International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

The Art of Reliability and Asynchrony: Building Robust
Distributed System Communication via Outbox

Nitin Gupta

Dublin, CA, USA
Email: nitingupta.sri7@gmail.com (N.G.)
Manuscript received August 20, 2025; accepted October 7, 2025; published November 26, 2025.

Abstract—Modern distributed systems offer significant
benefits for scalability, resiliency and flexibility but these
benefits come with complex challenges of inter-service
communication, reliable messaging and data integrity. A
critical challenge comes when application need to persist data
and send message as an atomic operation, a failure in one can
cause data inconsistency. This paper presents the Outbox
pattern as a robust architecture paradigm to address these
challenges. The Outbox pattern achieves this by saving both the
data and message as an atomic transaction in a local database,
an asynchronous process runs later to send a message to
another system by reading the database for stored message.
This approach enhances resiliency, data integrity and promotes
loose coupling along with independent scalability. It also
presents various use cases that can be applied to different
industries like banking, fintech, healthcare.

Keywords—architecture pattern, cloud native, distributed
system, reliable messaging, robust design

1. INTRODUCTION

Modern digital system has grown exponentially to meet
the increasing demand of IT workloads, which has led the
organizations to incline more towards the distributed system.
These distributed systems not only come with great benefits
of individual scalability, fault tolerance, improved reliability
and flexibility but also introduces challenges for inter service
communication, message delivery, network dependency, data
consistency and data integrity. Often these challenges when
overlooked or not handled in efficient manner, eradicates the
benefits of distributed systems and led to complex
architecture and non-reliable digital system.

In distributed system ensuring reliable message delivery is
a great concern, and with all the challenges it can lead to
message lost or duplicated. There are various messaging
patterns and technologies that helps to deliver messages
exactly once, but it comes with its own complexity [1]. A
common problem comes in application when data persistent
and message publication need to be done as an atomic
operation. When these two actions are not tightly coupled and
a failure in one can led to inconsistent data or non-reliable
communication. Consider a scenario when database commit
is successful, but message publishing fails then two system
will have diverge state as the consumer expect a message and
maybe doing some actions for business logic.

This paper provides detail on architecture paradigm that
provides robust and efficient design where reliable
messaging in critical to ensure data integrity and consistency.
The Outbox Pattern helps to perform two actions related to
business data and message as an atomic operation, in
traditional system these were handles as a two-phase commit
which introduces overhead and reduced availability [2]. The
outbox pattern ensures that message get persisted alongside

DOI: 10.7763/1JET.2025.V17.1327

the business data as apart of single local transaction thus
ensuring the operation is successful or failure. The message
delivery will happen eventually as it persists in the system
and can be retried even there is failure due network error or
system unavailability.

The outbox pattern ensures reliable message delivery in
loosely coupled and message-driven architectures. This
pattern helps to reduce the error handling and removes the
complexity associated with distributed coordination in
complex software system [3]. The paper outlines various use
case and different industries like- banking, healthcare,
ecommerce where pattern can be applied to deliver efficient
and robust software solutions.

II. ARCHITECTURE AND DESIGN

Asynchronous and reliable messaging is a critical aspect of
communication in distributed system for inter service
communication or communication with external system. The
outbox design leverages the transactional capability of the
database by making sure that message get persisted in the
same datastore along with business data as an atomic
operation. A separate asynchronous process in the
background runs or polls the database for the updated
messages and publishes to the event bus. The reliability and
robustness of the design can be highlighted through various
critical aspects:

(1) Data Integrity: The outbox pattern helps to achieve
reliable messaging by delivering messages in correct
order and accurately to maintain data consistency across
systems. This ensures there is no data corruption, and all
system view has same state visibility.

(2) Loose Coupling: The pattern helps to communicate
asynchronously with different system thus reducing tight
coupling. It helps systems to scale independently and
provides flexibility for system maintenance [4].

(3) Fault Tolerance: It helps the system to be more resilient in
case of network issues or unexpected events and help to
recover gracefully. Outbox pattern ensures messages are
not lost during such events and consistency is maintained
in different systems. Since messages are saved so during
any network failure these is no risk of message loss, and it
can be replayed.

(4) Scalability: As the pattern helps to communicate
asynchronously this allows systems to be loosely coupled.
This helps to scale different systems independently to
enhance performance and availability.

As shown in Fig 1 there are few key components in outbox
design pattern that ensures reliable message delivery, through
persisting in database and sending to event bus by
maintaining data consistency across system. These



International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

components are:

Fig. 1. Outbox design pattern.

(1) Outbox Table: This database entity is used to store
messages in the same database where application data is
stored.

(2) Transaction Management: It helps to save application
data and messages in same transaction and helps to
maintain consistency between application state and
message state.

(3) Publisher: A publisher can be a background job that runs
periodically in the service to check for database updates
in outbox table or any event driven strategy that react to
database change. It reads the messages from table and
publishes to event bus like — Kafka and updates the status
in table

(4) Consumer: A consumer is other async process running in
other service which consumes the message and perform
relevant action

(5) Retry and Error: Retry logic and retry count helps to retry
the messages which were not published due to failures.
The number of retries can be customized and once it
exhausts this message can be send to deal letter topic from
there further action can be done depending on the
business need. This ensure messages are not lost due to
failures.

III. METHODOLOGY

When working with sensitive information that require
reliable and asynchronous communication in different
systems, the Outbox design pattern is well suited for
distributed system architecture. This pattern ensures data
integrity and consistency by saving application data and
message as an atomic operation in local database. This
operation of saving to database is performed as a single
transaction so it is either success or rolled back from outbox
entity along with application entity [5]. Since messages are
stored in database, a separate asynchronous process runs that
publishes these messages.

Fig. 2 Outbox pattern data flow.

200

There are various ways this process can be designed which
can vary from use case, some of the strategies for this process
are:

(1) Scheduling—A scheduler job is implemented which
runs at regular interval to check outbox entity in
database for updates and retrieves the pending
messages that needs to be published.

Event Driven—A listener is configured on outbox
entity which publishes message for any change in
outbox entity

The pattern finds significant use in modern digital system
where reliable messaging is essential due to various
compliance related to audit, tracing and data consistency [6].
Some of the real-world system where this can be applied are:

2

A. Audit and Compliance

In banking or fintech system every transaction performed
by system needs to be recorded for auditing and compliance.
Example — A user initiates the fund transfer, a system needs
to perform various operations like — Debit/ Credit money,
send notification to the users and notify record in
Datawarehouse for audit and compliance or to auditing
service. The Outbox pattern guarantees that all these are done
as part of transaction i.e. debit\credit and send message
persisted in database and an asynchronous process runs in
background, to notify user along with the message delivery to
auditing service [7]. This ensures the data consistency by
delivering the messages and making visible the same state of
data to different system [8].

B. Distributed System

In Distributed system computing each service needs to
communicate with each other to maintain consistent state
across the system. This communication needs to be reliable
and loosely coupled to take advantage of distributed system
[9]. In any ecommerce application when order is placed in
order service a notification needs to be sent to inventory,
billing and shipping service to act accordingly. This
coordination can be complicated but outbox pattern helps
here to solve this problem by managing the atomicity of
saving the order and message. Outbox pattern ensures
notification is delivered to other services, to maintain
consistent order state across the application.

C. Loose Coupling

To fully harness the benefits of distributed system it should
be loosely coupled so it can be scaled independently. Outbox
patterns help to achieve this by segregating the process of
message sending to reliable asynchronous process so each
system can work independently without tying them for
message delivery. As in healthcare industry when patient
book an appointment a notification needs to send to the
patient for appointment confirmation. Here outbox pattern
plays an important role of sending appointment notification
to the patient along with booking in the system.

D. Rate Control and Throttling

Enterprise application connects with various third-party
systems to provide end to end solution or to provide extended
functionality. But the use of this third party sometime comes
with the cost, to work efficiently with optimum cost Outbox
pattern plays a significant role. Example—third party system



International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

has defined a cost tier with rate limiting, in case of high load
scenarios outbox pattern ensures that this rate limit is not
exceeded with denial of request and customer experience is
not affected.

IV. EVALUATION AND CONSIDERATIONS

The outbox design pattern is a critical architecture solution
for reliable messaging. It provides a robust distributed system
by handling challenges for data consistency and preventing
data loss. After evaluating the outbox pattern in different use
case across various industry domains it has surpass with key
benefits from other approaches.

(1) Atomic—Since application data and message are stored
as a part of same transaction in local database the
atomicity is maintained along with data consistency.

(2) Reliable-The outbox pattern ensures that messages
are delivered, that allows for reliable messaging. If
database transaction is successful then message
publishing is guaranteed, in case of failure delivery
can be retried.

(3) Simple—Outbox pattern removes the need for two
phase commit or complex transaction management
mechanism for message delivery. This not only
removes the complexity in the digital system but also
allows them to be loosely coupled.

(4) Scalable—As systems are loosely coupled through

asynchronous messaging they can be scaled
independently which provides flexibility in digital
application.

The outbox pattern proves to be great architecture in
distributed world, but key considerations need to be done
while solving the problem of reliable messaging. Database
Bottleneck — Since the pattern relies on database it can
become a bottleneck thus reducing the system performance
and scalability, so evaluation of database selection and
throughput needs to be done for optimal results. Storage — As
messages are also getting stored, a strategy needs to be
developed when these can be removed otherwise it can
burden the storage system. Message Duplication — Since
outbox pattern retries message in case of fault consumer
system needs to handle message idempotency as they can
receive same message more than once [10].

V. THE CATALYST

The whole system robustness of reliable messaging i.e.
message needs to be delivered to the sub-system is driven by
the asynchronous delivery system and retry in case of failure.
An efficient retry system with n number of retries makes
system more reliable and efficient, an extra guard around the
system can be placed by creating a dead letter queue which
holds the messages that are not delivered even with n retries.
The dead letter queue can be audited for failed message and
re-run, so data consistency is maintained in whole
€co-system.

The system efficiency and robustness can further be
enhanced by creating different retry strategies depending on
the use case like — Fixed delay retry where retry will be done
predefined fixed interval or exponential retry system which
will give more breather to the system to recover before next
retry. These capabilities help to recover the digital system

201

automatically without manual intervention.

Fault Tolerance: It helps the system to be more resilient in
case of network issues or unexpected events and help to
recover gracefully. Outbox pattern ensures messages are not
lost during such events and consistency is maintained in
different systems. Since messages are saved so during any
network failure these is no risk of message loss, and it can be

VI. CONCLUSION

This design has demonstrated a reliable and robust
message delivery system by leveraging the database
atomicity in a single transaction and removing the
complicated process like two phase commits which is
essential for distributed system design [11]. It provides the
flexibility and loose coupling along the subsystem so each
system can be scaled and developed independently. It not
only removes the dependency on complex architecture but
also provides a way where systems can communicate reliably,
which is essential for certain domain like banking, fintech,
healthcare and ecommerce for their digital applications [11].

The design helps to shield the application against the fault
and help with self-healing capability through retry. Apart
from providing as a reliable messaging system it can also be
used for rate control when calling the downstream where
system has strict rate limiting enforced. As illustrated through
practical use cases where the design can be applied like —
auditing, communication and loose coupling the design helps
to achieve overall system availability without degrading the
performance.

As needed in distributed system for system to perform
independently without causing impact or degrade the
performance of other system, they need to be loosely coupled.
The outbox design pattern helps to achieve all these goals
with further enhancing the reliability of the digital world.
Though the use of database can be tricky in case of very high
load scenarios put proper design and consideration as shown
in the paper can help to overcome that. Overall, the design
when implemented thoughtfully can be a great solution to
various proper in modern digital systems.

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] L Magnoni, “Modern messaging for distributed sytems,” Journal of
Physics: Conference Series, vol. 608, 16th International workshop on
Advanced Computing and Analysis Techniques in physics research
(ACAT2014) 1-5 September 2014, published under licence by IOP
Publishing Ltd, Prague, Czech Republic.

[2] G. Samaras, K. Britton, A. Citron et al., “Two-phase commit
optimizations in a commercial distributed environment,” Distrib
Parallel Databases, vol. 3, pp. 325-360, 1995.

[3] D. Malkhi and M. K. Reiter, “An architecture for survivable
coordination in large distributed systems,” IEEE Transactions on
Knowledge and Data Engineering, vol. 12, no. 2, pp. 187-202, 2000,
doi: 10.1109/69.842262.

[4] M. A. Bauer et al., “A distributed system architecture for a distributed
application environment,” IBM Systems Journal, vol. 33, no. 3, pp.
399-425, 1994, doi: 10.1147/sj.333.0399.

[5] B. C. Desai and B. S. Boutros, “Performance of a two-phase commit
protocol,” Information and Software Technology. vol. 38, no. 9, 1996,
pp. 581-599.

[6] C.Richardson, Microservices Patterns: With examples in Java, 2018.

[7]1 E. Losiewicz-Dniestrzanska, “Monitoring of compliance risk in the
bank,” Procedia Economics and Finance, vol. 26,2015, pp. 800-805.



(8]

[10

=

International Journal of Engineering and Technology, Vol. 17, No. 4, 2025

P. Kanhere and H. K. Khanuja, “A methodology for outlier detection in
audit logs for financial transactions,” in Proc. 2015 International
Conference on Computing Communication Control and Automation,
Pune, India, 2015, pp. 837-840, doi: 10.1109/ICCUBEA.2015.167.

R. W. Watson, “Chapter 2. Distributed system architecture model,”
Lecture Notes in Computer Science, vol 105. Springer, 1981, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-10571-9 2

Reliable Messages and Connection Establishment, Butler Lampson in
Distributed Systems, ed. S. Mullender, published by ACM
Press/Addison-Wesley, 1993

202

[11] K. Anita, P. K. Birman, T. A. Joseph, “Reliable communication in the
presence of failures,” ACM Transactions on Computer Systems
(TOCS), vol. 5,no. 1, pp. 47-76, 1987.

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).


https://creativecommons.org/licenses/by/4.0/

	1327 IJET-ET004 承诺十一月 定稿



