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Abstract—This paper introduces the logic control flow of 

Field-Programmable Gate Array (FPGA). The process from 

analyzing a digital circuit description to component mapping on 

FPGA is described thoroughly. This transforming process is 

partitioned into three major stages: combinational logic 

synthesis, sequential logic inference, and technology mapping. 

Specific algorithms are discussed for each stage.  
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I. INTRODUCTION 

A Field-Programmable Gate Array (FPGA) is an integrated 

circuit designed to be configured by a customer or a designer 

after manufacturing. It has been widely used for embedded 

systems in various applications, such as consumer electronics, 

medical devices, security systems, and defense industry 

applications [1]. Different from a CPU, which executes a 

program in a sequential manner, an FPGA is provided a 

bitstream to create appropriate hardware. The goal of this 

paper is to introduce the complete process of the logic control 

flow of an FPGA, specifically, the transformation from the 

digital logic description written by the user to the employment 

of logic components on FPGA. The paper is separated into 

five main sections describing the history, the architecture, the 

combinational logic synthesis, the sequential logic inference, 

and the technology mapping of an FPGA. The algorithms 

discussed here include the Boolean optimizing algorithm by 

McCluskey [2], the circuit description inferring algorithm by 

Gregory and Segal [3], and the component matching algorithm 

by Micheli [4]. 

First introduced by Xilinx [5] in 1984, FPGAs evolved a 

lot under the advancement of process technology and 

application demand. The evolution was reflected in an 

increase in capacity and speed as well as a decrease in cost 

and energy consumption. This period of evolution was 

divided into three eras: Age of Invention (1984–1991), Age 

of Expansion (1992–1999), and Age of Accumulation (2000–

2007). Developers have traditionally had just a few options at 

their disposal when considering how to implement a given 

computation [6]. 

The Age of Invention was about creating working FPGAs. 

The first FPGA, the Xilinx XC2064, was equipped with only 

64 logic blocks with each holding two Look-Up Tables 

(LUTs), each with three inputs, and one register [5]. Its size, 

in contrast to its capacity, surpassed the commercial 

microprocessors of the time and was a major drawback in an 

era that appreciated cost containment. In response, the 

antifuse process technology was able to eliminate the area 

penalty of memory-cell storage with one-time 

programmability as a tradeoff. As four-input functions 

commonly appear in digital designs, Xilinx used 4-input 

LUTs in their first FPGA designs [5]. However, many 

functions are not four-input, leading to underutilization of the 

LUT. To optimize logic cell usage, companies implemented 

fixed functions in the underutilized areas. Further emphasis 

on cost containment was shown in the interconnect 

architecture of the early FPGAs. Short wires between 

adjacent blocks were favored over long and slow wires of 

Programmable Array Logics (PALs) [5]. While shorter 

interconnects saved die area and provided efficiency, the 

large capacitance and distributed series resistance raised by 

pass transistors increased signal delay and delay uncertainty. 

As a result of minimal wiring, early FPGAs were extremely 

hard to use. 

In the next era, the Age of Expansion, manufacturers 

competed against each other to optimize the design of FPGAs. 

Many optical flow algorithms have been developed in the last 

two decades [7]. Silicon efficiency was no longer the priority 

when designing FPGAs. As new generations of silicon 

processes were made available, the cost of transistors and 

interconnects dropped, which made larger capacity possible. 

Product characteristics, like performance, features, and ease-

of-use, were weighed over previously precious area [5]. 

Furthermore, the continuous expansion of capacity on FPGA 

devices has made manual design less and less feasible. 

Demands to automate the design process emerged, giving 

FPGA companies who possessed design automation 

technologies leverage over the rest. Another benefit brought 

by process scaling was the abundance of interconnections, 

which made the board more programmable. Longer wires 

gave freedom to the placement of logic blocks, allowing a 

larger margin of error to the automated placement tools. By 

the end of the 1990s, automation was essential in the FPGA 

design process [5]. 

The trend of increasing capacity carried over to the next 

age, the Age of Accumulation. Nevertheless, continued 

expansion in size did not necessarily correspond to market 

growth when FPGAs of this size could already solve the 

majority of the designer’s problems. Few companies 

demanded significantly large FPGAs and fewer were willing 

to pay extra for them. As a solution, FPGA vendors adopted 

separate approaches to accommodate diverse needs of 

customers. Products with lower capacity and lower 

performance were provided at a low cost, while products with 

libraries of soft logic for crucial functions, e.g., 

microprocessors, memory controllers, and communication 

protocol stacks, targeted high-end users [5]. In the 2000s, the 

application field of FPGAs expanded. Some customers now 

wanted to implement system standards, mostly 

communication standards, on the boards. FPGAs started to 
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play a bigger role in customer’s overall system logic, 

resulting in growing cost and power. To address these 

concerns, manufacturers shifted their architecture strategy to 

add more dedicated logic blocks that were more efficient and 

cost-effective [5]. By 2005, FPGAs had been adapted to 

accommodate a growing range of applications. 

II. METHODOLOGY 

FPGAs can provide significant improvements in both 

overall performance and power efficiency by customizing the 

datapath of the algorithm and optimizing memory 

accesses [8]. The key to the flexibility of FPGAs is in their 

architecture, where sets of various kinds of programmable 

blocks, like logic and IO, are connected to routing tracks 

through programmable switches. The configuration of these 

units is controlled by millions of Static Random-Access 

Memory (SRAM) cells that are programmed at run time to 

realize a specific function described by the user. Known as 

field-programmable, FPGAs can easily implement a bug fix 

or a hardware upgrade by loading a new bitstream after 

launching. Furthermore, FPGAs, possessing a shorter time-

to-market, can carry out new product designs in a matter of 

weeks. From version to version, FPGA architects use an 

evaluation process to improve performance. This architecture 

evaluation flow consists of three sections, namely a suite of 

benchmark applications, an architecture model, and a 

Computer-Aided Design (CAD) system [9]. 

Due to the wide range of applications and future 

extendibility of FPGAs, an FPGA architecture is evaluated 

based on its efficiency running various benchmark designs 

that are representations of popular market applications. These 

benchmark applications are collected by FPGA vendors from 

their customers as well as proprietary systems. Subsequently, 

all the components in a new design will be modeled to 

provide an overview of the architecture and to justify the 

decisions made. The organization of blocks and routing 

structure are represented in architecture description files, 

while area and timing characteristics are extracted from 

individual component implementations. The last step of 

evaluation is to map the benchmark designs onto the FPGA 

architecture using a CAD system. The performance is then 

measured by several key metrics: total area occupied by 

application, maximum frequency of application’s clock, and 

power consumption [9]. Finally, the architecture is evaluated 

based on the averages across all benchmarks considering its 

designated purpose. 

Programmable logic, being one of the essential parts of 

FPGA architecture, originated from the Programmable Array 

Logic (PAL) architecture that was built off from a two-level 

sum-of-products function. A PAL was configurable and 

offered constant delay against various logic functions. On the 

other hand, a PAL was not as efficient when facing large 

numbers of inputs. Growing device logic capacity would 

accumulate connecting wires and demand more 

programmable switches, thus, resulting in slower 

transmission. Complex Programmable logic Devices 

(CPLDs), a subsequent design, addressed the scalability 

problem by cross-connecting multiple PALs on the same die 

[9]. However, the implementation of CPLDs required more 

complicated design tools as a tradeoff. In 1984, the creation 

of the first Lookup-Table-based (LUT-based) FPGA solved 

the issue with a structure consisting of an array of SRAM-

based LUTs interconnected [9]. Compared to the PAL 

architecture, LUTs were more compact in size, which made 

it popular ever since. 

As the fundamental components of today’s FPGA, LUTs 

were studied by manufacturers to find the most suitable 

combination of size and speed. A K-LUT can handle any K-

input Boolean functions. It stores the truth table of the 

function in its configuration SRAM cells and uses the K input 

signals to select an output from the truth table. According to 

the studies conducted by [9], “LUTs of size 4-6 and logic 

blocks (LBs) of size 3–10 Basic Logic Elements (BLEs) offer 

the best area-delay product for an FPGA architecture”. LUTs 

with less inputs correspond to a smaller size, while LUTs with 

more inputs provide a higher speed. In 2003, Altera 

introduced fracturable LUTs that were designed to combine 

the pros of both small and large LUTs. Fracturable LUTs 

improved the usage of the original under-utilized K-LUT by 

separating it into two K-1 sized LUT that could be configured 

as a K-LUT when needed. Fracturable LUTs also support 

additional inputs with an area cost based on design choice. 

Affected by the emergence of fracturable LUTs was the 

number of Flip-Flops (FFs) per BLE. Early FPGAs with a 

non-fracturable LUT installed only one FF. Along with the 

introduction of fracturable LUTs and an increased demand 

for FFs to achieve higher performances, the number of FFs 

per BLE had increased significantly, as large as four in the 

Stratix V architecture [9]. Later, Stratix V replaced its FFs 

with pulse latches to remove one of the two latches in the 

master-slave architecture of an FF, further reducing the area 

and delay. 

Programmable routing, another essential part of the FPGA 

architecture, generally covers more than half of both the die 

area and the critical path delay of applications. Programmable 

routing is usually made up of prefabricated wiring segments 

and programmable switches. FPGA routing architecture 

consists of two main types: hierarchical and island-style [9]. 

Hierarchical architecture, by its name, maintains a 

hierarchy between modules in which high-level modules 

instantiate low-level modules. The hierarchical design 

enables more frequent communications between modules that 

are closer in hierarchy. These communications are 

implemented with short wires that connect small regions on 

the chip [9]. On the flip side, the delay of long wires in the 

upper level does not improve much when the process is scaled. 

Additionally, physical distance does not correlate to the 

number of wires and switches needed to connect two logic 

blocks in a hierarchical architecture. Logic blocks that are 

physically close to each other may still communicate through 

a bunch of wires and switches. Thus, this routing architecture 

is mainly used for small FPGAs. 

Island-style architecture constructs each logic block in an 

isolated manner that communicates with the outside world 

through switch and connection blocks. This architecture is 

made up of three key components: routing wire segments, 

connection blocks, and switch blocks. Connection blocks 

establish a connection between function block inputs and 

routing wires, while switch blocks arrange wiring to attain 

longer routes [9]. Utilizing intelligent placement algorithms, 

the CAD tool distributes elements of design to function 

blocks in a way that produces minimum wiring. Therefore, 
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the connections between function blocks are shorter and 

fewer routing wires are required in this architecture. Wire 

length is also an important property to consider in the design 

of island-style architecture. Modern applications adopt wires 

with multiple lengths to account for connections of different 

distances. The most popular option remains the moderate-

length wires since a metal stack can only accommodate a 

certain number of long wires and short wires call for more 

programmable switches than needed. 

A challenge that programmable routing faces is that 

process scaling decreases the size of processes but not 

necessarily the propagation time through long wires. On the 

contrary, the wire delay appears longer in terms of clock 

periods compared to an increasing clock frequency because 

of smaller processes. FPGA application developers address 

this problem by implementing more pipelining in their 

designs, which allows multiple clock cycles for long routes. 

They also use multiple clock domains to maximize the 

frequency that each individual component runs on. To perfect 

this strategy, some FPGA manufacturers have added registers 

to the routing network. 

Widely used in designing switching circuits, Boolean 

algebra notation commonly describes the performance of a 

single-output combinational circuit with some input variables. 

The behaviour of a Boolean function, also known as the 

circuit transmission, can be described in a table of 

combinations, which lists all possible combinations of inputs 

and their corresponding outputs. Among which, the 

combinations where an output exists are regarded as 

elementary product terms (p-terms). A transmission can 

therefore be represented in a sum of p-terms, called a 

canonical expansion. Simplifying the canonical expansion 

can often achieve savings in gates needed to build a circuit, 

thus making it one of the most important problems of 

switching circuit theory. Famous simplification methods by 

Karnaugh, Aiken, and Quine are effective in addressing the 

problem on a smaller scale, but vulnerable to more complex 

functions or can hardly be implemented on digital computers. 

A more thorough approach by McCluskey [2] suggests that a 

more systematic way of handling complex functions is 

plausible. 

The objective of McCluskey’s [2] approach is to determine 

the minimum sums of a Boolean function, a sum of p-terms 

function with the fewest terms and fewest literals. The 

minimum sums can be obtained by choosing the sum 

functions that have the fewest terms and the fewest literal 

from an enumeration of all possibilities. However, finding the 

minimum sums by enumeration does not scale well. A more 

practical strategy by Quine involves prime implicants. Prime 

implicants of a function are obtained by a repeated 

application of theorem 𝑥1𝑥2
′ + 𝑥1𝑥2 = 𝑥1 to all possible 

pairs of p-terms, then the resulting terms until it cannot be 

applied anymore. Combining the fewest prime implicants that 

satisfy the table of combinations will produce the minimum 

sum, with its terms referred to as ms-terms. The shortcoming 

of Quine’s method is exposed when given a transmission 

containing many variables or p-terms [2]. countered with a 

solution that simplifies the notation and makes the procedure 

more systematic. Specifically, the literals are replaced by 

binary numbers and the omitted literals during simplification 

are represented using dashes. The revised method for 

determining prime implicants by McCluskey [2] is as follows: 

1. List in a column the binary equivalents of the decimal 

numbers which specify the function. 

2. Order the binary equivalents by the number of 1’s and 

divide them into groups based on the number of 1’s. 

An example is shown in Fig. 1. 

 

 
Fig. 1. Determination of prime implicants for Transmission [3]. 

 

3. Compare each number with all the numbers from the 

group with exactly one more 1’s. 

4. For each number which has 1’s or -’s wherever the 

number with which it is being compared has 1’s or -’s, 

a new character is formed and recorded in a separate 

column. 

5. Place a check mark next to each number which is used 

in forming a new character. 

6. Repeat the process until no further reductions are 

possible. 

7. The unchecked characters represent the prime 

implicants. 

To determine the minimum sums from the obtained prime 

implicants, a prime implicant table is used, as shown in Fig. 

2. Each column in the prime implicant table corresponds to a 

row in the table of combinations which outputs one, while 

each row represents a prime implicant. A cross is placed at 

the intersection if a prime implicant has value one for a 

transmission. Selecting the fewest rows such that each 

column has a cross in at least one selected row produces a 

minimum sum and the selected rows are known as basis rows. 

as shown in Fig. 3. 

 

 
Fig. 2. Prime implicant table for the transmission of table in Fig. 1 [3]. 
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Fig. 3. Determination of Basis Rows for a Cyclic Prime  

Implicant Table [3]. 

 

The choice of basis rows can be complex, as it is an NP-

complete set covering problem. McCluskey [2] gives some 

heuristics that work well: 

1. Translate the table into a Boolean expression where 
addition stands for the choice of row in a column and 
multiplication connects such a condition with all 
columns. 

2. Assign each row in the expression with a weight, w = 
n-log_2 k, where n is the number of variables in a 
transmission and k is the number of crosses in a row. 

3. Compute the total weight of each row set by summing 
the weights of its rows. The row set with the smallest 
total weight corresponds to the minimum sums. 

An example of such procedures is shown in Fig. 4. Even 

though the expressions derived from the table and the 

multiplication process can be lengthy, this method is 

systematic and suitable for automation. 

 

 
Fig. 4. Determination of the minimum sums for the prime implicant table in 

Fig. 3 by means of the Boolean representation [3]. 

 

Now that the user description specifying the combinational 

signals of a logic network can be simplified, a method is 

needed to convert the hardware independent description 

written by the user to a logic network, namely, a net list of 

logic components. Before this point, design was done by 

schematic capture. The creation of Hardware Description 

Language (HDL) opened the door to inference. HDL 

presented users with a way to describe the functionalities of a 

desired logic circuit and was also technology independent. On 

the flip side, early HDLs supported limited operation 

descriptions of circuit elements. Complex circuit elements 

like high impedance drivers, level sensitive latches and edge 

sensitive flip-flops would require the user to first specify the 

element type and then describe its connections, which 

assumed that the user had detailed knowledge of the desired 

circuit. Thus, HDL was only suitable for designers that knew 

both the operational behaviours and the hardware elements of 

the desired circuit. 

To broaden applicable users, Gregory and Segal [3] 

suggested an automated logic design system with a circuit 

element independent HDL. The method proposed by Gregory 

and Segal [3], a logic circuit synthesizer, consisted of a 

preprocessor and a logic circuit generator. The preprocessor 

transformed the user description of signals and conditions 

into an equivalent representation in terms of nodes connected 

by edges, which indicated the conditions of the node being 

traversed. The logic circuit generator would then turn this 

structure into the actual logic network that performed as 

described by the user. In detail, the preprocessor was made 

up of a parser, a graph generator, and a condition generator. 

Upon receiving the signal information specified in the user 

description, the preprocessor would parse the description, 

convert it into a control flow graph, and determine the edge 

conditions for each node. The parser in the preprocessor 

would parse the statements in the description and store parsed 

results in a parse tree and symbol table for the graph generator, 

while the latter would then construct a control flow graph 

from them. Passing on to the condition generator, every node 

in the control flow graph would be analyzed to determine the 

condition necessary to reach that node. As the second portion 

of the logic circuit synthesizer, the logic circuit generator 

would take over the edge conditions and the nodes of the 

control flow graph generated by the preprocessor and convert 

them into assignment conditions. Overall, the logic circuit 

generator consisted of an assignment condition generator and 

a hardware generator. The task of the assignment condition 

generator was to produce an assignment condition matrix 

using the conditions and the control flow graph generated 

previously. Ultimately, following the assignment condition 

generator, the hardware generator was responsible for 

creating a logic circuit for each row of the assignment 

condition matrix. 

Digging deeper into the inferring process that transforms 

user descriptions to hardware, the logic circuit generator is 

first tasked to determine an assignment condition for each 

variable in a Hardware Description Function (HDF). By 

definition, an assignment condition represents the condition 

under which the HDF is true for a particular variable. HDFs 

can be separated into synchronous and asynchronous 

functions, where synchronous functions are variable 

assignments on clock edges and asynchronous functions are 

all the other assignments. In the assignment condition matrix 

suggested by Gregory and Segal [3], six HDFs are considered. 

They are asynchronous Load Function (AL), Asynchronous 

Data Function (AD), Synchronous Load Function (SL), 
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synchronous Data Function (SD), Don’T Care function (DC), 

and High-Impedance function (Z). AL refers to the condition 

under which a variable is assigned any value, while AD tells 

the condition under which a variable is assigned the value one. 

Similarly, SL and SD represent the same conditions as AL 

and AD respectively but only on a clock edge. DC describes 

the condition under which a variable is assigned the value 

“X”, meaning that the signal level of the variable is not 

important. Z, by its name, reflects the condition under which 

a variable is assigned the value “Z”, saying the variable is 

high-impedance. 

An example conversion from a user description, shown in 

Table 1, to its corresponding assignment conditions, shown 

in Table 2, is complemented for further comprehension. 

According to the user description, variable P is always 

assigned a value and is assigned the value one only when the 

condition COND1 is true. Neither assignment is associated 

with clock edges. Therefore, the AL of variable P is one and 

the AD of variable P has the value of COND1. Conversely, 

variable Q specified by the user is only assigned a value of B 

when COND2 is true. Thus, the AL of variable Q is COND2 

and the AD of variable Q is the product of COND2 and B. 

 
Table 1. An example of user description [3] 

An Example of User Description 110 

if (COND1) 

P:=1 

                                       else   

                                              P:=0 

                                       endif 

                                        if (COND2 

                                              Q:=B 

                                        else 

                                        endif. 

 

Table 2. Assignment conditions for the user description oF Table 1 [3] 

 Assignment Conditions 

Variable Load Function (AL) 
Asynchronous Data 

Function (AD) 
Synchronous Load (SL) Data Function (SD) Don’t Care (DC) High-Impedance (Z) 

P 1 COND1 0 0 0 0 

Q COND2 COND2×B 0 0 0 0 

 

The final step of the logic circuit generator will be 

transforming the produced assignment conditions to the 

corresponding hardware components. The hardware 

generator will generate a logic circuit for each row of the 

assignment condition matrix. Using the assignment 

conditions, shown in Table 6 above, for variable Q as an 

example, the behaviour of the assignment conditions related 

to variable Q can be replicated by a flow through latch 

controlled by AL where AD is the data input signal and the 

value of Q is the output signal. Seeing the complete 

converting process, this strategy by Gregory and Segal [3] 

presented a systematic way of inferring from user 

descriptions to generate a corresponding logic circuit. 

In recent years, a number of different schemes have been 

proposed to implement optical flow algorithms in real-

time [10]. Taking the logic network generated from inference, 

technology mapping transforms it into an interconnection of 

components that are instances of elements of a given library. 

Formally, technology mapping, also known as cell-library 

binding, is the process of transforming an unbound logic 

network into a bound network. Searching for the most 

optimized library component that performs the desired task 

presents a complex and difficult problem. Area cost, 

propagation delays, and testability enhancement are aspects 

to be considered in the binding process. Existing solutions are 

categorized into two types: heuristic algorithms and rule-

based approaches. Both have their advantages and drawbacks. 

Heuristic algorithms handle only single-output combinational 

cells, while rule-based approaches are capable of complex 

libraries but require much effort in creation and maintenance 

of the set of rules and are also slower. Thus, the two 

approaches are often combined to achieve optimum 

performance. 

Assuming a combinational logic network that has already 

been optimized using the Boolean minimization and 

inference techniques discussed previously, cell-library 

binding aims at finding an equivalent logic network 

composed of instances of library cells. Finding such a logic 

network is very complex, because the essential determination 

of equivalence between an unbound and a bound network 

presents a tautology problem. In general, the library binding 

problem can be interpreted as a network covering problem 

where a portion of an optimized logic network is substituted 

by cell-library elements with minimized area or delay. A cell 

is said to match a subnetwork when they have the same 

functionalities. When library instances achieve one-to-one 

mappings with the vertices in a network, the binding is trivial. 

For the network covering problem to have a solution, each 

local function needs to have at least one match in the cell 

library. Nevertheless, solving the library binding problem 

with the network covering approach is difficult due to its 

binate nature. The choice of any library cell in a network 

requires the selection of other cells to prove its connectivity. 

Therefore, heuristic algorithms were developed to 

approximate the solution of the network covering problem. 

Algorithms for library binding can be divided into two 
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major types based on how the network and the library are 

represented: Boolean and structural. In the Boolean 

representation, the library cells and the portion of the network 

of interest are described in Boolean equations. In the 

structural representation, the Boolean equations describing 

the library cells and subnetworks are further reduced into an 

algebraic representation that can be cast into a graph. The 

usage of the two representations mainly differs in matching 

strategies. 

Structural matching identifies the common patterns 

between a subject graph, obtained from the logic network, 

and its corresponding pattern graphs, associated with library 

elements. The subject and pattern graphs are acyclic and 

rooted. The method can then be simplified by representing 

library cells in the form of rooted trees. Tree matching and 

tree covering problems can be solved in linear time.  

Two tree-based matching methods are considered here: 

simple tree-based matching and tree-based matching using 

automata. The simple matching method determines if a 

pattern tree is of the same structure as a portion of the subject 

tree. Starting from the root of the pattern tree and a vertex of 

the subject tree, the simple method compares the degrees of 

pairs of vertices in both trees until the leaves of the pattern 

tree are reached. The runtime of this algorithm is linear in the 

size of the graphs. The other tree matching method relied on 

an encoding of the trees by strings and a string recognition 

algorithm to represent the cell library systematically. In short, 

the algorithm would process strings that encode paths in the 

subject tree and recognize those that match paths in pattern 

trees. In comparison, the method using automata could match 

all patterns concurrently while the simple method could only 

match one at a time. However, this advantage would be 

countered by the increased complexity of handling trees as 

separate strings. 

To obtain optimum tree covering, dynamic programming 

would be used. First, the minimum-area covering problem 

was considered. The tree covering algorithm would traverse 

the subject graph in a bottom-up fashion to minimize the total 

area of the bound network knowing the area cost of 

independent cells. For all vertices of the subject tree, the 

algorithm would match the locally rooted subtrees with the 

pattern trees. Next, the minimum-delay problem would be 

considered, with each cell’s timing cost characterized by its 

input and output propagation delay. The subject tree would 

be traversed in the same bottom-up fashion to find the binding 

that minimized the data-ready time at each vertex, and thus, 

the minimum delay at the root. The runtime of these 

algorithms are linear with respect to the size of the subject 

tree. 

Nevertheless, the covering algorithms utilizing structural 

matching had certain drawbacks. First, a library cell could be 

associated with more than one pattern graph, which led to 

cumbersome testing for the vertices of the subject graph. 

Second, there were cells that could not be represented by trees, 

like the EXOR and EXNOR gates. Although they could be 

replaced with leaf-dags, directed acyclic graphs where paths 

stem from the root can only reconverge at the leaves, the 

usage of these cells would be limited. Third, structural 

matching did not support the use of don’t care in the binding 

process. The result could be not perfectly optimized. 

Boolean matching complemented the disadvantages of 

structural matching. Boolean matching would perform an 

equivalence check between two functions, one being the 

cluster function that represented a portion of the network and 

the other being the pattern function that represented a cell. 

The Boolean covering algorithm would identify matches 

between the cluster functions of subnetworks and the pattern 

functions in the library, and subsequently, choose an amount 

of identified matches that minimize the area cost or delay of 

the network. Although Boolean covering and matching 

seemed more computationally expensive given that it 

required function derivations, studies showed that its 

computing times were comparable to that of structural 

covering and matching. One advantage that the Boolean 

covering algorithms had over the structural counterparts was 

their ability to exploit the degrees of freedom provided by 

don’t care conditions and discover matches missed by 

algorithms based on structural matching, resulting in better 

solutions. 

Given that FPGAs are pre-wired circuits, specific library 

binding techniques are required. Two types of FPGAs are 

considered in the following discussion of binding algorithms: 

Look-Up Table FPGAs and Anti-Fuse-Based FPGAs. For 

look-up table FPGAs, the virtual library is too gigantic for 

binding algorithms using enumeration and varies depending 

on the FPGA model. Thus, the suggested binding algorithm 

for look-up-table-based FPGAs focuses on combinational 

networks. The objective is to find an equivalent logic network 

with minimum critical path delay such that each vertex is 

matched by a function implementable by a look-up table. 

Micheli [4] adapted tree covering in their binding algorithm 

so that a subject graph was decomposed into parts that were 

put into a look-up table. Each decomposed part of the subject 

graph was meant to possess as much functionality as possible 

within the input size constraint. 

An algorithm that optimizes the capacity of look-up tables 

is proposed by Micheli [4]. Any n-input single-output 

function can be represented in a sum of products form with at 

most n variables. First, the algorithm finds the product term 

with the most variables and puts it into the first table that fits. 

If none exists, a new table will be created to store the term. 

This process is repeated until all product terms are assigned 

to a table. Next, the table with the most variables is declared 

final and is associated with a new variable. Again, the 

algorithm looks for possible fitting tables to hold the new 

variable. The number of required tables decreases on every 

iteration. In the end where there is only one table left, that 

table produces the final result. This algorithm works well 

when the product terms are disjoint and the size of input n is 

less than or equal to six. 

For anti-fuse-based FPGAs, the virtual library holds all 

logic functions implementable by personalizing the logic 

module. Since the layout of the FPGAs and the type of logic 

module differ from model to model, the problem was 

generalized to accommodate various anti-fuse-based FPGAs. 

All programmable modules are assumed to implement the 

same single-output combinational function, from here on 

referred to as the module function. Binding aims to determine 

an equivalent logic network with a minimum number of 

vertices such that each vertex can be matched with a 

personalization of the module function. In general, the size of 

the virtual library is so large that the previously mentioned 
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binding algorithms will not be useful. Alternative binding 

algorithms are proposed based on structural and Boolean 

representations. When employing a structural representation, 

the algorithm takes advantage of the uncommitted module to 

decompose the subject graph. Then, the library can be 

represented by pattern graphs that have a similar 

decomposition. Finally, the results can be obtained through 

structural covering with dynamic programming. Boolean 

approaches make use of the previous Boolean covering 

algorithm along with a modified matching algorithm that 

checks the implementability of a cluster function by module 

personalization.  

III. CONCLUSION 

Putting together the combinational logic synthesis, 

sequential logic inference, and technology mapping sections, 

an automated process of transforming the user circuit 

description to logic components employment on FPGA is 

obtained, which represents the logic control flow of FPGA. 

Another crucial aspect of FPGAs is place-and-route, which is 

not covered in this paper. In further studies, algorithms that 

optimize placing and routing among hardware components 

can be investigated. 
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