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Abstract—Digital twin technology is transforming the 

management and optimisation of Battery Energy Storage 

Systems (BESS) in on-grid applications. This paper presents the 

design and simulation of a digital twin for BESS with the aim of 

identifying system performance, reliability and operational 

efficiency through mathematical modelling. A detailed 

simulation-based architecture is developed, enabling predictive 

analytics and control. The digital twin uses a Single Particle 

Model (SPM) to computationally simulate the electrochemical 

behaviour of battery cells, providing insight into critical 

parameters such as State of Charge (SoC), State of Health (SoH) 

and degradation over time. In addition, a Python-based 

simulation model is examined to analyse and optimise energy 

flows within the grid. This study demonstrates how 

simulation-driven digital twin technology can enhance 

decision-making and system control in on-grid BESS 

applications, making it useful for academic studies and 

practical implementation. 
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I. INTRODUCTION 

The urgent need to reduce carbon emissions and achieve 

net-zero targets has spurred a global transition towards 

sustainable energy, necessitating a shift to renewable sources 

like solar and wind. The rapid growth of renewable energy, 

particularly wind and solar, has increased their share in 

electricity from 21% to 29%, with global capacity reaching 

3,372 GW by the end of 2022 [1]. Projections indicate that 

renewables will account for 42% of global electricity 

generation by 2028, with solar and wind expected to 

contribute 96% of new capacity additions [2]. However, their 

intermittency poses challenges for grid stability, highlighting 

the need for innovative solutions.     

One such solution is Battery-Based Energy Storage 

Systems (BESS) which can be critical for a cleaner, resilient 

power infrastructure, smoothing out fluctuations from 

renewable sources and enhancing grid stability [3]. Key 

battery types include lithium-ion, lead-acid, sodium-sulfur, 

and emerging solutions such as solid-state batteries [4]. 

Battery technologies are projected to evolve significantly by 

2030, focusing on the circular economy with a capacity of 4.7 

TWh and a cost of $80/kWh [5]. The performance 

parameters—energy density, power density, cycle life, 

efficiency, and safety—determine their suitability for various 

applications. Integrating BESS into the electricity grid 

presents technical, economic, regulatory, and market 

challenges [6]. Growing demand, driven by supportive 

policies and technological advancements, is making BESS 

more cost-competitive, despite challenges like high initial 

costs and safety concerns. BESS applications extend across 

transportation, industry, and residential sectors, providing 

mobile energy storage in electric vehicles and energy 

independence in homes. Energy Management Systems (EMS) 

and Battery Management Systems (BMS) are essential for 

optimizing BESS performance. Together, they enhance grid 

stability and flexibility, supported by AI and predictive 

analytics. To further enhance the capabilities of Battery 

Energy Storage Systems (BESS), the integration of  Digital 

Twin technology emerges as a transformative approach that 

promises to elevate system performance, monitoring, and 

control to unprecedented levels [7]. Digital twins refer to a 

digital representation of physical systems that can provide 

real-time data synchronization, allowing for monitoring, 

analysis, and optimization. Digital Twins facilitate the 

creation of a virtual testing environment, enabling the 

simulation of various operational scenarios for BESS prior to 

actual implementation. This innovative technology allows for 

comprehensive evaluation and optimization of system 

behavior under diverse conditions, thereby enhancing 

decision-making and improving overall operational 

effectiveness. 

II. LITERATURE REVIEW 

The integration of diverse modeling approaches within 

Battery Energy Storage Systems (BESS) establishes a robust 

foundation for the accurate prediction and optimization of 

battery performance, health, and longevity [8]. Central to this 

system is the Battery Management System (BMS), which 

facilitates real-time monitoring by assessing critical metrics 

such as State of Charge (SOC) and State of Health (SOH), 

while concurrently identifying faults [6]. Emerging 

capabilities within BMS seek to incorporate predictive 

analytics, thus enabling projections of Remaining Useful Life 

(RUL) and facilitating early anomaly detection to support 

proactive maintenance strategies. Control system models 

further enhance operational efficiency by dynamically 

managing charge-discharge cycles, thermal regulation, and 

grid integration, thereby ensuring optimal BESS performance 

under varying load conditions [9]. The reliability of BESS is 

underpinned by advanced electrical models. Equivalent 

circuit models, such as RC and Thevenin, offer simplified 

analyses of battery behavior and facilitate SOH estimation 

through internal resistance tracking; however, they are 

limited in their capacity to capture detailed aging patterns. In 

contrast, electrochemical models [10] provide a granular 

examination of battery reactions, monitoring the 

development of the Solid Electrolyte Interphase (SEI) layer 

and associated chemical reactions, which improves the 
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accuracy of SOH and RUL estimations. Hybrid models that 

integrate data-driven methodologies with electrochemical 

approaches leverage machine learning techniques to enhance 

predictions of both RUL and fault risks [11]. Thermal and 

safety models [12] play a crucial role in managing the 

thermal dynamics of batteries, addressing heat generation 

and dissipation to mitigate thermal stress, thereby promoting 

battery longevity. Additionally, these safety models focus on 

potential hazards, including thermal runaway, and 

incorporate data derived from thermal assessments to ensure 

the safety of BESS applications, particularly in critical 

contexts. Degradation modeling [13] addresses both 

chemical and physical alterations over time; specifically, 

electrochemical aging models track the growth of the SEI 

layer and lithium depletion, which gradually diminish 

capacity and augment impedance. Multi-physics models 

converge electrochemical, thermal, and mechanical factors to 

comprehensively monitor degradation, while stochastic 

models simulate real-world variability in temperature and 

load, refining predictive accuracy under fluctuating 

operational scenarios. 

In the grid interactions, DC-AC power electronics models 

assess the impact of power conversion on BESS efficiency, 

which is vital for grid-connected systems. Furthermore, 

lifecycle cost analysis models quantify total ownership costs 

and returns, thereby facilitating sustainable financial 

planning for large-scale BESS projects [14]. Lastly, grid 

interaction models enhance the functionality of BESS within 

the dynamics of the grid and demand-response applications, 

enabling functionalities such as peak shaving and frequency 

regulation, which bolster coordination between distributed 

energy resources and the grid [14].  

As the field of battery technology evolved, the emphasis 

shifted toward applications requiring real-time data and 

optimization capabilities. The emergence of digital twin 

technology represents a crucial advancement in this context. 

Digital twins serve as virtual representations of physical 

systems that utilize real-time data to enable dynamic 

simulations and performance forecasting. This functionality 

renders digital twins indispensable for the proactive 

management of battery systems within broader energy 

frameworks, including power grids [15]. 

The convergence of advanced modeling techniques and 

digital twin technology signals the dawn of a new era in 

energy storage and grid management. These advancements 

are poised not only to enhance the management and 

integration of battery technologies but also to propel the 

development of intelligent, adaptive, and sustainable energy 

systems. This integrative approach addresses the 

complexities inherent in battery aging, thermal effects, and 

safety considerations, ensuring that BESS deployments 

remain economically viable, safe, and technically proficient 

in real-world environments [16].  

This paper examines the integration of Digital Twin 

Simulation on-grid Battery Energy Storage Systems (BESS), 

focusing on developing an architecture that enhances 

operational efficiency, energy management, and grid support 

functions. Through the Single Particle Model (SPM) as a 

foundation for battery modeling, this study explores methods 

to simulate, monitor, and optimize BESS performance. 

Python programming is employed to bring theoretical models 

into practical application, enabling data-driven insights that 

inform battery behavior, and predictive maintenance. This 

approach not only contributes to a more responsive BESS 

architecture but also demonstrates the digital twin’s potential 

in optimizing energy storage solutions within on-grid 

systems. Although this paper covers only limited part of the 

above section due to lack of data availability.  

III. MATERIALS AND METHODS 

The digital twin framework for on-grid Battery Energy 

Storage Systems (BESS) offers a comprehensive 

representation that integrates the Communication Layer, 

Digital Twin Layer, and Analytics and Control Layer, 

facilitating a seamless digital replica of the physical system 

[17]. This framework encompasses a wide array of 

components, including hardware, software, and 

communication protocols, ensuring that real-time 

performance metrics such as State Of Charge (SOC), State Of 

Health (SOH), voltage, temperature, and Remaining Useful 

Life (RUL) are accurately captured and modeled.  

 
Fig. 1. Overview of the system architecture for digital twin integration 

on-grid systems. 

 

Considering a battery packs, with an average capacity of 

210 kWh and a cycle life of 3500 cycles, are central core to 

the system. Sensors, such as temperature, Voltage sensors, 

Aerosol to capture critical data. Power converters and 

inverters facilitate the conversion of DC power to AC power. 

Circuit breakers, fuses and pre-charge circuits to ensure 

system protection. Grid connection points, adhering to 

standards like IEEE 1547, enable grid integration. 

The Communication and Data Layer enables data 

exchange through robust protocols and networks, 

transmitting real-time sensor data to cloud storage for further 

analysis. The Digital Twin Model leverages this data, 

simulating system dynamics and providing actionable 

insights for optimizing operations and performing predictive 

maintenance (18). Integration with the grid enables peak 

shaving, load leveling, and enhances grid resiliency, while 

machine learning algorithms drive predictive analytics to 

anticipate system failures, ensuring the longevity and 

efficiency of the BESS. Finally, cloud platforms handle 

large-scale data processing, with visualization tools offering 

intuitive dashboards that empower stakeholders to make 

informed decisions and optimize system performance. 

The evolution of battery models, especially in the context 

of digital twin technology, has shifted from simplistic 

empirical approaches to advanced physics-based modeling 

techniques. This shift underscores the necessity for a deeper 

understanding of the complex interactions governing battery 

performance.  

Considering the LiFePO4 - graphite system, the electro- 

chemical storage reactions in charge can be represented by 
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Eqs. (1) & (2) as: 

Positive electrode: 

4y14Fy FePOLiyeyLi
Charge

ePOLi −+
−

+
+⎯⎯⎯ →⎯

 
(1) 

Negative electrode:
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+

  
    (2) 

The controlled voltage source for conventional batteries 

can be expressed in a mathematical model [19] as: 
 

−
+−

−
−=

idtB
Aei

elec
R

idtQ

Q
K0VV    

(3) 

where V: battery voltage (V), V0: no-load battery voltage (V), 

K: polarization voltage (V), Q: battery capacity (Ah), Relec: 

internal resistance (Ω), i: battery current (A), A: exponential 

zone amplitude (V), B: inverse of the charge at the end of the 

exponential zone (Ah)-1. 

The Eq. (3) and associated models were computationally 

efficient, they lacked the capability to accurately capture the 

intricate electrochemical reaction, thermal effects, and 

kinetics transport phenomena within lithium-ion battery and 

behavior. This limitation motivated the transition to more 

sophisticated physics-based models.  

The Pseudo-Two-Dimensional (P2D) model [20] emerged 

as a significant advancement, integrating electrochemical 

reactions, mass transport, and thermal dynamics. Despite its 

comprehensive nature, the high computational cost of the 

P2D model restricted its real-time applicability in Battery 

Management Systems (BMS). In response to these 

limitations, there has been a drive to develop simplified 

frameworks that retain essential characteristics and insights 

while reducing computational complexity.  

The Single Particle Model (SPM) [21] addressed some 

these challenges by simplifying the battery representation. It 

assumes uniform lithium-ion concentration in the electrolyte 

and models lithium diffusion in a single spherical particle 

using Fick’s law: 

 
SC

2
ΔSD

t

SC
=





                          

 
(4) 

where: 
sC is the lithium concentration in the solid phase 

(mol/m3), 
sD is the solid-state diffusion coefficient (m2/s).   

Boundary conditions for lithium diffusion are: 

At the particle surface 

Fsa

I

Rrr

Cs
Ds =

=


−

                         
 (5) 

flux is proportional to the current density. 

At the particle center (r=0) 

0
r

Cs
=





                   

  
(6) 

ensures symmetry  

The SPM’s simplicity allows for faster simulations with 

lower computational demands, making it suitable for certain 

applications. However, it neglects electrolyte dynamics and 

becomes less accurate under high charge/discharge rates, 

where ionic transport resistance and concentration 

polarization effects are significant. To overcome the 

limitations, the Single Particle Model with Electrolyte (SPMe) 

incorporates the effects of electrolyte concentration and 

potential are critical for accurate modeling [22, 23]. This 

extension uses concentrated solution theory to model ionic 

transport resistance, electrolyte depletion, and high C-rate 

operations. By bridging the gap between the simplicity of 

SPM and the comprehensiveness of the P2D model, SPMe 

improves accuracy while maintaining computational 

efficiency.  

The distribution of lithium ions in the electrolyte is 

governed by the diffusion equation coupled with ionic flux 

[11]: 

 jΔ
F

t1
)eC

2
Δe(D

t

eC


+
−

−=




                   
(7) 

 

where: 
eC  is the electrolyte concentration (mol/m3), 

eD  is 

the electrolyte diffusion coefficient (m2/s), 
+t is the 

transference number (dimensionless), j  is the ionic flux 

(A/m2), F , Faraday Constant (96487 C/mol). 

The electrolyte concentration directly impacts the 

availability of lithium ions for intercalation into the electrode 

material [24], the depletion or uneven distribution of 
eC can 

lead to localized concentration polarization, reducing battery 

efficiency and lifetime. 

The potential within the electrolyte is determined by ionic 

conductivity and the flux of ions [24]: 

( ) eΔlnCt1
F

2RT

eσ

jΔ
eΔφ

+
−−


−=

    

 
  (8) 

where: 
e  is the electrolyte conductivity (S/m) and e   is the 

electrolyte potential (V). 

Variations in e  
affect the electrochemical potential of 

reactions and, subsequently, the voltage profile of the battery 

during operation. Modeling e  
provides insights into 

limitations imposed by electrolyte transport resistance, 

enabling optimization of material properties and cell design. 

The interaction between the electrolyte and solid phase is 

governed by interfacial reaction kinetics as shown in the Fig. 

2, as described by the Butler-Volmer Eq. [25]: 

























−=

RT

Fηcα
exp

RT

Fηaα
exp0jj

                
 (9) 

where j : Reaction Current density (A/m2), 0j : Exchange 

current density (A/m2), a , c Anodic and cathodic charge 

transfer coefficients, R: Ideal Gas constant, T: Temperature 

(K), η: overpotential (V). 

The coupling of electrolyte dynamics with solid-phase 

diffusion allows accurate prediction of concentration 

gradients, voltage drop, and limitations under high C-rate 

conditions. Accurate modeling of electrolyte dynamics 

allows for the prediction of these gradients and helps to 

prevent issues like concentration polarization, which can 

hinder performance.  

171

International Journal of Engineering and Technology, Vol. 17, No. 3, 2025



  

 
Fig. 2. Schematic of unit cell model coupled with microscopic (r-direction) 

solid -Liquid diffusion model [26]. 

 

The Average Model (AM) is predicated on fixed 

electrolyte concentration assumptions and charge estimation 

[27]. Whereas the extended AM incorporates both 

electrochemical and thermal dynamics, thereby enhancing its 

predictive capacity regarding voltage behavior and capacity 

recovery for battery materials across a range of 

charge-discharge scenarios. The cell voltage V(t) [8] is a 

fundamental parameter in lithium-ion battery modeling, 

serving as a critical link between electrochemical processes, 

transport phenomena, and external performance.  
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(10) 

where Up, Un: Open Circuit Potential at Positive Electrode and 

Negative Electrode 

nmax,s,C
, pmax,s,C Maximum Li-Ion Inventory at negative & 

positive electrode surface (mol/m3) 

psurf,s,
C , nsurf,s,

C Lithium-Ion concentration at solid 

electrolyte interface positive & negative (mol/m3) 
eff

nk , eff

sepk , eff

pk  Effective Ionic Conductivity of electrolyte 

at different region (negative, separator and positive 

electrodes) of the cell (S/m) 

+t : Li+ Transference number   

F: Faraday constant (C mol-1)  

)(LCe
, )0(eC : Average electrolyte Concentration (mol/m3) 

 : Charge transfer Coefficient 

psR , , nsR ,
: Radius of the positive and negative electrode 

spherical particles 

I: Applied Current. 

ps, , ns , Active material Positive & Negative Volume 

fraction (%)  

pi ,0
,

ni ,0
Exchange current density (A/m2) 

A: surface area of the current collector (m2) 

n p sep sei negative electrode, positive electrode, 

Separator and SEI layer thickness (m) 

The above Eq. (10), represents the dynamic interplay of 

Open-Circuit Voltage (OCV), Impact by SEI growth, 

electrochemical reaction kinetics described by the 

Butler-Volmer equation, and internal resistive effects, 

making it an essential input for accurately simulating battery 

behavior. V(t) provides a comprehensive framework to 

understand key aspects such as State Of Charge (SOC), 

power capability, thermal impacts and quantifying the impact 

of the variations of design parameters during aging. The 

parameter values used in Eqs. (10) and (11) are directly 

adopted from the work of He et al. (22). 

The OCP of an LFP cell is determined by the 

electrochemical potential of the lithium ions present in the 

cathode and anode materials [28]. For cathode material 

LiFePO4 Eq. (11) stoichiometry varies with respect to “xsp” 
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The functional form of the negative OCV curve fitted 

equation for anode/graphite 
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Solid Electrolyte Interphase (SEI) layer [29], the Impact by 

SEI growth:  
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The SEI layer resistance is 

SEI
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k

L

j,
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(14) 

where KSEI is the SEI layer conductivity and SEI layer 

thickness
SEIL  

The SEI layer thickness is 

  RT

E

ekk

a2

SEI0SEI

−

=                       (15) 

where 2aE is the activation energy for SEI layer thickness 

growth, and 0SEIk is the SEI layer growth coefficient.  

SEI layer thickness 
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SEIin
SEI


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where the 
inQ  is the battery capacity before the SEI layer 

formation cycle process is conducted (100%), 
pn AA ,
 
is the 

particle surface area before the SEI layer formation cycle, 

SEIn
 
is the number of lithium moles lost for every mole of SEI 
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layer formed, 
SEI is the SEI layer density, and 

SEIM is the 

molecular weight of compounds constituting the SEI layer.

 

The initial surface area of the single particle is the surface 

area of a sphere with initial defects.  

where 

)21(4 00, alRA crcrnsn  += , )21(4 00, alRA crcrpsp  +=  
(17)

 

where crol  is the initial defect width, 0a is the initial defect 

length, 
psns RR ,, , is the particle radius, and crρ  is the number 

of cracks per unit area. 

Ohmic resistance, Eq. (10), 














++=

eff
pk

pδ

eff
sepk

sepδ
2

eff
nk

nδ

pn,2A

1

ohm
R

 

jBrugg
jsjfjk

nBrugg
jejk

eff
jk

,
),,

1(
,

,  −−==              (18) 

Brugg,sep
)s,sepε(jk

Brugg,sep
e,sepεjk

eff
sepk −== 1

             (19) 

where 
fe   and  

fe   and of the electrolyte and filler, and 

from the Bruggman exponent, Brugg, of each region. 

The dynamic nature of surface stoichiometry not only 

governs electrochemical reaction rates but also reflects the 

immediate availability of lithium ions for intercalation or 

deintercalation. The surface lithium concentration at the 

electrode-electrolyte interface at the positive and negative 

electrode gives: 

Positive Electrode:  









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−
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Cell
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(20) 

where: 

jsx ,  and jsx , represents the current stoichiometry at the 

surface of the negative & positive electrode. 

%0,, jsx and %0,, jsx is the negative and positive electrode 

stoichiometry at 0% SOC. 

%100,, jsx and %100,, jsx  is the negative and positive electrode 

stoichiometry at 100% SOC. 

IV. RESULT AND DISCUSSION 

The research aims to provide insights and practical 

methodologies for advancing BESS integration in 

contemporary grids, by addressing key operational 

challenges, and promoting efficient energy dispatch and 

utilization. This study employs a Digital Twin (DT) 

framework to simulate a 210 kWh Battery Energy Storage 

System (BESS), incorporating detailed cell-level parameters 

and operational data, validating its effectiveness as a 

simulation tool for grid integration. The Single Particle 

Model with Electrolyte (SPMe) incorporates the effects of 

electrolyte concentration and potential are critical for 

accurate modeling, dynamic interplay of Open-Circuit 

Voltage (OCV), Impact by SEI growth, electrochemical 

reaction kinetics described by the Butler-Volmer equation, 

and internal resistive effects-based SOC estimation proved 

resilient against sensor noise and load fluctuations, 

maintaining consistency with physical measurements under 

dynamic operating conditions. 

The voltage V(t) as a function of time can be expressed 

utilizing its governing equations, providing insights into the 

dynamic response of the battery during operation. During 

rapid charge and discharge cycles, significant concentration 

gradients can develop between the surface and the bulk of the 

electrode, with the surface often exhibiting distinct lithium 

concentrations. The surface layer, where most 

electrochemical reactions occur, is exceptionally 

thin—typically ranging from a few nanometers to 

micrometers—and constitutes a small fraction of the 

electrode’s total volume. Despite its limited volume, the 

surface plays a significant role in battery performance. 

 
Fig. 3. Open circuit voltage of the full cell, OCV 

 

Here dynamic hysteresis is observed, as the diffusion 

phenomena in the solid particles have already been 

considered. The thermodynamic equilibrium potentials of 

each electrode in charge and discharge, and based on the 

experimentally determined stoichiometries xsp defined in 

Eqs 11 and 12. The open circuit voltage of the full cell, OCV, 

can be reconstructed for both charge and discharge, as 

represented in Fig. 3. The mean of the charge and discharge 

OCV data is the input to a nonlinear least square procedure to 

perform the estimation of the electrode composition ranges. 

 
Fig. 4. Simulation results of an LFP battery using an improved voltage model 

showing 4a (top) State of Charge (SoC), 4b (middle) applied current profile, 
and 4c (bottom) terminal voltage response over time during charge and 

discharge cycles. 

 

The second Fig. 4a shows SoC evolution over one hour, 

fluctuating between 79–80%, reflecting real-time 

responsiveness to transient currents and internal diffusion, 
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ideal for grid services like frequency regulation. The Fig 4b 

plot simulates applied current, alternating between charging 

and discharging windows, mimicking real-world energy 

dispatch scenarios such as peak shaving and load balancing. 

This current profile correlates with the SoC, aiding 

condition-based maintenance strategies neglecting thermal 

behavior.  

The Fig. 4c plot shows terminal voltage, linked to SoC, 

providing feedback for inverter control and BMS logic, 

useful for safety protocols and anomaly detection. Close 

alignment between these curves demonstrates the model’s 

reliability for real-world grid operations, ensuring precise 

energy dispatch and load balancing. These plots collectively 

illustrate how real-time State of Charge (SoC) measurements 

from the BESS, when compared with simulated outputs from 

the Single Particle Model (SPM), enhance the accuracy of the 

digital twin framework.  

 
Fig. 5. Comparison of SoH degradation over 10 years under different EMS 

strategies: Rule-Based, Fuzzy Logic, and Predictive (MPC), against 

simulated and real cycle-based SoH data. Predictive EMS shows superior 
longevity with ~75% SoH retention 

 

As shown in Fig. 5. the blue dashed curve represents a 

simulated State-Of-Health (SoH) trajectory for an LFP 

battery, declining linearly from 100% to 80% over 3,500 full 

equivalent cycles (mapped onto a 10-year timeline), 

consistent with empirical degradation expectations where 

SEI growth, lithium plating, and mechanical stress cause 

~20% capacity fade after ~3,000–4,000 cycles. The graph 

compares this cycle-based aging with EMS-driven 

degradation, revealing how control strategies critically 

impact longevity. Considering rigid operation logic based 

EMS [30] (red dashed) shows the steepest decline (~65% 

SoH at 10 years), while fuzzy logic (31) (orange dash-dot) 

improves retention (~70% SoH) through dynamic rule-based 

optimization. Predictive EMS (MPC, green solid) 

outperforms both, preserving ~75% SoH by leveraging a 

digital twin for real-time optimization of charge/discharge 

actions via load forecasting and internal state modeling. 

Early-life empirical data (black dots) validates slower 

degradation than simulation, emphasizing that advanced 

EMS strategies—particularly MPC-minimize cumulative 

stress to extend operational life. This degradation analysis, 

vital for BESS lifecycle modeling, demonstrates the digital 

twin’s predictive capabilities.  

Fig. 6. demonstrates the alignment between significant 

SoH drops and actual failure points (marked in red), 

validating the digital twin’s capability for early fault 

detection. Such insights enable EMS-driven preemptive 

control actions to mitigate cascading failures. 

 
Fig. 6. SoH degradation and failure correlation over time.  

 

Early detection of risks—such as thermal runaway or 

capacity plunge—enables grid-scale interventions, 

enhancing system reliability, fault tolerance, and compliance 

with safety regulations critical to utility-scale deployment. 

  

 

Fig. 7. Digital twin-based early warning system using MPC-style adaptive 
thresholds for temperature and voltage. Blue triangles indicate predictive 

alerts, while red crosses mark actual failures.  

 

Fig. 7. presents a multi-parameter monitoring framework 

for detecting early signs of failure in a battery system using a 

digital twin approach. The parameters include temperature 

(°C), scaled voltage (×10), static safety thresholds (dashed 

lines), and adaptive warning thresholds derived from a Model 

Predictive Control (MPC)-style strategy. The orange and 

purple curves represent the raw temperature and voltage data 

respectively, showing fluctuations across multiple 

charge/discharge cycles. Static safety thresholds (red and 

blue dashed lines) serve as baseline failure limits, while the 

adaptive thresholds (light purple and orange markers) 

dynamically evolve based on system behavior, capturing 

transient anomalies. Blue triangles mark instances where the 

digital twin predicted early warnings, while red crosses 

indicate actual failure events. Notably, the early warnings 

occur well in advance of failures, validating the effectiveness 

of the adaptive thresholding mechanism. This adaptive 

digital twin approach enables proactive load scheduling and 

thermal management by forecasting potential failure modes. 

By integrating such real-time feedback into the EMS decision 

loop, the system can dynamically optimize power dispatch, 

reduce battery stress, and extend overall system life. This 

coupling of predictive health monitoring with EMS 

functionality improves resilience and asset utilization in 

grid-connected and off-grid applications. 

The Fig. 8 illustrates the dynamic impact of a BESS digital 

twin on grid energy flow (in kW) across a 24-hour cycle. The 

blue line shows the baseline grid power flow without digital 

twin optimization, while the red dashed line represents the 

grid flow after real-time adjustments made by the digital 

twin. 
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Fig. 8. Grid Energy Flow (kW) comparison with and without Digital Twin 

EMS. 

 

The observed deviations, particularly during load ramps 

and valleys, highlights the Digital Twin’s effectiveness in 

peak shaving, valley filling, and mitigating power 

fluctuations. The plot contrasts baseline (unoptimized) 

energy distribution with DT-controlled scenarios, 

highlighting reductions in peak demand, smoother ramping, 

and improved renewable integration. This level of control 

helps reduce grid stress, defer infrastructure upgrades, and 

enhance demand response strategies. By simulating battery 

behavior in real time and predicting load trends, the digital 

twin enables more intelligent and adaptive dispatch of BESS 

assets, aligning with economic and technical grid objectives. 

V. CONCLUSION 

The digital twin leverages a Single Particle Model (SPM) 

to simulate the electrochemical behavior of battery cells, 

enabling early-stage insights into key parameters like State 

Of Charge (SoC), State Of Health (SoH), and degradation 

trends. A Python-based simulation model complements this 

by analyzing and optimizing energy flows within the grid. 

Through comparative EMS analysis of various control 

strategies, the results show that predictive, intelligent energy 

management can significantly extend battery life and 

operational efficiency. However, the paper has a limited 

scope and is based on assumptions and computational 

limitations, which fall short of the objective. The digital twin 

also serves as an early warning system, identifying potential 

faults before they escalate, while supporting maintenance 

scheduling, dispatch optimization, and lifecycle 

planning—all within SoH-safe operating limits. Ultimately, 

this approach not only enhances reliability and grid stability 

but also paves the way for scalable, cost-effective adoption of 

battery energy storage systems in large-scale 

renewable-integrated power networks.   

APPENDIX  

This study did not generate new unique reagents. This 

paper does not report original code. Data reported in this paper 

will be shared by the corresponding author upon request. The 

test data was taken from a testing facility.  
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