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Abstract—Forecasting Carbon Emissions Using Time Series 

Analysis Global warming is one of the most difficult and 

complex problems facing the world today, and forecasting 

carbon emissions has become a worldwide challenge. In this 

study, we try to use three models Exponential Smoothing (ETS) 

model, seasonal ARIMA and error regression Autoregressive 

Integrated Moving Average (ARIMA) model to train the data of 

carbon dioxide emissions in a region of the United States from 

1990 to 2015, to simulate and forecast the carbon emissions in 

the United States, and to find out the optimal forecasting model. 

Keywords—carbon emissions, Exponential Smoothing (ETS), 

Autoregressive Integrated Moving Average (ARIMA), Seasonal 

Autoregressive Integrated Moving Average (SARIMA), 

ARIMA with error 

I. INTRODUCTION

In recent years, climate change has become one of the 

important issues on the international political agenda. Global 

warming is one of the toughest and most complex issues 

facing the world today. Accumulating scientific evidence 

indicates that increasing concentrations of Greenhouse Gases 

(GHGs) in the atmosphere since the industrial age have led to 

rising global temperatures and changes in climate patterns, 

mainly carbon emissions in the atmosphere [1, 2]. Carbon 

dioxide (CO2) is a Greenhouse Gas (GHG), which is mainly 

derived from human activities and exists in large quantities in 

the atmosphere, causing global ecological problems and 

weather change [3]. 

Since 1750, it is estimated that about two-thirds of 

anthropogenic carbon emissions (the most important 

anthropogenic greenhouse gases) come from fossil fuel 

combustion, and these emissions have continued to increase 

in recent years. While power generation (including power 

generation and heat supply) is a fossil fuel One of the main 

sources of carbon emission produced by combustion. In 2018, 

carbon emissions from the US power generation sector 

ranked second in total emissions, reaching 27% [4]. 

The prediction of carbon emission has become a 

worldwide problem, because greenhouse gases have the 

greatest impact on the earth’s environmental problems. 

Predicting carbon emission is also an important key to raising 

public awareness on how to solve environmental 

problems [5]. Understanding the past carbon emission path of 

the United States and making reliable projections of its future 

emissions is critical. This study attempts to use three models 

to model and forecast carbon emission in the United States 

and find out the most effective forecasting model. 

In this project, our goal is to apply some time series models 

to predict the carbon emissions of power generation in the US 

context, and find out the most accurate forecasting methods, 

these methods include exponential smoothing method, 

ARIMA method. and regression with Autoregressive 

Integrated Moving Average (ARIMA) errors method. The 

project objectives are: 

1) Find the optimal model for applying the Exponential

Smoothing (ETS) exponential smoothing method to US 

carbon emissions. 

2) Find the optimal model for applying the ARIMA method

to US carbon emissions. 

3) Find the optimal model for US carbon emissions using

regression with seasonal ARIMA errors method. 

4) Find out the most accurate model based on these three

methods. 

II. MATH

A. Sample Data

Data used in this project comes from the U.S. Energy 

Information Administration (EIA), an independent statistical 

and analytical agency within the U.S. Department of Energy. 

It collects, analyzes and publishes information related to 

energy production, consumption and prices, as well as 

forecast data related to energy market and policy trends from 

1990 to 2015. 

B. Definition of Variables

Carbon emissions from electricity generation in the United 

States refer to the release of carbon dioxide (CO2) and other 

greenhouse gases into the atmosphere as a result of producing 

electricity from various sources. Electricity generation is a 

significant contributor to greenhouse gas emissions, 

including carbon emissions, which are a major driver of 

climate change. In the United States, the primary sources of 

carbon emissions in electricity generation include fossil fuels 

such as coal, natural gas, and petroleum. The data is divided 

into two sections, one for initialization set (1990 Q1 to 2013 

Q4), the other for test set (2014 Q1 to 2015 Q4). 

The data is available from first quarter of 1990 to fourth 

quarter of 2015. However, we will only employ data period 

from first quarter of 1990 to fourth quarter of 2013 as the 

Initialization dataset to develop the model since we hold 8 test 

data points (first quarter of 2014 to fourth quarter of 2015) as 

the out-sample data for the model’s forecast performance 

assessment purpose. 
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C. Empirical Model 

This project will use three popular methods to develop time 

series models for the collected data sets, they are exponential 

smoothing method, ARIMA method and regression with 

ARIMA errors method technique. The developed models are 

then compared and evaluated which has better predictive 

performance. Finally, the methods used in this project can be 

assimilated to other datasets by using them, and the rationale 

for these methods will be illustrated next. 

The ETS exponential smoothing method is a more 

comprehensive and flexible exponential smoothing method 

for time series forecasting [6]. The core idea is to decompose 

time series data into error term, trend term and seasonal term, 

and predict their future values by exponential smoothing. In 

the ETS method, the smoothness of each component is 

controlled by a smoothing parameter (smoothing coefficient), 

which can be adjusted according to the characteristics of the 

data. In addition, ETS methods can estimate confidence 

intervals for predictions to provide a measure of forecast 

accuracy. It has wide applications in time series forecasting, 

especially for data with obvious trends and seasonality. It can 

flexibly adapt to different data patterns and provide reliable 

prediction results. However, choosing an appropriate ETS 

model and parameters still needs to be evaluated and adjusted 

according to the specific situation. 

The ARIMA model combines a combination of 

Autoregressive (AR), differencing (I), and Moving Average 

(MA) to model and forecast various time series patterns [7]. 

The core idea is to use historical observations and forecast 

errors to predict future values. It is based on the 

autocorrelation (autoregressive term) and moving average 

term of the time series, and removes non-stationarity through 

difference operations. 

The seasonal ARIMA method is an extension of the 

ARIMA model for dealing with time series data with 

pronounced seasonal patterns. It incorporates a combination 

of Autoregressive (AR), differencing (I) and Moving 

Average (MA) of the ARIMA model, and introduces seasonal 

differencing and seasonal components to better capture 

seasonal variations. Seasonally differencing time series data 

to remove seasonal patterns and transform them into a 

stationary time series. Then, apply an ARIMA model to the 

differenced data to build a SARIMA model. Values at future 

time points can be predicted and restored to the original 

seasonal timescale. The express equation for SARIMA as 

followed [8]: 

 

 (1) 

Linear and non-linear usually are used to model trend 

pattern, and non-linear include quadratic trend models and 

exponential trend. And regression on seasonal dummies is 

used to model seasonal pattern. Combined with both methods, 

we can construct the regression model for the data with trend 

and seasonal components. The express equation for the 

regression as followed [9]: 

Linear trend and Seasonality: 

 

𝑦𝑡= 𝛽1 × t + ∑ 𝑦𝑖
𝑠
𝑖=1 𝐷𝑖𝑡 + 𝑣𝑡                     (2) 

Forecast:  

 

𝑦𝑇+ℎ= 𝛽1 × (T +h) + ∑ 𝑦𝑖
𝑠
𝑖=1 𝐷𝑖𝑡 + 𝑣𝑇+ℎ            (3) 

 

Quadratic trend & Seasonality: 

 

𝑦𝑡= 𝛽1 × t +𝛽2 × 𝑡2 + ∑ 𝛽𝑖
𝑠
𝑖=1 𝐷𝑖𝑡 + 𝑣𝑡                  (4) 

 

Forecast: 

 

𝑦𝑇+ℎ= 𝛽1 × (T +h) +𝛽2 × 𝑡2 + ∑ 𝛽𝑖
𝑠
𝑖=1 𝐷𝑖,𝑡+ℎ + 𝑣𝑇+ℎ   (5) 

 

In above equations, denotes a full set of a seasonal 

dummies. Including the intercept and a full set of a seasonal 

dummies will lead to perfect mulitcollinearity problem, hence 

we drop the intercept terms in the above regression modes. 

But sometimes error will be ignored, that if error exist 

autocorrelation problem, it will be affect the forecast 

accuracy of model and fitness of model. Then ARIMA errors 

will be adopted to fit the regression model. Regression with 

ARIMA errors method combines the techniques of regression 

analysis and ARIMA modeling to deal with regression 

models with Autoregressive Integral Moving Average 

(ARIMA) errors. In this method, a regression model is first 

established to describe the linear relationship between the 

dependent variable and the independent variable. Then, 

analyze the regression model’s residuals, which are the 

differences between the observed values and the values 

predicted by the regression model. Due to the possible 

autocorrelation and non-stationarity of the residuals, an 

ARIMA model was used next to capture the temporal 

dependence of these errors. Integrating the forecast error from 

the ARIMA model back into the regression model yields a 

revised forecast or estimate. By combining the regression 

model with the ARIMA model, the regression and ARIMA 

error method can more accurately deal with the temporal 

correlation of residuals and improve the ability to predict 

future observations. 

IV.    EMPIRICAL RESULT 

A. Data Descriptive 

The Fig. 1 shows the monthly data trend of carbon 

emissions used for electricity generation in the United States 

from 1990 Q1 to 2015 Q4. It can be seen that the carbon 

emissions show a repeated pattern or peaks and troughs in the 

same time interval, and show a trend of rising first and then 

falling. Repeating patterns, or peaks and troughs, indicate that 

there is a seasonality to carbon emissions, meaning that 

emissions may be higher or lower during a particular season 

or time period. For example, warmer seasons may be 

accompanied by higher energy demands, such as the use of 

air conditioning and cooling systems, resulting in higher 

carbon emissions. On the other hand, the trend of rising first 

and then falling indicates that carbon emissions show an 

overall rising and then falling change within a period of time. 

This likely reflects the influence of a range of factors, such as 

economic development, energy policy, technological 

progress, and changes in environmental awareness. At the 

same time has a systematic trend. 
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Fig. 1. Seasonal and systematic trend for carbon emission. 

 

 
Fig. 2. Histogram and statistics of the carbon emission. 

 

Based on the observation of the Fig. 1, it is confirmed that 

the multiplicative form is appropriate. And there is obvious 

systematic trend and seasonal patterns. According to Fig. 2, 

the data is normal distribution, p-value for Jarque-Bera Test 

(The null hypothesis: The series is normal distribution) is 

0.0069, which less than the 5% significant level. 

B.   ETS Smoothing Model 

We can confirm that the error component is multiplicative 

(M). As a result, there are 15 different ETS combinations to 

consider. From the below table, by comparing the AIC values, 

the best result is determined to be ETS (M,N,A). 

ETS (M,N,A) modeling was conducted on carbon data 

from the first quarter of 1990 to the fourth quarter of 2013.  

Based on this model, carbon data from the first quarter of 

2014 to the fourth quarter of 2015 was predicted, and the 

forecast accuracy is presented in Table 1. The MAE, MSE, 

and MAPE values for the prediction results are 35.0917, 

2113.6385, and 10.6017, respectively. 

 
Table 1. Result of ETS smoothing  

Items Seasonal Components 

Trend 
N 

(None) 

A 

(Additive) 

M 

(Multiplicative) 

N (None) 
(N,N) 

[1113.96] 

(N,A)* 

[958.111] 

(N,M) 

[959.038] 

A (Additive) 
(A,N) 

[1109.54] 

(A,A) 

[986.508] 

(A,M) 

[962.615] 

Ad (Additive damped) 
(Ad,N) 

[1107.74] 

(Ad,A) 

[962.508] 

(Ad,M) 

[964.031] 

M (Multiplicative) 
(M,N) 

[1109.56] 

(M,A) 

[963.053] 

(M,M) 

[963.972] 

Md (Multiplicative 

damped) 

(Md,N) 

[1107.75] 

(Md,A) 

[962.615] 

(Md,M) 

[964.115] 

Model MAE MSE MAPE 

ETS (M,N,A) 35.0917 2113.6385 10.6072 

The values in [ ] denote AIC 

 

C.  SARIMA Model 

Though the test of correlogram, getting the result as shown 

in Figs. 3 and 4 ,there exist a trend and a very pronounced 

seasonal pattern. But the auto-correlations illustrate clearly 

that the series is non-stationary (the values of auto-

correlations stay large). The series is seasonal (the values of 

auto-correlations at lags 4, 8, and 12 are all larger than their 

adjacent auto-correlations). Therefore, we apply the seasonal 

differencing on the series. 

 

 
Fig. 3. The Correlogram of SD_CARBON. 

 

 
Fig. 4. The Correlogram of D_SD_CARBON. 

 

The seasonal differenced carbon data represents the change 

in carbon between quarters of consecutive years, the seasonal 

differenced series is now much closer to being stationary than 

before. The seasonality is also much less obvious, although 

still present as shown by spikes at lags 4, 8, and 12 in the 

PACF. To achieve stationarity, non-seasonal differencing can 

be applied. 

The seasonal difference carbon data after the first 

difference (D_SD_CARBON) is stationary. 

We performed seasonal difference and first difference on 

the data for one time respectively, the letter “d” denotes non-

seasonal differencing order, and “D” denotes seasonal 

differencing order, hence we confirm that d = D = 1.Then, we 

have identified the model to be an  where values for p, q, P, 

and Q are yet to be determined.In order to select the optimal 

model, we constructed a grid table listing all parameter 

combinations and compared the values of AIC and SIC, 

choosing the minimum values. Therefore, we set the 
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Series: CARBON

Sample 1980M01 2014M12

Observations 420

Mean       136.7149

Median   137.1150

Maximum  188.4070

Minimum  81.24500

Std. Dev.   24.17886

Skewness  -0.075733

Kurtosis   2.262005

Jarque-Bera  9.932619

Probability  0.006969 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.854 0.854 72.167 0.000
2 0.768 0.145 131.23 0.000
3 0.738 0.202 186.36 0.000
4 0.697 0.035 236.02 0.000
5 0.655 0.027 280.36 0.000
6 0.640 0.099 323.24 0.000
7 0.608 -0.018 362.33 0.000
8 0.545 -0.109 394.12 0.000
9 0.540 0.130 425.65 0.000

10 0.525 0.001 455.85 0.000
11 0.457 -0.152 479.00 0.000
12 0.356 -0.268 493.17 0.000
13 0.343 0.139 506.48 0.000
14 0.303 -0.056 516.99 0.000
15 0.265 0.020 525.14 0.000
16 0.243 -0.032 532.07 0.000
17 0.192 -0.079 536.45 0.000
18 0.137 -0.010 538.72 0.000
19 0.112 0.010 540.26 0.000
20 0.091 -0.055 541.29 0.000
21 0.064 0.108 541.81 0.000
22 0.043 0.041 542.05 0.000
23 0.022 -0.019 542.11 0.000
24 0.033 0.088 542.25 0.000
25 0.030 0.041 542.37 0.000
26 0.038 0.060 542.57 0.000
27 0.025 -0.015 542.66 0.000
28 0.043 0.152 542.91 0.000
29 0.047 -0.048 543.21 0.000
30 0.045 -0.016 543.50 0.000
31 0.026 -0.145 543.60 0.000
32 -0.008 -0.152 543.61 0.000
33 -0.032 -0.061 543.77 0.000
34 -0.040 -0.024 544.01 0.000
35 -0.028 -0.033 544.13 0.000
36 -0.048 -0.045 544.50 0.000

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.263 -0.263 6.7681 0.009
2 -0.211 -0.301 11.199 0.004
3 0.011 -0.166 11.210 0.011
4 0.061 -0.066 11.584 0.021
5 -0.048 -0.095 11.821 0.037
6 -0.003 -0.053 11.822 0.066
7 0.048 0.006 12.068 0.098
8 -0.195 -0.232 16.103 0.041
9 0.103 -0.044 17.245 0.045

10 0.179 0.119 20.724 0.023
11 0.121 0.298 22.324 0.022
12 -0.357 -0.138 36.477 0.000
13 0.156 0.119 39.220 0.000
14 -0.025 -0.083 39.293 0.000
15 -0.037 -0.024 39.447 0.001
16 0.055 0.019 39.799 0.001
17 -0.036 -0.017 39.951 0.001
18 -0.067 -0.061 40.483 0.002
19 0.030 0.011 40.591 0.003
20 0.042 -0.198 40.804 0.004
21 -0.012 -0.043 40.821 0.006
22 0.002 -0.019 40.822 0.009
23 -0.096 -0.061 42.010 0.009
24 0.038 -0.119 42.197 0.012
25 -0.013 -0.018 42.220 0.017
26 0.076 -0.027 42.999 0.019
27 -0.148 -0.173 45.970 0.013
28 0.061 0.019 46.489 0.016
29 0.031 -0.022 46.620 0.020
30 0.045 0.090 46.913 0.025
31 0.009 0.115 46.924 0.033
32 0.017 0.082 46.968 0.043
33 -0.069 0.035 47.667 0.047
34 -0.076 -0.003 48.530 0.051
35 0.196 0.120 54.405 0.019
36 -0.098 0.020 55.907 0.018
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maximum values as q = 2 and Q = 3 for a comprehensive 

examination. Consequently, the following combinations were 

selected for model testing. 

The SARIMA models with the values of “p” in the range 

of 0 to 2 and the “Q” in the range of 0 to three, and the relevant 

results are shown in Table 2. Based on AIC and SIC,  

ARIMA(0,1,2)(0,1,3)4 has the smallest values, which is the 

best fit model. The model passes the model diagnosis, 

containing invertible test and stationary test. According to 

Fig. 5, no root lies outside the unit circle and this report has 

96 sample data, focusing on the neighborhood of √𝑇 = √96 

≈ 10 is often reasonable. The model is invertible, hence the 

model is invertible and adequate. 

 

Table 2. Comparison of SMARIMA models  

Model Variable Coefficient p-value AIC SIC 

SARIMA(0,1,1)(0,1,1)4 
MA(1) −0.5057 0.0000  

8.4949 8.5751 
SMA(4) 0.0582 0.6292 

SARIMA(0,1,2)(0,1,1)4 

MA(1) 0.3883 0.0002 

8.4716 8.5785 MA(2) 0.2166 0.0397 

SMA(4) 0.0982 0.4340  

SARIMA(0,1,1)(0,1,2)4 

MA(1) 0.4505 0.0000  

8.5043 8.6111 SMA(4) 0.0448 0.7180  

SMA(8) 0.1615 0.1659 

SARIMA(0,1,1)(0,1,3)4 

MA(1) −0.2744 0.0082 

8.3784 8.512 
SMA(4) 0.0607 0.5142 

SMA(8) −0.0989 0.4639 

SMA(12) −0.5150  0.0000  

SARIMA(0,1,2)(0,1,2)4 

MA(1) -0.3671 0.0003 

8.4885 8.6221 
MA(2) −0.1972 0.0551 

SMA(4) 0.0213 0.8681 

SMA(8) −0.1027 0.3870  

SARIMA(0,1,2)(0,1,3)4 

MA(1) −0.2383 0.0210  

8.3701* 8.5304* 

MA(2) −0.1873 0.0722 

SMA(4) 0.0746 0.5510  

SMA(8) −0.0774 0.5682 

SMA(12) −0.4887 0.0000  

 

  
Fig. 5. Model diagnosis of the SARIMA(0,1,2)(0,1,3)4. 

 

 
Fig. 6. The forecast of the SARIMA(0,1,2)(0,1,3)4 model. 

 

SMARIMA modeling was conducted on carbon data from 

the first quarter of 1990 to the fourth quarter of 2013. Fig. 6 

represents the predicted values and actual values obtained 

from the model. Based on this model, the predictions for 

carbon data from Q1 2014 to Q4 2015 are within the 

confidence space. The MAE, MSE, and MAPE values are 

19.9937, 845.0742, and 6.008347, respectively. 

D. Regression with Error ARIMA 

We fit the linear trend and the non-linear model to these 

data and compared with AIC and SIC, we obtain that the non-

linear model (quadratic trend) is better. Furthermore, the 

quadratic trend and seasonality regression suffer positive 

autocorrelation problem with the low DW statistic (0.514) in 

Table 3, which suggests the presence of potential significant 

errors. Therefore, it is necessary to perform error correction 

on this model. Similarly, we continue to focus on the 

neighborhood of the root of samples, √𝑇 =√96 ≈ 10 from 

Fig. 7, and p-value at the lag 10 is equal to 0.494 which is not 

smaller than 0.05, in addition the residuals in this model are 

a white noise process, thus it is an adequate model. 

Table 3. Comparison of regression, regression with error ARIMA 

Regression Model Variable Coefficient p-value AIC SIC DW 

Quadratic Trend &Seasonality 

@TREND+1 11.5190 0.0000 

8.8535 9.0138 0.5144 

(@TREND+1)2 −0.0474 0.0000 

@QUARTER=1 −223.2068 0.0000 

@QUARTER=2 −244.2068 0.0000 

@QUARTER=3 −177.8434 0.0000 

@QUARTER=4 −224.3191 0.0000 

Quadratic Trend & Seasonality with Error ARIMA 

@TREND+1 11.0781 0.0000 

8.1064* 8.3202* 1.8664* 

(@TREND+1)2 −0.0458 0.0000 

@QUARTER=1 −195.9392 0.0337 

@QUARTER=2 −216.3411 0.0194 

@QUARTER=3 −149.6815 0.1018 

@QUARTER=4 −195.8383 0.033 

AR(1) 0.7412 0.0000 
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.026 -0.026 0.0671
2 -0.022 -0.022 0.1139
3 -0.010 -0.011 0.1240
4 -0.057 -0.059 0.4615
5 -0.103 -0.108 1.5688
6 -0.078 -0.088 2.1968 0.138
7 -0.040 -0.054 2.3653 0.306
8 -0.091 -0.109 3.2509 0.355
9 0.146 0.123 5.5703 0.234

10 0.210 0.202 10.395 0.065
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Regression with ARIMA errors was conducted on carbon 

data from the first quarter of 1990 to the fourth quarter of 

2013. Fig. 8 represents the predicted values and actual values 

obtained from the model. Based on this model, carbon data 

from the first quarter of 2014 to the fourth quarter of 2015 

was predicted. The MAE, MSE, and MAPE values for the 

results are 23.2457, 1072.4230, and 6.9823, respectively. 

Fig. 7. Model diagnosis of regression with error ARIMA. 

Fig. 8. The forecast of the regression with error ARIMA. 

V. CONCLUSION

The project intends to use 96 time series data observations 

as the initialization set (from the first quarter of 1990 to the 

fourth quarter of 2013) to build a forecasting model to predict 

the monthly emissions of carbon dioxide in the United States. 

However, 104 time series data observations were actually 

collected (from Q1 1990 to Q4 2015),The quarterly 

observations of the last 2 years (the last 8 quarters) are 

reserved as a test set, which is used to evaluate the out-of-

sample forecast performance of the established model, 

thereby calculating the out-of-sample forecast accuracy of the 

model. 

Next, the project employed different regression techniques 

such as (1) ETS Exponential Smoothing, (2) ARIMA method 

and (3) Regression with ARIMA errors techniques to develop 

different types of forecasting models. Then, the most suitable 

model will be selected from each regression technique to 

perform the prediction. Finally, the out-of-sample forecast 

performance of each model will be compared against each 

other, so we can know which technique provides the best 

forecast accuracy for quarterly carbon emissions. You have 

ensured that all selected models are appropriate models by 

performing some diagnostic checks. The following shows the 

appropriate model to choose for each regression technique: 

1) Model 1: ETS method: ETS(M,N,A).

2) Model 2: ARIMA method: ARIMA (0,1,2)(0,1,3)4.

3) Model 3: Regression with ARIMA errors.

Table 4. Comparison of the three techniques 

MSE MAE MAPE 

ETS(M,N，A) 2113.6385 35.0917 10.6072 

SARIMA(0,1,2)(0,1,0)4 845.0742 19.9937 6.0083 

Regression with Error ARIMA 1072.423 25.2457 6.9823 

In addition, according to the comparison of the best model 

prediction results in the various methods shown in Table 4, it 

is observed that ARIMA(0,1,2)(0,1,3)4 using seasonality is 

the best model for predicting quarterly emissions of carbon 

dioxide. This is because this model has the lowest out-of-

sample predicted MAE, MSE, and MAPE values compared 

to using the other 2 models. It can be seen that the SARIMA 

model used in this project is the best model for predicting the 

quarterly emission of carbon dioxide. At the same time, the 

method can be assimilated to other data sets for prediction. 
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob*

1 0.060 0.060 0.3561
2 -0.101 -0.105 1.3788 0.240
3 0.006 0.019 1.3819 0.501
4 0.012 -0.000 1.3966 0.706
5 -0.050 -0.049 1.6557 0.799
6 0.043 0.051 1.8463 0.870
7 -0.007 -0.025 1.8521 0.933
8 -0.176 -0.167 5.1760 0.638
9 0.057 0.081 5.5237 0.700

10 0.162 0.121 8.4068 0.494

*Probabilities may not be valid for this equation specification.
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Root Mean Squared Error 32.74787

Mean Absolute Error   23.24572

Mean Abs. Percent Error 6.982329

Theil Inequality Coef. 0.044031

   Bias Proportion   0.082271

   Variance Proportion  0.465239

   Covariance Proportion  0.452490

Theil U2 Coefficient   0.426684

Symmetric MAPE   6.628553
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