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Abstract—In this study, a spatial rack system, that 

transforms a rotation motion into rectilinear translation by 

means of a cylindrical worm and a helical rack is considered. 

This type of motions’ transformation is realized by the 

conjugated active flanks of the worm and the gear rack. This 

paper deals with the theoretical approach to their synthesis. It is 

based on the second principle of T. Olivier. The obtained 

equations of the surfaces of the spatial rack drive are of 

importance when the algorithms for the synthesis of this type of 

mechanism are elaborated. 

 
Keywords—synthesis, mathematical modeling, active tooth 

surfaces, geometry, spatial rack drives  

I. INTRODUCTION 

Mechanical transmissions, designed to transform motions 

by means of a system of high kinematic joints, in accordance 

with a preliminary defined law and arbitrarily oriented in 

space vectors of the motions’ velocities, are gear mechanisms. 

These types of three-link mechanisms are characterized by 

the greatest variety of types and complexity of their research. 

Among them, spatial rack mechanisms can be treated as a 

special case of the above-mentioned mechanisms, which 

realize motions’ rotation between fixed crossed axes, when: 

a) The number of teeth of one of the movable links is 

increased „ad infinitium”, without increasing the number of 

the meshed tooth surfaces between the mated links; 

b) the rotation axis of the above-mentioned link is 

displaced in infinity and its motion is transformed into 

rectilinear translation; 

c) number of the teeth and the type of motion of the second 

movable link remain unchanged; 

d) A rotating link with a finite number of teeth will be 

called a pinion, and the link with an endless number of teeth, 

realizing rectilinear translation, will be called a gear rack. 

This study presents a mathematical model for the study of 

the active tooth surfaces’ geometry of the spatial rack drives, 

in which the active tooth surfaces of the pinion are parts of 

cylindrical linear helicoids and the tooth surfaces of the gear 

rack are theoretically conjugated with active teeth surfaces of 

the pinion. The rotation axis of the pinion is non-orthogonal 

crossed with the direction of the rectilinear translation of the 

gear rack. When the analytical relations for the active tooth 

surfaces are obtained, they are of great importance for the 

geometrical and technological synthesis of the spatial rack set. 

They are essential for the design of the gears’ cutting 

instruments (tools), and for the construction of control 

equipment, in the generation process of the tooth surfaces. 

II. LITERATURE REVIEW 

The existing publications in specialized literature, 

dedicated to the science of gearing theory [1–6] and 

those—that cover the science of geometric synthesis of gear 

mechanisms [7–12] consider the processes and mechanisms, 

which are related to the rotation transformations between 

crossed, parallel and intersected shafts. The spatial rack drive 

belongs to the transformers designed for a transformation of 

rotation into translation (and vice versa) with a preliminary 

defined transformation law. And the amount of publications 

considering such gear mechanisms that are called rack drives 

is negligible.  

In most scientific sources, rack gearing is considered 

instrumental gearing when cylindrical involute gears (with 

straight or helical teeth) are elaborated. In this case, the 

movable link, which designation is to realize translation of 

the gear rack, is the cutting tool, and it is called an 

“instrumental tool rack” [13–15]. 

The kinematics of the plane rack mechanisms, which is 

studied in [16] and is titled “rack cylindrical mechanisms” is 

summarily described. There, the technological structure and 

geometrical parameters of the non-spatial rack mechanism 

and the cylindrical straight-teeth gears are examined. The 

algorithm of geometrical synthesis and technological 

limitations on the geometric parameters of these mechanical 

transmissions is defined. Another special type gear 

mechanism, realizing a variable function of motions 

transformation of type TR   (rotation into translation) is 

elaborated in [17]. The offered there scientific concept is 

illustrated by an introduced calculation, design, and 

manufacture of an experimental model. In publication [18] 

analysis of “Wildhaber - Novikov” is realized. In this work, a 

study of the tooth contact and calculation of Hertz contact 

strength is accomplished. Another publication, researching 

rack drives [19], as pure rolling rack and pinion mechanisms, 

is devoted to their geometric design, meshing simulation, and 

stress analysis.  

In the publication [20] the main focus in studying the 

spatial rack mechanism is put on the design and analysis of 

the gear rack and pinion to reduce the weight of the 

components. There, the realized studies are realized in the 

SolidWorks CAD software application and detailed analysis 

is done in the simulation integration platform Ansys 

Workbench. 

The performed studies in [21] are focused on the 

mechanism of a slotting spindle head, which motion is based 

on the rack-pinion gear drive. There, 3D models of gear rack 

and pinion are elaborated in the CAD KOMPAS, and 

analysis of the stress-strain state in the region of mesh is 

performed based on the finite element method. 

In studies [22, 23] spatial rack set is considered a special 
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case of spatial gear mechanism that transforms rotations 

between crossed axes. In other words, it can be considered 

that the spatial rack drive is obtained from the spatial gear 

drive by increasing the teeth’ number of one gear to infinity 

without increasing the number of meshed teeth. 

The gear that has a theoretically infinite number of teeth is 

called a helical rack, and the other gear with a limited number 

of teeth is called a helical gear. In general, the helical gear 

has a conic shape and the number of teeth is greater than six 

(see Fig. 1). If the number of teeth of the helical gear is less 

than six, then it transforms into a conic worm. As a result of 

this change in the spatial gear mechanism, the rotation axis of 

a helical rack is placed to infinity, and its rotation motion is 

transformed into rectilinear translation. 

 

 
Fig. 1. Spatial rack drive. 

 
A good knowledge of their specific kinematic and 

geometric characteristics should precede the process of 

mathematical modeling. This is the condition for the creation 

of adequate mathematical models for synthesis. Hence, the 

specific characteristics, which are at the base of the author’s 

concepts for the synthesis of the spatial rack drive are 

presented. 

The object of the study is spatial rack drive, which has a 

helical gear of a type of cylindrical worm (the angle 

determined by the conic form of the helical wheel is 01 = ). 

The active flanks 1  of the cylindrical worm are linear 

helicoids [23] and the tooth surfaces 2  of the helical rack 

are envelopes of 1 . 

III. MATERIALS AND METHODS 

A. Basic Principles for the Generation of the Tooth 

Surfaces of Spatial Gear Mechanisms  

Spatial gear mechanisms, including rack drives, obtain 

complex kinematic characteristics [1]. Hence, they determine 

the kinematic approach to their synthesis, and the kinematic 

character of the elaborated mathematical models, that 

describe the process of spatial motions transformation. 

This approach should answer to two groups of questions:  

- the geometry and dimensions of the gear blanks, 

composing the movable links of the high kinematic 

joints; 

- the geometry and dimensions of the active tooth 

surfaces, representing the geometric elements of the 

kinematic joints (tooth meshing). 

For this reason, the general structure of any mathematical 

model depends on: 

a) the purpose (designation) of the gear set from a 
viewpoint of the motions transformation law; 

b) the geometry and character of the conjugation of the 
surfaces (point or linear contact) by means of which 
the motions transformation is realized (these surfaces 
are active flanks); 

c) the technological devices when the geometry of the 
tooth surfaces of the tool and the kinematics of the 
technological process for the generation of the active 
flanks are chosen. 

The desired strength characteristics of the synthesized gear 

mechanisms depend on their design and are controlled by 

including adequate analytical quality criteria. 

The realization of a given law of motions’ transformation 

with the corresponding accuracy is specifically dependent on 

the geometry of the kinematically conjugate discrete surfaces 

which go in and out of contact. Achieving optimal kinematic 

accuracy in a transformation of motions directly corresponds 

to the geometric accuracy of the contacting tooth surfaces. 

The method of enveloping is suitable when the task for 

conjugate tooth surfaces generation is treated. On its basis 

two basic principles are defined by the French geometer T. 

Olivier [3, 7]:  

When forming tooth surfaces 1  and 2  firmly 

connected with bodies 1B  and 2B  by means of the 

generating (instrumental) surface J  connected with the 

body JB , the law of relative motions ( ) ( )J1   and 

( ) ( )J2   could be arbitrary, respectively. Let’s pay 

attention to the following two possibilities : 

- 1  and 2  are one-parameter envelopes of J , where 

Ji  , and Ji BB   ( 21i ,= ). If 1B  and 2B  

perform given motions and JB  moves in the fixed space 

according to a defined law, then J  will generate 1  

and 2  in the corresponding coordinate systems firmly 

connected with the bodies 1B  and 2B  as one-parameter 

envelopes. Thus, at every moment a linear contact 

between J  and i  ( 21i ,= ) is present and the tooth 

surfaces 1  and 2  can have linear contact or point 

contact. (It is possible 1  and 2  to have no contact.) 

This corresponds to first Olivier’s principle. 

- 2  is a one-parameter envelope of the instrumental 

surface J  and the conditions 
1J = , 

1J BB = , 

( ) ( ) ( ) ( )212J =  are fulfilled. A linear contact 

between 1  and 2  is always present and this approach 

to the generation of the active tooth surfaces (flanks) of 

the gears is in accordance with Olivier’s second principle. 

The studied spatial rack set is generated in accordance with 

the second Olivier’s principle. Two cases of instrumental 

gearing are possible for the studied spatial rack drive: 

1J =  or 2J = . The active tooth surfaces 
1  of the 

helical racks are generated upon the first case, and based on 
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the second—the surfaces 
2  of the helical gear. 

B. Mathematical Model Elaboration, Oriented to the 

Synthesis of Spatial Rack Drive 

Two approaches for mathematical modelling of the spatial 

tooth surfaces’ synthesis are known.  

- pitch contact point approach; 

- mesh region approach. 

The study is oriented to the application of the second 

approach for mathematical modeling for synthesis. 

When synthesizing spatial gear mechanisms with linear 

contact, the necessity to control their quality characteristics 

throughout the mesh region is obvious. Such an approach to 

the synthesis task requires an adequate mathematical model, 

such as the mesh region mathematical model. The 

mathematical model based on the mesh region is not a 

universal one. The reasons are that the specific geometric and 

kinematic characteristics of the spatial rack drive mesh 

region depend on its position in the fixed space and the 

geometric characteristics of the tool (instrumental) surface 

iJ =  ( i =1 or 2), which generate the tooth flanks i  

( i =2 or 1). In Fig. 2, a kinematic scheme of a spatial rack set 

realizing a definite law of transformation of type rotation into 

translation ( TR  ) by contacting in a line 12D  tooth 

surfaces 1  and 2  is illustrated [7].  

The tooth surface 1 , which belongs to link 1, rotates 

around the axis 11− with an angular velocity 1 , and 2 , 

which belongs to link 2, translates into direction 22 −  with 

velocity 2V . The axis of rotation motion 11−  and the 

translation direction 22 −  are fixed, i.e., 

constV 21 == ),( . The realized motions’ 

transformation of this mechanism is characterized by the 

following kinematic (velocity) ratio: 

.const
V

j
2

1
12 ==


                         (1) 

where 1  is the magnitude of the angular velocity vector 

1 ; 2V - the magnitude of the translation velocity vector 

2V . 

The kinematic scheme shown in Fig. 2 of the spatial rack 

drive is related to the treated mathematical model. The 

equations of tooth surfaces 1  and 2  are written by means 

of following the right-hand orthogonal coordinate systems: 

),,,( zyxOS —firmly connected with mechanism posture; 

),,,( 11111 zyxOS —firmly connected with the worm and 

),,,( 22222 zyxOS —firmly connected with the helical rack. 

The application of the kinematic method for synthesis of the 

conjugate tooth surfaces 1  and 2  requires to define the 

meaning of geometric and kinematic conjugation of high 

kinematic joints applied as meshed tooth surfaces [1].  

 
Fig. 2.  Kinematic scheme of spatial rack set, with a cylindrical worm. 

 

Geometric conjugation. We connect with this term the 

geometric elements of the kinematic joint, namely surfaces, 

lines, and points. We call a conjugate contact point (a point of 

tangent contact) a common point between two surfaces, 

which have a common tangent plane in this point. A 

conjugate contact line (a line of tangent contact) is the set of 

conjugate contact points of two surfaces. Conjugate surfaces 

(surfaces with a tangent contact) are two surfaces, which are 

the locus of conjugate contact points and at least one common 

point. 

Kinematic conjugation. This conjugation is connected with 

kinematic joints that are presented in the mechanism. 

Kinematically conjugate joints ( 1 : 2 ) are such joints, in 

which geometric elements ( 1  and 2 ) are geometrically 

conjugated in a definite interval of time, i.e. for an arbitrary 

value of a generalized coordinate belonging to a given 

definition set. 

The kinematic conjugation of the joint 1 : 2  requires 

their geometric elements (i.e., the tooth surfaces 1  and 2 ) 

to be analytically described by continuous functions and to 

have continuous derivatives in first order [1]. Additionally, it 

is required 1  and 2  to have one conjugate point at least. 

The kinematic conjugation of the joints 1 : 2  suppose the 

transformation of motions from the geometric element 1  to 

the geometric element 2 . In this case of spatial rack drive, 

the following specific limitations concerning tooth surfaces 

1  and 2  are put: to present the contact at one conjugate 

point P  at a given moment as a contract between two 

infinitely small areas of 1  and 2 . The point P  lies in a 

common tangent plane to the 1  and 2 . It is obvious, that 

these areas have a relative motion which is realized by the 

velocity vector 2112 VVV −= . 12V  is placed in the 

tangent plane, i.e.: 

0Vn 12i = ,                                     (2) 

where in  is a normal vector to the i  ( 21i ,= ). The 

relation Eq. (2) is known as a basic equation of meshing [7].  

The relative velocity 12V  in every common contact point 

P  from the contact line 12D  of 1  and 2  in the 

coordinate system ),,,( zyxOS  is 
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kjjxjiyV 212112  cos)sin( ++−=         (3) 

The vector Eq. (3) is written when 11 =  rad/sec and 

21122 jj1V == , respectively. 

C. Synthesis of the Active Flanks Gear-Worm and Helical 

Rack  

1) Geometry of a linear helicoid 

In Fig. 3 a case of the generation of right-hand cylindrical 

linear convolute helicoids 
)( j  ( 21j ,= ) is illustrated. 

The generation process of these helical surfaces is examined 

in the coordinate system ),,,( )()()()()( j

1

j

1

j

1

j

1

j

1 zyxOS . The 

generatrix line 
)( jL  doesn’t intersect the axis 

)()( j

1

j

1 zO , 

which coincides with the geometric axis of the worm. The 

angle   )(. j50  is between 
)( jL  and the direction of 

the axis 
)()( j

1

j

1 zO  (geometric axis of the worm). Also 
)( jL  

belongs to the plane 
)( jT , which is tangential to the directed 

circled cylinder 
)( jC . 

 
Fig. 3. Scheme of linear helicoid generation. 

 

The cylindrical helicoid 
( )j

 ( 21j ,= ) is generated by 

)( jL , that performs a helical motion along the axis 
)()( j

1

j

1 zO  

with a parameter .)( constp j

s =  [7, 24]. 
)( j

1  )( 1j =  is a 

cylindrical linear helical surface, which is oriented to the 

positive direction of the axis 
)()( 1

1

1

1 zO , and 
)( j

1  )( 2j =  is 

a helicoid, which is turned to the negative direction of the 
)()( 2

1

2

1 zO . 

Areas(particles) of 
)(1

1  and 
)(2

1  are used as active 

surfaces of the teeth of a cylindrical worm. 

The vector equation of the linear helical surface 
)( j

1 , 

according to Fig. 3 is 

,
)()()()( jjj

0

j

1 usr ++=                         (4) 

where 
)( j

1 is a radius - vector of point 
)( jN  that belongs to 

the linear helicoid; 
)( j

0r - radius-vector of the directed 

cylinder; 
)()( , jju   - curvilinear coordinates of the 

helicoids; 
)()()( jj

s

j ps =  - axial location displacement of 

the generatrix 
)( jL .  

In the coordinate system 
)( j

1S  for Eq. (4) it is obtained: 

.cos

,cossinsin

,sinsincos

)()()()()(

)()()()()()(

)()()()()()(

jjjj

s

j

1

jjjjj

0

j

1

jjjjj

0

j

1

upz

ury

urx







=

=

=

      (5) 

After the substitution of expressions Eq. (6) into Eq. (5), 

.sin )()()( jjj uU =                                 (6) 

the following equation systems are written: 

.cot

,cossin

,sincos

)()()()()(

)()()()()(

)()()()()(

jjjj

s

j

1

jjjj

0

j

1

jjjj

0

j

1

Upz

Ury

Urx







=

=

=

                  (7) 

Eqs. (5) and (7) represent cylindrical linear surfaces 
)( j

1 , 

with helical parameter 
)( j

sp  and curvilinear coordinates 

)()( , jju   and 
)( jU  and 

)( j , respectively.  

Let, Eq. (4) is written in the following type [24]: 

,

cos

coscos

cossin

,sin

cos

,)(

)(

)()(

)()(

)(

)(

)(

)()(

)()(

)()(

)(

,

)(

,

)(

,

)()()()()(

j

jj

jj

j

z

j

y

j

x

jj

s

jj

0

jj

0

j

z0

j

y0

j

x0

jjjj

0

j

1

1

1

1

1

1

1

l

l

l

p

r

r

lU

























=

=

+=



                 (8) 

where l
j( )

is a direction vector of 
)( jL . 

Then for the distribution parameter of cylindrical 

convolute helicoid 
)( j

1  it can be written: 

.
],,[

)(

)()()(
)(

2j

jjj

0
j

1

ld

ldlpd
h =                    (9) 

After a transformation from Eqs. (9) and (8), it is 

obtained: 

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

42



  

.cot )()()()( jj

0

j

s

j

1 rph +=                    (10) 

When Eqs. (5) and (7) describe the geometry of the 

cylindrical convolute helicoid, then 0h j

1 )(
.  

If 0h j

1 =)(
, i.e. 

.cot
)(

)(
)(

j

0

j

sj

r

p
−=                                 (11) 

then 
)( j

1  transforms into an involute helicoid. 

When 0r
j

0 =
)(

 is substituted in Eq. (4), then the systems 

of Eqs. (5) and (7) are of the form: 

)()()()()(

)()()()(

)()()()(

cos

,cossin

,sinsin

jjjj

s

j

1

jjjj

1

jjjj

1

upz

uy

ux







=

=

=

                   (12) 

.cot

,cos

,sin

)()()()()(

)()()(

)()()(

jjjj

s

j

1

jjj

1

jjj

1

Upz

Uy

Ux







=

=

=

                 (13) 

Eqs. (12) and (13) are equations of an Archimedean 

helicoid. For the Archimedean helicoid is fulfilled: 

.)()( j

s

j

1 ph =                                  (14) 

1j = , and upper signs in all equations and in further 

equations are referred to the active surface 
)(1

1  which 

rotates with the angular velocity 1  and the corresponding 

translation velocity of 
)(1

2  is 2V  (see Fig. 2); 2j =  and 

the lower signs are referred to those meshed surfaces 
)(2

1 and 
)(2

2  which velocities are ( 1− ) and ( 2V− ). 

2) Geometry of a helical rack flanks 

In the case of spatial rack drive, the equations of the helical 

rack tooth surfaces 
)( j

2  ( 21j ,= ) are written by using 

the equations of their kinematic conjugate linear helicoids 
)( j

1  ( 21j ,= ) that belong to the cylindrical worm. In this 

case, 
)( j

2 ( 21j ,= ) are envelopes of the defined 

helicoids 
)( j

1  ( 21j ,= ). The analytical description of 

this statement is defined as Eq. (2), i.e.:  

     

.

),,,(

)(

)(

)(

)(
)(

)()(

,

)(

,,

)(

,,

)(

,

)(

j

1

j

1

j

1

j

1
j

1

1

jj

z12

j

z1y12

j

y1x12

j

x112

j

1

u
n

uf

VnVnVnVn















=

=

=++=

       (15) 

 

Here, 
)( j

1n  is the normal vector to the 
)( j

1 ; 12V  is the 

defined with equation (3) relative velocity vector between 
)( j

1  and 
)( j

2  in arbitrary contact point P (see Fig. 2); 
1  

is the parameter of meshing. 

By using the kinematic method [7], the equations of the 

mesh region are determined, as a locus of the contact lines of 
)( j

1  and 
)( j

2  in the fixed space ),,,( zyxOS . Let for 

cases of the linear helicoid, 
)( j

1n  is written in the coordinate 

system 
)( j

1S . Then from the equations systems Eqs. (15) and 

(7), the normal vectors of these surfaces for the linear 

helicoid are obtained as: 

           

.sin

,coscos

sinsin

,sincos

cossin

)()()(

,

)()()(

)()()()(

,

)()()(

)()()()(

,

jjj

z1

jjj

jjj

1

j

y1

jjj

jjj

1

j

x1

Un

U

hn

U

hn

1

1

1











=

+

+=

−

−=

             (16) 

When using the transition matrices from a system 
)( j

1S  to 

S :  

             

.cossin

sincos

,
cossin

sincos

100

0

0

L

1000

0100

00

00

M

11

11

SS

11

11

SS

1

1









−=

−
=

             (17) 

 

For the equations of the mesh region of the spatial rack set 

is received:  

.

,sin

),cos(cos)sin(sin

),sin(cos)cos(sin

,cot

),cos()sin(

),sin()cos(

,cos)sin(

)(

)()()(

,

)()()()()(

,

)()()()()(

,

)()()()()(

)()()(

)()()(

)(

,

)(

,

)(

,

)(

(18)

1

j

jjj

z1

jjjj

1

j

y1

jjjj

1

j

x1

jjjj

s

j

jj

0

j

jj

0

j

j

z121

j

y121

j

x1

j

A

Un

AUAhn

AUAhn

Upz

AUAry

AUArx

0njnjxny













−=

=

+=

−=

=

=

=

=++−







 

When 0h j

1 )(
, the Eq. (18) define the mesh region of the 

spatial convolute rack set. If 0h j

1 =)(
, then Eq. (18) define 
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the mesh region of the spatial involute rack set, and if 
)()( j

s

j

1 ph = . 

IV. RESULT AND DISCUSSION 

For the complete and full study of every gear mechanism 

(including spatial rack drives), it is necessary for the process 

of synthesis and design of these mechanisms to be 

accompanied by corresponding software assurance. It will 

ensure the correctness of the elaborated mathematical models 

(like eliminating the undercutting points from the mesh 

surfaces of the synthesis gears, visualization of the active 

tooth surfaces and mesh region), and improvement of the 

algorithmic and computational approaches as well. The 

creation of such programs contributes to the process of the 

design of new and/or improved gear mechanisms. 

For this reason, computer programs with similar 

structures and organization of the calculation process are 

written. One big part of the elaborated algorithms and 

computer programs is oriented to examine the nature of the 

active tooth surfaces and especially their geometric features, 

and their visualization as well. In this concrete study, the 

algorithmic flow of the created programs is related to the: 

-calculation process of the basic parameters of the 

directed cylinder: 

-selecting the proper coordinates of the helicoid; 

-proper determination of the variation of the parameter of 

meshing;  

-elimination of the undercutting points.  

-software illustration of the active tooth surfaces 
)( j

1  

and 
)( j

2 , which are connected with the gear and the rack 

correspondingly, and visualization of the mesh region as 

well. 

In this study, the graphics in Figs. 4 and 5 show the results 

of the created programs for the synthesis and analysis of 

spatial rack drives with cylindrical linear rotating helicoids 

(cylindrical convolute and Archimedean drive). The results 

are obtained for the velocity ratio 3j21 = . 

 

Fig. 4. Spatial cylindrical convolute rack drive with velocity ratio 3j21 = ; 

number of the teeth 1z1 = : а) cylindrical convolute right-handed helicoid 

9511

1 = )()(   ; 274r 1

0 ,)( = ; b) cylindrical convolute right-handed helicoid 

12522

1 = )()(  ; 6421r 2

0 .)( =  c) mesh region )(1MR ; d) mesh region 

)(2MR . 

 

Fig. 5. Spatial cylindrical Archimedean drive with velocity ratio 3j21 = ; 

number of the teeth 1z1 = : а) cylindrical Archimedean right-handed 

helicoid 9511

1 = )()(   ; b) cylindrical Archimedean right-handed 

helicoid 12522

1 = )()(  , c) mesh region )(1MR ; d) mesh region 

)(2MR . 

The aim of the author is to present a progressive class of 

spatial mechanical transmissions, little known and applied to 

realize the spatial transformation of "rotation and translation" 

movements and vice versa. The geometrical and kinematical 

similarity of these types of transmissions with hyperboloid 

gears is specifically defined and as a result, the mathematical 

modeling approach for mesh field synthesis according to 

Olivier’s second method applicable to cross-axis gears is 

justified. This study illustrates the mathematical model for 

the synthesis of the active flank gear-worm and helical rack 

of the Archimedean cylindrical rack mechanism. As a result 

of the obtained mathematical relations and developed 

program here is illustrated two types of cylindrical linear 

helicoids. This study gives a premise that these types of 

special mechanisms, which have specially studied the 

geometry of the active flanks are suitable for implementation 

as actuators in various fields of techniques. Of particular 

interest is their incorporation into the constructions of 

bio-robots [23], as an alternative to spatial hyperboloid 

gears [24]. 

V. CONCLUSION 

The equations of the active tooth surfaces of spatial 

convolute, involute, and Archimedean rack sets obtained in 

the article represent the base of the algorithm for synthesis 

and analysis of the spatial rack sets when a helical gear is a 

linear cylindrical worm. The obtained mathematical relations 

are on the basis of the elaborated programs for the 

visualization of spatial rack drives with cylindrical linear 

rotating helicoids. These analytical relations are very 

important for the geometrical and technological synthesis of 

the mechanisms. They have an essential place in the design of 

the tools for gear generation (cutting), and for the 

construction of control equipment, in the generation process 

of the tooth surfaces. When synthesizing gear mechanisms of 

this type it is extremely important to eliminate the singular 

points in their mesh region. Besides, small parts of 
)( j

1  and 

)( j

2  are constrained in the process of design, so the singular 

points should be eliminated. The written relations in this 

study are also oriented toward solving the problem for the 

elimination of undercutting points in the mesh region of the 

spatial rack drives.  
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