

The Art of Reliability and Asynchrony: Building Robust

Distributed System Communication via Outbox

Nitin Gupta

Dublin, CA, USA

Email: nitingupta.sri7@gmail.com (N.G.)

Manuscript received August 20, 2025; accepted October 7, 2025; published November 26, 2025.

Abstract—Modern distributed systems offer significant

benefits for scalability, resiliency and flexibility but these

benefits come with complex challenges of inter-service

communication, reliable messaging and data integrity. A

critical challenge comes when application need to persist data

and send message as an atomic operation, a failure in one can

cause data inconsistency. This paper presents the Outbox

pattern as a robust architecture paradigm to address these

challenges. The Outbox pattern achieves this by saving both the

data and message as an atomic transaction in a local database,

an asynchronous process runs later to send a message to

another system by reading the database for stored message.

This approach enhances resiliency, data integrity and promotes

loose coupling along with independent scalability. It also

presents various use cases that can be applied to different

industries like banking, fintech, healthcare.

Keywords—architecture pattern, cloud native, distributed

system, reliable messaging, robust design

I. INTRODUCTION

Modern digital system has grown exponentially to meet

the increasing demand of IT workloads, which has led the

organizations to incline more towards the distributed system.

These distributed systems not only come with great benefits

of individual scalability, fault tolerance, improved reliability

and flexibility but also introduces challenges for inter service

communication, message delivery, network dependency, data

consistency and data integrity. Often these challenges when

overlooked or not handled in efficient manner, eradicates the

benefits of distributed systems and led to complex

architecture and non-reliable digital system.

In distributed system ensuring reliable message delivery is

a great concern, and with all the challenges it can lead to

message lost or duplicated. There are various messaging

patterns and technologies that helps to deliver messages

exactly once, but it comes with its own complexity [1]. A

common problem comes in application when data persistent

and message publication need to be done as an atomic

operation. When these two actions are not tightly coupled and

a failure in one can led to inconsistent data or non-reliable

communication. Consider a scenario when database commit

is successful, but message publishing fails then two system

will have diverge state as the consumer expect a message and

maybe doing some actions for business logic.

This paper provides detail on architecture paradigm that

provides robust and efficient design where reliable

messaging in critical to ensure data integrity and consistency.

The Outbox Pattern helps to perform two actions related to

business data and message as an atomic operation, in

traditional system these were handles as a two-phase commit

which introduces overhead and reduced availability [2]. The

outbox pattern ensures that message get persisted alongside

the business data as apart of single local transaction thus

ensuring the operation is successful or failure. The message

delivery will happen eventually as it persists in the system

and can be retried even there is failure due network error or

system unavailability.

The outbox pattern ensures reliable message delivery in

loosely coupled and message-driven architectures. This

pattern helps to reduce the error handling and removes the

complexity associated with distributed coordination in

complex software system [3]. The paper outlines various use

case and different industries like- banking, healthcare,

ecommerce where pattern can be applied to deliver efficient

and robust software solutions.

II. ARCHITECTURE AND DESIGN

Asynchronous and reliable messaging is a critical aspect of

communication in distributed system for inter service

communication or communication with external system. The

outbox design leverages the transactional capability of the

database by making sure that message get persisted in the

same datastore along with business data as an atomic

operation. A separate asynchronous process in the

background runs or polls the database for the updated

messages and publishes to the event bus. The reliability and

robustness of the design can be highlighted through various

critical aspects:

(1) Data Integrity: The outbox pattern helps to achieve

reliable messaging by delivering messages in correct

order and accurately to maintain data consistency across

systems. This ensures there is no data corruption, and all

system view has same state visibility.

(2) Loose Coupling: The pattern helps to communicate

asynchronously with different system thus reducing tight

coupling. It helps systems to scale independently and

provides flexibility for system maintenance [4].

(3) Fault Tolerance: It helps the system to be more resilient in

case of network issues or unexpected events and help to

recover gracefully. Outbox pattern ensures messages are

not lost during such events and consistency is maintained

in different systems. Since messages are saved so during

any network failure these is no risk of message loss, and it

can be replayed.

(4) Scalability: As the pattern helps to communicate

asynchronously this allows systems to be loosely coupled.

This helps to scale different systems independently to

enhance performance and availability.

As shown in Fig 1 there are few key components in outbox

design pattern that ensures reliable message delivery, through

persisting in database and sending to event bus by

maintaining data consistency across system. These

International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

199DOI: 10.7763/IJET.2025.V17.1327

components are:

Fig. 1. Outbox design pattern.

(1) Outbox Table: This database entity is used to store

messages in the same database where application data is

stored.

(2) Transaction Management: It helps to save application

data and messages in same transaction and helps to

maintain consistency between application state and

message state.

(3) Publisher: A publisher can be a background job that runs

periodically in the service to check for database updates

in outbox table or any event driven strategy that react to

database change. It reads the messages from table and

publishes to event bus like – Kafka and updates the status

in table

(4) Consumer: A consumer is other async process running in

other service which consumes the message and perform

relevant action

(5) Retry and Error: Retry logic and retry count helps to retry

the messages which were not published due to failures.

The number of retries can be customized and once it

exhausts this message can be send to deal letter topic from

there further action can be done depending on the

business need. This ensure messages are not lost due to

failures.

III. METHODOLOGY

When working with sensitive information that require

reliable and asynchronous communication in different

systems, the Outbox design pattern is well suited for

distributed system architecture. This pattern ensures data

integrity and consistency by saving application data and

message as an atomic operation in local database. This

operation of saving to database is performed as a single

transaction so it is either success or rolled back from outbox

entity along with application entity [5]. Since messages are

stored in database, a separate asynchronous process runs that

publishes these messages.

Fig. 2 Outbox pattern data flow.

There are various ways this process can be designed which

can vary from use case, some of the strategies for this process

are:

(1) Scheduling–A scheduler job is implemented which

runs at regular interval to check outbox entity in

database for updates and retrieves the pending

messages that needs to be published.

(2) Event Driven–A listener is configured on outbox

entity which publishes message for any change in

outbox entity

The pattern finds significant use in modern digital system

where reliable messaging is essential due to various

compliance related to audit, tracing and data consistency [6].

Some of the real-world system where this can be applied are:

A. Audit and Compliance

In banking or fintech system every transaction performed

by system needs to be recorded for auditing and compliance.

Example – A user initiates the fund transfer, a system needs

to perform various operations like – Debit/ Credit money,

send notification to the users and notify record in

Datawarehouse for audit and compliance or to auditing

service. The Outbox pattern guarantees that all these are done

as part of transaction i.e. debit\credit and send message

persisted in database and an asynchronous process runs in

background, to notify user along with the message delivery to

auditing service [7]. This ensures the data consistency by

delivering the messages and making visible the same state of

data to different system [8].

B. Distributed System

In Distributed system computing each service needs to

communicate with each other to maintain consistent state

across the system. This communication needs to be reliable

and loosely coupled to take advantage of distributed system

[9]. In any ecommerce application when order is placed in

order service a notification needs to be sent to inventory,

billing and shipping service to act accordingly. This

coordination can be complicated but outbox pattern helps

here to solve this problem by managing the atomicity of

saving the order and message. Outbox pattern ensures

notification is delivered to other services, to maintain

consistent order state across the application.

C. Loose Coupling

To fully harness the benefits of distributed system it should

be loosely coupled so it can be scaled independently. Outbox

patterns help to achieve this by segregating the process of

message sending to reliable asynchronous process so each

system can work independently without tying them for

message delivery. As in healthcare industry when patient

book an appointment a notification needs to send to the

patient for appointment confirmation. Here outbox pattern

plays an important role of sending appointment notification

to the patient along with booking in the system.

D. Rate Control and Throttling

Enterprise application connects with various third-party

systems to provide end to end solution or to provide extended

functionality. But the use of this third party sometime comes

with the cost, to work efficiently with optimum cost Outbox

pattern plays a significant role. Example–third party system

International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

200

has defined a cost tier with rate limiting, in case of high load

scenarios outbox pattern ensures that this rate limit is not

exceeded with denial of request and customer experience is

not affected.

IV. EVALUATION AND CONSIDERATIONS

The outbox design pattern is a critical architecture solution

for reliable messaging. It provides a robust distributed system

by handling challenges for data consistency and preventing

data loss. After evaluating the outbox pattern in different use

case across various industry domains it has surpass with key

benefits from other approaches.

(1) Atomic–Since application data and message are stored

as a part of same transaction in local database the

atomicity is maintained along with data consistency.

(2) Reliable–The outbox pattern ensures that messages

are delivered, that allows for reliable messaging. If

database transaction is successful then message

publishing is guaranteed, in case of failure delivery

can be retried.

(3) Simple–Outbox pattern removes the need for two

phase commit or complex transaction management

mechanism for message delivery. This not only

removes the complexity in the digital system but also

allows them to be loosely coupled.

(4) Scalable–As systems are loosely coupled through

asynchronous messaging they can be scaled

independently which provides flexibility in digital

application.

The outbox pattern proves to be great architecture in

distributed world, but key considerations need to be done

while solving the problem of reliable messaging. Database

Bottleneck – Since the pattern relies on database it can

become a bottleneck thus reducing the system performance

and scalability, so evaluation of database selection and

throughput needs to be done for optimal results. Storage – As

messages are also getting stored, a strategy needs to be

developed when these can be removed otherwise it can

burden the storage system. Message Duplication – Since

outbox pattern retries message in case of fault consumer

system needs to handle message idempotency as they can

receive same message more than once [10].

V. THE CATALYST

The whole system robustness of reliable messaging i.e.

message needs to be delivered to the sub-system is driven by

the asynchronous delivery system and retry in case of failure.

An efficient retry system with n number of retries makes

system more reliable and efficient, an extra guard around the

system can be placed by creating a dead letter queue which

holds the messages that are not delivered even with n retries.

The dead letter queue can be audited for failed message and

re-run, so data consistency is maintained in whole

eco-system.

The system efficiency and robustness can further be

enhanced by creating different retry strategies depending on

the use case like – Fixed delay retry where retry will be done

predefined fixed interval or exponential retry system which

will give more breather to the system to recover before next

retry. These capabilities help to recover the digital system

automatically without manual intervention.

Fault Tolerance: It helps the system to be more resilient in

case of network issues or unexpected events and help to

recover gracefully. Outbox pattern ensures messages are not

lost during such events and consistency is maintained in

different systems. Since messages are saved so during any

network failure these is no risk of message loss, and it can be

VI. CONCLUSION

This design has demonstrated a reliable and robust

message delivery system by leveraging the database

atomicity in a single transaction and removing the

complicated process like two phase commits which is

essential for distributed system design [11]. It provides the

flexibility and loose coupling along the subsystem so each

system can be scaled and developed independently. It not

only removes the dependency on complex architecture but

also provides a way where systems can communicate reliably,

which is essential for certain domain like banking, fintech,

healthcare and ecommerce for their digital applications [11].

The design helps to shield the application against the fault

and help with self-healing capability through retry. Apart

from providing as a reliable messaging system it can also be

used for rate control when calling the downstream where

system has strict rate limiting enforced. As illustrated through

practical use cases where the design can be applied like –

auditing, communication and loose coupling the design helps

to achieve overall system availability without degrading the

performance.

As needed in distributed system for system to perform

independently without causing impact or degrade the

performance of other system, they need to be loosely coupled.

The outbox design pattern helps to achieve all these goals

with further enhancing the reliability of the digital world.

Though the use of database can be tricky in case of very high

load scenarios put proper design and consideration as shown

in the paper can help to overcome that. Overall, the design

when implemented thoughtfully can be a great solution to

various proper in modern digital systems.

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] L Magnoni, “Modern messaging for distributed sytems,” Journal of
Physics: Conference Series, vol. 608, 16th International workshop on

Advanced Computing and Analysis Techniques in physics research

(ACAT2014) 1–5 September 2014, published under licence by IOP

Publishing Ltd, Prague, Czech Republic.

[2] G. Samaras, K. Britton, A. Citron et al., “Two-phase commit
optimizations in a commercial distributed environment,” Distrib

Parallel Databases, vol. 3, pp. 325–360, 1995.
[3] D. Malkhi and M. K. Reiter, “An architecture for survivable

coordination in large distributed systems,” IEEE Transactions on

Knowledge and Data Engineering, vol. 12, no. 2, pp. 187–202, 2000,
doi: 10.1109/69.842262.

[4] M. A. Bauer et al., “A distributed system architecture for a distributed
application environment,” IBM Systems Journal, vol. 33, no. 3, pp.

399–425, 1994, doi: 10.1147/sj.333.0399.

[5] B. C. Desai and B. S. Boutros, “Performance of a two-phase commit
protocol,” Information and Software Technology. vol. 38, no. 9, 1996,

pp. 581–599.
[6] C. Richardson, Microservices Patterns: With examples in Java, 2018.

[7] E. Losiewicz-Dniestrzanska, “Monitoring of compliance risk in the

bank,” Procedia Economics and Finance, vol. 26, 2015, pp. 800–805.

International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

201

[8] P. Kanhere and H. K. Khanuja, “A methodology for outlier detection in

audit logs for financial transactions,” in Proc. 2015 International
Conference on Computing Communication Control and Automation,

Pune, India, 2015, pp. 837–840, doi: 10.1109/ICCUBEA.2015.167.
[9] R. W. Watson, “Chapter 2. Distributed system architecture model,”

Lecture Notes in Computer Science, vol 105. Springer, 1981, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-10571-9_2
[10] Reliable Messages and Connection Establishment, Butler Lampson in

Distributed Systems, ed. S. Mullender, published by ACM
Press/Addison-Wesley, 1993

[11] K. Anita, P. K. Birman, T. A. Joseph, “Reliable communication in the

presence of failures,” ACM Transactions on Computer Systems
(TOCS), vol. 5, no. 1, pp. 47–76, 1987.

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

202

https://creativecommons.org/licenses/by/4.0/

	1327 IJET-ET004 承诺十一月 定稿

