

IV. THE ALGORITHM 
 

A path from a vertex u to another vertex v in a graph G = 
(V, E), where V is set of vertices and E is the set of edges, is a 
sequence of vertices u, v1, v2, . . ., vn, v such that (u, v1), (v1, 
v2), . . ., (vn, v) are edges in E. The length of a path is the sum 
of the length of the edges on the path. A shortest path 
between two vertices u and v is the path whose length is 
minimum among all other paths between u and v. Now, if the 
length of each edge is an imprecise number, namely, 
trapezoidal fuzzy number then the length of the paths 
between two specified vertices will be an imprecise number 
of same kinds. In this case, the shortest path problem is 
addressed as fuzzy shortest path problem and since the 
problem involves comparison between the lengths of paths 
or their components, a suitable ranking method is required to 
compare the numbers. At this point, fuzzy shortest path 
problem is completely different from its crisp problem.  
Various order relations for trapezoidal fuzzy numbers are 
available in the literature. One is that the fuzzy shortest 
path length (FSPL) formula on two path length by using 
half-inverse membership function as follows: 
For two fuzzy path length ),,,(~

11111 dcbaL =  

and ),,,(~
22222 dcbaL = ; ),,,(~

min dcbaL =  
 

),min( 21 aaa =  
 

1 2 1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2

min( , ) min( , ) max( , )
( ) ( )

min( , ) max( , )
( ) ( )

b b if b b a a
b b b a a if b b a a

b b a a

≤
= × − × > + − +

                                         
)],max(),,min[min( 2121 bbccc =  

 
d = min[min( d1, d2 ), max(c1, c2 )] 

      
 We introduce min~L as follows: 
 
 For two trapezoidal fuzzy numbers ),,,(~

11111 dcbaL =  

and ),,,(~
22222 dcbaL = : 

 
{ }nkLLLLL kk ,...,2,1;),min(sup~

21
min ===    

                                                                                        (2)                                                          
 

=),,(~min cbaL Min ( 1
~L , 

2
~L )= 1 2 1 2 1 2(min( , ) ,min( , ) , min( , ))a a b b c c                                      

                                                                          (3)                                                                                                            
 

In many practical situations, we often encounter how to 
distinguish between two similar sets or groups. That is to say, 
we need to employ a measurement tool to measure similarity 
degree between them. Several similarity measures had been 
presented to evaluate the similarity degree between two fuzzy 
sets. We introduce a new method for finding similarity degree 
between two trapezoidal fuzzy numbers. In order to, we use 
the intersection area of two trapezoidal fuzzy sets to measure 
the similarity degree between Li and fuzzy shortest path length. 
The larger the intersection area of two trapezoidal, the higher 
the similarity degree between them is. 

Let the ith fuzzy path length ),,,(~
iiiii dcbaL = and the 

fuzzy shortest path length ),,,(~min dcbaL = then the 
similarity degree Si between Li and Lmin can be calculated as: 
 
 
 
                                                                  
 
 
 

                                                      (4) 
 

As mentioned previously, the similarity measure defined in 
(4) will help decision makers to decide which path is the 
shortest one.  The proposed algorithm can be shown as 
follows: 
 
Step 1. Form the possible paths from source vertex s to 
destination vertex d and compute the corresponding path 
lengths Li, i = 1, 2. . . m, for possible m paths. 

 
Step 2. Find the fuzzy shortest length min~L  by using formula 
(5). 
 
Step 3. Employ fuzzy similarity measure defined in (4) to 
yield the similarity degree  

)~,~( minLLS i  between min~L  and iL~  for i = 1, 2. . . m. 
Step 4. Obtain the shortest path with the 
highest )~,~( minLLS i . 
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V. IMPLEMENTATION 
 

In this section, we will execute the proposed algorithm on 
the Fig 2. A classical weighted graph with trapezoidal fuzzy 
lengths is shown in Fig.2 It is our purpose to determine 
fuzzy shortest path length and shortest path from vertex 1 to 
6 in this network.  

 
                       
                       
                               Fig.2 

There are five paths as follows: 
 
P1: S- V3 – V4 - V6      →   L1   = (150, 167, 18, 20),  
P2: S- V3 – V5 - V6      →   L2 = (148, 163, 32, 33),  
P3: S- V2 – V5 - V6      →   L3 = (145, 160, 33, 35),  
P4:  S- V2 – V3 - V5- V6 →  L4 = (144, 158, 35, 43),  
P5:  S- V2 – V3 - V4 - V6 → L5 = (146, 162, 21, 30). 
 

We can obtain min~L  = (144, 158, 21, 30) through the 
proposed algorithm. Now using (4), we can get the similarity 

degree Si between min~L and iL~ . Finally, we choose P4 as the 
shortest path, since the corresponding L4 has the highest 

similarity degree (=26.91) to min~L . 

TABLE 1 

Paths )~,~( minLLS i

 
Ranking 

P1: S- V3 – V4  - V6       20.36 4 
P2: S- V3 – V5  - V6 17.14 5 
P3: S- V2 – V5  - V6       24.49 2 
P4:  S- V2 – V3 - V5- V6 26.91 1 
P5:  S- V2 – V3 - V4 - V6 22.74 3 
 
  

VI.    CONCLUSION 
In this paper we have developed an algorithm to find 

optimal paths in a fuzzy weighted graph with its edge 
lengths as trapezoidal fuzzy numbers. Fuzzy shortest path 
length and shortest path are the useful information for the 
decision makers. We have tried to accumulate most of the 
existing ideas on comparison of trapezoidal fuzzy numbers, 
and proposed a new approach to imprecise numbers. An 
illustrative example is included to demonstrate the proposed 
method. 
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