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Abstract—Assembly Systems assist the human in 

manufacturing by providing easy access to the assembly 

procedure. However, they are static systems that provide the 

same information to all users. Assembly Systems 4.0 are a 

relatively new concept that use data-driven insights to assist the 

human by providing context-specific information about the 

assembly process. Assembly Systems 4.0 should have a positive 

impact on reducing human error in manufacturing.  In this 

research the utility of an Assembly System 4.0 is evaluated. Two 

experiments are conducted to investigate potential effects on 

human performance from the lens of error and failed quality 

parts.  Through the first experiment, a laboratory simulation, it 

is proven that the Assembly System 4.0 can detect human error. 

In the second experiment, the system is compared against a 

traditional Assembly System. Four hundred assemblies are 

conducted, in a two-independent sample test. It is found that 

neither system prevents human error from occurring. However, 

how the error is treated is significant. The users of the Assembly 

System 4.0 detected, and corrected the errors, producing higher 

quality products. 
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I. INTRODUCTION

Assembly Systems (AS) support the human in an assembly 

process by providing access to the Standard Operating 

Procedures (SOP). Typically, this is done by displaying the 

assembly instructions on a screen in text, drawing and/or 

photographic form.  The human follows the assembly 

instructions, and confirms that that step is complete, upon 

which the next step in the assembly process is presented. The 

cycle continues until the whole of the manufacturing process 

is complete. 

Presenting the assembly instructions at the work station 

through AS, supports the human to achieve high quality 

assembly outputs [1]. Despite the widespread availability of 

AS, however, error in assembly continues to be a major 

problem for manufacturing companies [2]. Thus discovering 

new ways to reduce the likelihood of human error in 

manufacturing by AS is an important research gap to address. 

The digital capacity available under Industry 4.0 can be 

applied in new ways to assembly systems with the aim of 

supporting better data-driven assembly. Such systems are 

referred to as Assembly Systems 4.0 (AS4.0) [3, 4]. There is 

a need for empirical evidence as to impact these systems have 

on improving the work of the human.  The objective of this 

paper is to evaluate the utility of an AS4.0. The hypotheses 

explored in this study are: 

H1. The use of an AS4.0 will detect errors made in 

assembly. 

H2. The use of an AS4.0 will reduce the amount of human 

errors made in assembly. 

H3. The use of an AS4.0 will result in lower rates of failed 

quality products. 

The rest of this paper is structured as follows: first the case 

study is outlined. In the case study a description of an 

exemplar AS4.0 is provided, followed by a description of the 

product to be assembled in the experiments. Next, the 

research method outlines two experiments that are conducted, 

with the results and discussion on the same. Finally, potential 

research gaps and limitations are summarized in the 

conclusions.  

II. MATERIALS AND METHODS

Two experiments are conducted. The first is a laboratory 

simulation in which assembly errors are introduced to 

provide evidence of the utility and quality of AS4.0 artefacts 

in detecting error. The second is an experimental simulation 

to provide empirical evidence of AS4.0 from an operational 

impact, that is does the human make an error, and does the 

human rework the error to produce a high quality product 

whilst using the AS4.0.  

A. Case Study: A Data-Driven Cyber-Physical Assembly

4.0 System

In this research, an exemplar Assembly System 4.0 is used 

as the case study for the hypotheses testing. The system is a 

fully working complete AS4.0 system, which is installed onto 

a work station. A simple assembly product is chosen for the 

experiments. In this section, the system is first described, 

then the experiments outlined.  

The human is presented at the workstation with a 

touchscreen, and a login page into the system.  The human 

logs in and is verified by the system. The human scans a work 

order by a digital scan of the work order barcode. The 

associated production assembly instructions are retrieved. An 

example workstation is illustrated in Fig. 1.  The instructions 

are provided to the human via a number of interfaces, 

dependent upon the preferences of the human Fig. 1(a). The 

human follows the instructions provided to them. An 

example screen showing video instructions is illustrated in 

Fig. 2.   

High definition cameras monitor the assembly station, 

Fig. 1(b). The cameras are positioned at different angles and 

so capture different perspectives of the product being 

assembled. Images of the assembly are captured and 

processed by algorithms to detect whether the work is correct 

or not. Feedback is presented to the human, see Fig. 1(c). If 
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errors are identified by the computer vision algorithms, the 

human’s attention is brought to the same, allowing them the 

opportunity to rework the assembly so that the error does not 

get propagated through the system.  Several algorithms are 

used to perform the analysis in a hybrid multi-stage model. 

Computer vision uses the You Only Look Once model, 

version 8 (YOLOv8), a Convolutional Neural Network 

(CNN), for object detection, classification, and segmentation 

tasks. Classification robustness is tested and false predictions 

are eliminated by using Inception version 3, an image 

recognition model. Further, multiple cameras view the object 

being assembled from different angles. The multiple 

predictions, determined upon the image feed from each 

camera, are integrated to produce consistent and accurate 

information in a process known as data fusion.   

 

 
Fig. 1. Assembly 4.0 work station. 

 
Fig. 2. Close up of the assembly instructions on the screen. 

B. Product Assembly Use Case 

The use-case chosen is assembly of a pen. The pen is 

chosen so as to remove any bias with regard to task 

complexity. Further the pen, being a common product, does 

not introduce the concerns of the impact the “learning effect” 

has on error as raised in Stockinger, Polanski-Schräder and 

Subtil [5] and Riedel et al. [6]. The pen assembly comprises 

of four steps: insert the thrust device the right way up into the 

barrel, insert the ink chamber into the barrel, add the spring to 

the ballpoint tip of the ink chamber, and screw the tip onto the 

barrel.  

C. Experiment I: Evaluation of System’s Ability to Detect 

Error 

The first experiment addresses the first hypothesis H1: The 

use of an AS4.0 will detect errors made in assembly. A 

laboratory controlled experiment is chosen to evaluate the 

AS4.0’s utility in this regard. The rationale for the design of 

this experiment arises from the low numbers of human errors 

made in assembly normally, which may distort results in an 

experiment with human participants.  

One hundred (N = 100) experiments are conducted by the 

researcher. The researcher creates errors which are identified 

by the system. In half of the experiments no error is made, 

and in the other half error is introduced. There are several 

different types of error that can be made [7–9], with Error by 

Omissions (OM), Error by Confusion (CX) such as incorrect 

selection of similar parts, and Execution Error (EX) such as 

incorrect selection of system and incorrect fixation, being the 

most commonly reported [7]. In this experiment, the 

following errors are evaluated (see left most column of 

Table 1) which could be expected in a real production 

environment on the assembly of this device. How error is 

introduced into the experiment for each type of error, is 

shown in the right most column of Table 1. 

 

Table 1. Error types and treatment 

Potential Error 

Investigated 
How Error introduced in experiment 

Omissions such as 

process steps not 

conducted 

Insertion of the thrust device omitted from the 

assembly 

Incorrect selection of 

variants 

Similar but incorrect parts placed into the totes 

included different shaped and/or coloured pen 

tips, ink chambers of the incorrect length, and 

thrust devices of the incorrect length and shape 

Incorrect 

fixation/adjustment 
The pen tip is not tightened enough onto the barrel 

Picked up poor 

quality parts 
Bent and extended springs introduced 

Wrong counting 
The work order required five completed pens, too 

few and too many are created 

 

A sample of the correct parts and their corresponding 

incorrect part used are illustrated in Fig. 3. 

 

 
Fig. 3. Sample of correct and incorrect parts. 

 

b 

c 

a 
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The assembly is conducted using the assistance from the 

system. A sample of the data captured is illustrated in Table 2. 

In test numbers 1 and 16 errors are made in the assembly. For 

test 1, the system correctly identified the error as a “failed 

quality”. The boolean data in column “Predict Correct?” 

column is an evaluation of the accuracy of the system.  In the 

final column “Type of Result” the four types of error states 

can be accounted for: True Negative (TN), True Positive (TP), 

False Positive (FP), False Negative (FN).   

In this experiment, a “positive” state is the presence of an 

error, and a “negative” state is that no error occurs. A True 

Positive occurs when the error is made, and is identified as an 

error by the system, that is the assembly is wrong and is 

correctly labelled as wrong.  A True Negative occurs when no 

error is made, and no error is identified by the system, that is 

the assembly is correct, and is correctly labelled. A False 

Positive occurs where no error is made, but the system 

predicts an error, that is the assembly is correct but is 

incorrectly labelled as wrong by the system.  These are Type I 

errors. A False Negative occurs when an error has been made, 

but the system predicts there is no error, that is the assembly 

is wrong but incorrectly labelled as correct. These are Type II 

errors. 

Table 2. Experiment I data 

Test 

No. 
Test Type 

Expected 

Result 

Received 

Result 

Predict 

Correct? 

Type of 

Result 

1 
OM Left 

out thrust 
FAIL FAIL TRUE 

True Positive: 

Error Found 

16 

CX Wrong 

spring 

Inserted 

FAIL PASS FALSE 

False Negative: 

Incorrectly 

missed the error 

50 Insert thrust PASS PASS TRUE 
True Negative: 

No Error Found 

  

D. Experiment II: Evaluation of Impact on Error by 

Comparison with AS 

The second experiment is an experimental simulation 

chosen to evaluate the impact of the system on production.  

Experimental simulation allows for the maximum potential 

for precise measures of behaviour of human participants. In 

order to control the environment, the simulation is held in an 

artificially recreated setting—a research laboratory in the 

Technological University of the Shannon. A work station, 

similar to that used in a factory is built, and the system 

installed.   

For a desired power of 0.80 and alpha of 0.5, the required 

sample size per group is 20 [10]. As the research is interested 

in error, and based on a pilot test, an error every 10 

observations is expected, 200 samples per group are required. 

Twenty participants took part in the study, who are recruited 

from the student body. The students had an interest in 

manufacturing solutions and task design. The participants 

then conduct 5 assemblies, of 4 steps in each, to create 200 

observations per group. Two treatments are used. The first is 

the Control Treatment (CT) in which the traditional AS is 

used. The second is the System Treatment (ST) in which the 

AS4.0 is used. One group of participants are assigned to CT, 

and one group assigned to ST. The participants are randomly 

allocated between the treatments, although care is taken to 

remove bias and so the gender and age profile between the 

groups is similar. Also the same training and instructions, and 

the same feedback modes are provided to all participants. 

In CT the participants are given the SOP for a 

manufacturing process through a traditional AS interface and 

observed completing the production. A simple AS is built 

that displays a full screen webpage for each step in the 

process. The instructions are displayed in text and image 

format on the page. The participant follows the instructions 

on the page, and presses a button on the touchscreen interface 

to indicate that that step is complete. The next instruction is 

loaded, and the process is completed until the operator stops. 

There is no intelligence built into the AS. It purely presents 

the instructions for the particular SOP being built on a 

step-by-step basis. In ST the participants complete 

production by following the support given by the AS4.0 

described in the case study. The machine learning algorithms 

assess whether the assembly is correct, and provide feedback 

to the participant. Once the step is complete the instructions 

for the next step are presented to the participant. 

The natural behaviour of the participants is observed and 

measured. Incorrect selection does cause quality defects, and 

for this reason, and in order to provide an opportunity for 

error, the same number of incorrect and correct parts are 

added to the totes holding the parts prior to the assembly.   

The analysis of data from this experiment involves testing 

multiple null hypotheses simultaneously, as there are 

multiple outcomes of interest. The multiple hypotheses tested 

are H2: The use of an AS4.0 will reduce the amount of human 

errors made in assembly; H3: The use of an AS4.0 will result 

in lower rates of failed quality products.  With respect to the 

hypotheses around error, analysis focuses on comparison of 

the number of errors within each group. The outcomes of 

interest are the number of errors made, the errors corrected 

and the errors remaining in the products after assembly. The 

hypothesis test is for the difference between medians (μ1/2) of 

the two populations—CT and ST. The null hypothesis is that 

the use of AS4.0 has no positive effect on the median human 

errors made, and remaining after possible correction. 

H20: μ1/2 ErrorsMade_AS-μ1/2 ErrorsMade_AS4.0 = 0 

H2a: μ1/2 ErrorsMade_AS-μ1/2 ErrorsMade_AS4.0 > 0 

H30: μ1/2 ErrorsRemain_AS-μ1/2 ErrorsRemain_AS4.0 = 0 

H3a: μ1/2 ErrorsRemain_AS-μ1/2 Errors Remain _AS4.0 > 0 

To quantify the benefits of the system, the parameters 

regarding quality as recommended in Keller et al. [11] are 

used and defined as follows:  

errorRate (Qe) = Xea / Xet 

errorCorrectionRate (Qec) = Xec / Xea 

errorDetectionRate (Qed) = Xed / Xeb 

where Xea is the number of errors after the observed process; 

Xet the total number of different errors made by all 

participants; Xec the number of corrected errors; Xed the 

number of detected errors; and Xeb the number of errors 

before the observed process has started. 

The data is generated by the system and the researcher. 

Data is recorded, and saved to a spreadsheet file, and cleaned. 

This data is then read into a data sink, JMP Pro 17, for 

analysis.  Sample data is illustrated in Table 3.  
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Table 3. Experiment II sample data 

Treatment (CT: Control | ST: System) ST 

Observation No. 140 

Product Assembly No. 5 

Assembly Step 4 

Start Timestamp for Step (tStart140.ST) 07/11/2023 11:15 

End Timestamp for Step (tEnd140.ST) 07/11/2023 11:22 

Time Spent on Consultation in seconds  2 

Time Spent on Execution in seconds  5 

Complete Step Time in seconds  7 

Incorrect selection of variants (wrong thrust/nib) 1 

Omissions such as process steps not conducted 0 

Incorrect fixation/adjustment 0 

Picked up poor quality parts 0 

Wrong counting 0 

Errors Made 1 

Error Detected 1 

Error Corrected 1 

Errors Remaining 0 

Error Rate 0.03 

Error Correction Rate 1.00 

Error Detection Rate 1.00 

Work Completed Correctly 1= Correct, 0= Wrong  1 

III. RESULT AND DISCUSSION 

The results of the experiments are presented in two 

sections corresponding to the two experiments: quantitative 

evaluation of accuracy, and quantitative evaluation of 

operational benefits with participants. 

A. Results Experiment I: Evaluation of System’s Ability to 

Detect Error 

In the first experiment, one hundred assemblies are 

conducted in a controlled environment. An example of the 

errors as identified by the AS4.0 are illustrated in Fig. 4.  

  

 
Fig. 4. Detection of wrong variant on thrust selection, and the corrected 

action by the operator as detected by the system. 

 

The images show the live feed to the cameras, the 

classification label and a confidence score. Once the 

confidence score passes a threshold value the assembly in the 

image is classified as correct or wrong.  The threshold values 

for each step in the assembly are tuned for optimum 

prediction, with thresholds in the region of 0.60 to 0.82. For 

Example, in Fig. 4 an incorrect part is picked up, identified as 

“wrong”, and then the correct part picked up, with the action 

identified as “corrected”. The assembly will not be ‘passed’ 

by the system until the confidence index passes the 

corresponding threshold value. 

In the confusion matrix provided in Table 4, it can be seen 

that True Positives (TP) are recorded in 92% of tests where 

error is made (n: 46/50). The computer vision algorithms 

correctly identified that the assembly process had not been 

performed correctly. True Negative (TN) was correctly 

identified in 98% of all tests taken where error was made (n: 

9/50). One False Positive (FP) was identified (n: 1/50). On 

this occasion (n: 1/50) there was a delay in the computer 

vision algorithm identifying the assembly. On this particular 

occasion the computer vision algorithm had missed the thrust 

device being inserted, as hands were blocking the part from 

being seen by the camera. The system did not progress to the 

next step of the assembly. The thrust device had to be 

removed, and reinserted in a way that the camera could see it. 

The system then passed the assembly as being correct. False 

Negatives (FN) were found in 8% of all tests taken where 

error is made (n: 4/50). In all of these instances the spring or 

ink chamber was the offending part.  The computer vision 

model only identified the part, not the length of the part. So 

an ink chamber or a spring protruding a few millimeters 

further than it should was not identified.   

 

Table 4. Confusion matrix 

  Actual 

  Positive 1 Negative 0 

Predict 
Positive 1 TP 46 FP 1 
Negative 0 FN 4 TN 49 

 

B. Results Experiment II: Evaluation of Comparison of 

AS4.0 with AS 

Four hundred assemblies (N = 400) are conducted, by 

twenty participants allocated to two treatments ST and CT 

(nST = 200, nCT = 200). Two researchers observed the 

assemblies and noted error, responses, timings, and 

cross-referenced the data. A level of significance of p = 0.05 

is used in all the experiments.  

1) Operational benefits with respect to error 

In four hundred assemblies, sixty-three errors are made (N 

= 63/400). On four occasions more than one error is made on 

a particular assembly step, so fifty-nine assemblies failed 

quality checks (N = 59/400).  The median error rate and mode 

error rate on both CT and ST is 0, with a mean 16 on CT, and 

a mean 15.5 on ST.  The errors that occurred are outlined in 

Table 5.  

 

Table 5. Experiment II: Assembly errors by treatment 

Treatment 
Incorrect selection 

of variants 
Omissions 

Incorrect 

fixation/ 

Picked up poor 

quality parts 
Wrong counting Errors Made Failed Parts 

ST 19 4 5 2 1 31 29 

CT 20 0 6 6 0 32 30 

 

The data are discrete. The data and their logs are 

non-parametric. A Levene’s test (F = 0.2301, p = 0.6317) 

indicates homogeneity of variances, therefore Wilcoxon 

Rank Sum is an appropriate statistical test.  A Wilcoxon test 

showed that there is no significant difference (S = 39902, Z = 

–0.27989, p = 0.7796) between the number of errors made by 

participants using either treatment. Given the large number of 

zeros in the dataset the non-zero sample size is small, the 

large-sample normal approximation might not be adequate, 

and it is therefore appropriate to compute the Exact Test.  For 
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the Exact Wilcoxon Test, the one-sided p-value is 0.4133, 

and the two-sided p-value is 0.8265. As the p-values are 

greater than or equal to the significance level of 0.05, the 

decision is to not reject the null hypothesis H20.  ST does not 

prevent error from occurring. 

There is however a significant difference in how the 

participants respond to error. In Table 6, it can be seen that of 

the 31 errors made in ST, 30 are detected and 29 corrected, 

leaving two errors. The first of the ST failed assemblies is as 

a result of wrong counting.  This is detected by the system, 

but the participant ignored the system prompt and did not 

continue with the assembly and ended the experiment. The 

second failed ST assembly occurred due to distinguishing 

features of the part being obscured from the cameras. The 

machine learning algorithms incorrectly identify the part as 

being correct. In CT, 32 errors are made, and the participant 

detects 20 of them. Of that 20, 19 are corrected, with one 

having been detected but not corrected. Therefore, 13 of the 

32 errors in CT remain in the products post-assembly process.  

These products fail the quality check.  

 

Table 6. Experiment II: Response to assembly errors by treatment 

Treatment 
Failed 

Parts 

Errors 

Made 

Errors 

Detected 

Errors 

Corrected 

Errors 

Remain 

ST 29 31 30 29 2 

CT 30 32 20 19 13 

 

For the two-sample Exact Wilcoxon test on Errors 

Corrected, the one-sided p-value is 0.0013, and the two-sided 

p-value is 0.0021. For the two-sample Exact Wilcoxon test on 

Errors Remaining, the one-sided p-value is <0.001, and the 

two-sided p-value is <0.001. As recommended in  

Divine et al. [12] further evidence such as the percentage 

showing improvement should be provided on trials which 

report Wilcoxon results, particularly in cases where the 

sample median is equal to zero. In this study, for the ST, 29 of 

31 errors (93.5%) were corrected, whereas in CT only 19 of 

32 (59.3%) were corrected. Using ST the final error is (nST = 

2/200) is 1%, although not all of these errors had a negative 

impact on product quality, for example one was a counting 

error. In CT, the final error is (nCT = 13/200) is 6.5%.  

Participants using the ST are more likely to correct the error 

than those using CT, leaving fewer errors remaining in the 

assemblies. As the p-values of the Wilcoxon tests are less 

than or equal to the significance level of 0.05 the decision is 

to reject the null Hypothesis H30. The use of an AS4.0 did 

result in lower rates of failed quality products. 

A. Discussion 

The key results of the experiments are now summarised 

with reference to the study objectives.  

1) Impact on detection of human errors 

The first hypothesis H1: The use of an AS4.0 will detect 

errors made in assembly is investigated through Experiment I 

a laboratory simulation. There are several other studies that 

prove that AI can detect parts and assemblies. However, they 

are often in fixed locations on a work station table, and deal 

with larger sized parts easily identified.  In this research an 

assembly that can occur anywhere in a three-dimensional 

space of the work station with small parts is replicated.  The 

pen assembly uses very small parts, and introduces similar 

variants where the difference between the parts is measured 

in millimeters. The results prove that the AS4.0 can identify 

error on this specific use case. A wide range of error types are 

tested. Of the one hundred samples, of which 50 are correct, 

and 50 are incorrect, the data-fusion approach has an 

accuracy of 0.94, precision at 0.98, and recall of 0.92. These 

values can be further improved by introduction of new data 

through metrology.  The original four False Negatives arose 

from not measuring the length of the spring or the ink 

chamber protruding out of the barrel. Measuring length when 

the part can be held nearer or further away from the camera, 

and/or held at an angle where the full barrel may not be 

measured is difficult.  This can be corrected by use of a 

digital calipers to measure the length of the part. Once the 

digital calipers are added the barrel with the ink chamber and 

spring were measured, and the data integrated into the 

prediction.  The False Negatives were removed.  Using these 

data, accuracy is recalculated as 0.98, precision at 0.98, and 

recall is 1. However, the introduction of the measurement by 

the calipers changes the assembly process. This is an 

experiment only, but in a real assembly, the Process Engineer 

responsible would make the decision as to whether the False 

Negatives can be allowed, whether more data should be fed to 

the model for training, or whether to alter the process to 

introduce some metrology. Howsoever, it is concluded 

therefore that the data-fusion approach used in the AS4.0 can 

detect human error. The null hypothesis H10 is rejected.  

2) Impact on Performance: Reduction of Human Error  

The second and third Hypotheses, H2: The use of an AS4.0 

will reduce the amount of human errors; and H3: The use of 

an AS4.0 will result in lower rates of failed quality products 

are investigated through Experiment II. This experiment 

allows for the maximum potential for precise measures of 

behaviour of human participants.  

With respect to H2: The use of an AS4.0 will reduce the 

amount of human errors, no statistical difference is found 

between the two treatments. The AS4.0 did not prevent 

human error from occurring any more so than the AS. The 

median and mode error rate on assembly is 0 for both 

treatments. Riedel et al. [6] found that in using AS4.0 

“...errors by omission...quantitative errors...and execution 

errors…are effectively prevented by the assembly assistance 

system. As the system allows the execution of the following 

work step only if the current work step is visually detectable, 

errors by omission are actively prevented”. However, in 

Experiment II herein, it is found that the participants can 

choose to ignore the assistance of the system. In fact, 

although the system indicated a “wrong counting” error, one 

participant did not respond to it. The results therefore differ 

from the conclusions of Riedel et al. [6], in that error can be 

identified, and flagged to the human, but not actively 

prevented. It is up to the human to use the information or not.  

Of particular interest in the study of error is the impact on 

quality, as is evaluated in H3: The use of an AS4.0 will result 

in lower rates of failed quality products.  The AS4.0 did not 

stop the human making error. However, the extent to which 

those errors cause failed quality products can be reduced. In 

the AS4.0 herein, the error is observed and flagged to the 

participant. There is a statistically significant difference in 

the error detected and corrected between ST and CT. Thus, 

whilst the number of errors made is not reduced, the number 

of failed quality parts is significantly reduced. AS4.0 had a 
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positive impact on the number of high quality products being 

produced. 

3) Other findings: Impact on time 

The participants were observed, their behaviour noted and 

timings recorded. Using a t-Test it was found that the Cycle 

Times in ST (mean 8.65, median 7) are shorter than the CT 

group (mean 13.96, median 11) (t(198) = −6.1217, p = 

0.0001) with a difference of -5.31. The use of ST positively 

impacted the speed of work. There is no statistical difference 

between the Execution Times between the treatments 

(Wilcoxon Rank Sum Z = −0.78019, p = 0.4353). The 

participants took the same amount of time to complete the 

assembly regardless of treatment with ST median of 4 s mean 

5.75 s, and CT median 4 mean 6.33. An explanation for the 

increased Cycle Time in CT is consultation time. In CT, the 

participant had to read text instructions, and had to take time 

to press the “confirm assembly” button on the touchscreen. In 

ST, instructions are provided by video which may be quicker 

to process than text, and the “confirm” state is indicated by 

the machine learning algorithms not by the participant.  The 

consultation time for CT is a median of 5 s and for ST a 

median 2 s, with Consultation Time ranges CT 0 s–54 s, and 

ST 1 s–25 s. ST had lower consultation times than CT. 

However, it is cautioned that participants only completed five 

assemblies each. It is to be expected that Consultation Times 

will decrease with repeated use. Of particular interest is the 

Consultation Time range, CT 0 s–54 s, with a low value of 0. 

In CT, four of the ten participants stopped consulting the 

system during the assembly, on a total of 71 of the 200 

assemblies. CT requires that the participant indicate that the 

work is complete by selecting the confirm button on the 

touchscreen monitor. In these 71 assemblies the participant 

does not confirm the assembly, so the inherent quality control 

check is not completed.  This issue did not occur in ST where 

100% of all assemblies are checked by the machine learning 

algorithms and a “correct” or “wrong” flag recorded. 

Parmentier et al. [13] warn that humans often ignore 

assembly instructions which may lead to error. This is found 

to be true in these experiments.  The human did ignore the 

assembly instructions, although in these experiments 

ignoring the instructions did not lead to higher rates of error 

than in assemblies where instructions are consulted.  

However, it is cautioned that the assembly use case herein is a 

simple one, and the lack of Consultation Time on more 

complex assemblies may have greater impact on error.  

IV. CONCLUSION 

This research set out to validate an Assembly System 4.0 

and its impact on reducing error and improving human 

performance. There are a number of research outcomes, 

which are evaluated in two different experiments. Three 

hypotheses are posed that express a possible relationship 

between the treatments and the research outcomes.  

H1. The use of an AS4.0 will detect errors made in 

assembly. 

H2. The use of an AS4.0 will reduce the amount of human 

errors made in assembly. 

H3. The use of an AS4.0 will result in lower rates of failed 

quality products. 

In the first experiment, a laboratory simulation, an effort is 

made to identify and impose control over assembly and 

assembly errors. One hundred tests were conducted 

generating 700 data points, half of which are with error, and 

half of which are without error. A wide range of error types 

are tested of the types Error by Omission, Error by Confusion, 

and Execution Errors. A data-fusion approach is used, where 

object detection, classification, and segmentation are 

conducted using YOLOv8. Classification robustness is tested 

and false predictions are eliminated using Inception v3. 

Multiple cameras view the object being assembled from 

different angles. The image feed from each camera are 

processed and the classification robustness are integrated to 

produce consistent and accurate information. This approach 

had an accuracy of 0.94, precision at 0.98, and recall of 0.92. 

These values are further improved by introduction of new 

data through metrology, leading to new calculations of 

accuracy 0.98, precision 0.98, and recall of 1. With respect of 

Hypothesis 1, the AS4.0 is found to have utility in correctly 

predicting error. 

In the second experiment, two different treatments are used 

to determine on which research outcomes a treatment has an 

effect—a system treatment and a control treatment. Two 

assembly systems were built. The first treatment is the 

Assembly System 4.0, an assembly system that uses a fusion 

of machine learning techniques to augment the operator in 

assembly. The second treatment is a traditional Assembly 

System design, which provides a web-page based interface to 

the assembly instructions and is presented to the participant 

via a touchscreen. Two independent samples are created. 

Twenty participants took part of which ten were assigned to 

the system treatment, and ten to the control treatment.  The 

participants assembled five products, each of which had four 

assembly steps. In total, four hundred observations are 

recorded. Data is generated by the system and by observation, 

creating 9,200 data points.  

With respect to Hypothesis 2, neither treatment is shown to 

have a positive impact on reducing the number of human 

errors made. The participant continued to make error.  

However, with respect to Hypothesis 3, the use of an 

Assembly System 4.0 had a statistically significant impact on 

the number of quality products produced. A quality product is 

produced, when either the assembly is executed correctly first 

time, or if an error has been made, and it is detected and 

reworked by the human. Using the Assembly System 4.0, ST, 

93.5% of errors were corrected, whereas using the traditional 

Assembly System, CT, 59.3% were corrected. Using ST the 

final error rate is 1%, although not all of these errors had a 

negative impact on product quality, and in CT, the error final 

rate is 6.5%.  Participants using the ST are more likely to 

correct the error than those using CT, leaving fewer errors 

remaining in the assemblies.   

It is also noted that the Assembly System 4.0 had a positive 

impact on performance in terms of cycle time and 

consultation time. As consultation with the system, and the 

performance of in-line quality control checks conducted at 

each stage of the assembly process have an impact on error, 

these actions missing from a traditional Assembly System are 

potentially important for error outcome.  

The results of these experiments are statistically significant 

with an alpha <0.05, and provide evidence to assist 

practitioners in understanding the value-add of such a system 
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in reducing error.  

A. Limitations 

Sample bias may have occurred in Experiment II. The 

participants are from a student body with an interest in 

manufacturing solutions. They may not reflect the 

manufacturing operator population. The students had no prior 

experience of assembly on a busy factory floor, and how 

instructions are typically retrieved and interpreted on a 

factory floor.  

B. Future Work 

Future work should include evaluation in context. Thus, 

how the system reduces the environmental pressures inherent 

in the workplace for the operator can be evaluated. This will 

further substantiate Assembly Systems 4.0 by providing 

evidence that they have utility. As users are key to successful 

adoption of the system research should be conducted with 

users so as to understand their perspective of the system. 
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