
HDL Synthesis, Inference and Technology Mapping

Algorithms for FPGA Configuration

Nuocheng Wang

Northeastern University, Boston, USA

Email: jw411711848@gmail.com

Manuscript received August 18, 2023; revised September 25, 2023; accepted November 3, 2023; published March 15, 2024

Abstract—This paper introduces the logic control flow of

Field-Programmable Gate Array (FPGA). The process from

analyzing a digital circuit description to component mapping on

FPGA is described thoroughly. This transforming process is

partitioned into three major stages: combinational logic

synthesis, sequential logic inference, and technology mapping.

Specific algorithms are discussed for each stage.

Keywords—Hardware Description Language (HDL),

mapping, algorithm, Field-Programmable Gate Array (FPGA),

configuration

I. INTRODUCTION

A Field-Programmable Gate Array (FPGA) is an integrated

circuit designed to be configured by a customer or a designer

after manufacturing. It has been widely used for embedded

systems in various applications, such as consumer electronics,

medical devices, security systems, and defense industry

applications [1]. Different from a CPU, which executes a

program in a sequential manner, an FPGA is provided a

bitstream to create appropriate hardware. The goal of this

paper is to introduce the complete process of the logic control

flow of an FPGA, specifically, the transformation from the

digital logic description written by the user to the employment

of logic components on FPGA. The paper is separated into

five main sections describing the history, the architecture, the

combinational logic synthesis, the sequential logic inference,

and the technology mapping of an FPGA. The algorithms

discussed here include the Boolean optimizing algorithm by

McCluskey [2], the circuit description inferring algorithm by

Gregory and Segal [3], and the component matching algorithm

by Micheli [4].

First introduced by Xilinx [5] in 1984, FPGAs evolved a

lot under the advancement of process technology and

application demand. The evolution was reflected in an

increase in capacity and speed as well as a decrease in cost

and energy consumption. This period of evolution was

divided into three eras: Age of Invention (1984–1991), Age

of Expansion (1992–1999), and Age of Accumulation (2000–

2007). Developers have traditionally had just a few options at

their disposal when considering how to implement a given

computation [6].

The Age of Invention was about creating working FPGAs.

The first FPGA, the Xilinx XC2064, was equipped with only

64 logic blocks with each holding two Look-Up Tables

(LUTs), each with three inputs, and one register [5]. Its size,

in contrast to its capacity, surpassed the commercial

microprocessors of the time and was a major drawback in an

era that appreciated cost containment. In response, the

antifuse process technology was able to eliminate the area

penalty of memory-cell storage with one-time

programmability as a tradeoff. As four-input functions

commonly appear in digital designs, Xilinx used 4-input

LUTs in their first FPGA designs [5]. However, many

functions are not four-input, leading to underutilization of the

LUT. To optimize logic cell usage, companies implemented

fixed functions in the underutilized areas. Further emphasis

on cost containment was shown in the interconnect

architecture of the early FPGAs. Short wires between

adjacent blocks were favored over long and slow wires of

Programmable Array Logics (PALs) [5]. While shorter

interconnects saved die area and provided efficiency, the

large capacitance and distributed series resistance raised by

pass transistors increased signal delay and delay uncertainty.

As a result of minimal wiring, early FPGAs were extremely

hard to use.

In the next era, the Age of Expansion, manufacturers

competed against each other to optimize the design of FPGAs.

Many optical flow algorithms have been developed in the last

two decades [7]. Silicon efficiency was no longer the priority

when designing FPGAs. As new generations of silicon

processes were made available, the cost of transistors and

interconnects dropped, which made larger capacity possible.

Product characteristics, like performance, features, and ease-

of-use, were weighed over previously precious area [5].

Furthermore, the continuous expansion of capacity on FPGA

devices has made manual design less and less feasible.

Demands to automate the design process emerged, giving

FPGA companies who possessed design automation

technologies leverage over the rest. Another benefit brought

by process scaling was the abundance of interconnections,

which made the board more programmable. Longer wires

gave freedom to the placement of logic blocks, allowing a

larger margin of error to the automated placement tools. By

the end of the 1990s, automation was essential in the FPGA

design process [5].

The trend of increasing capacity carried over to the next

age, the Age of Accumulation. Nevertheless, continued

expansion in size did not necessarily correspond to market

growth when FPGAs of this size could already solve the

majority of the designer’s problems. Few companies

demanded significantly large FPGAs and fewer were willing

to pay extra for them. As a solution, FPGA vendors adopted

separate approaches to accommodate diverse needs of

customers. Products with lower capacity and lower

performance were provided at a low cost, while products with

libraries of soft logic for crucial functions, e.g.,

microprocessors, memory controllers, and communication

protocol stacks, targeted high-end users [5]. In the 2000s, the

application field of FPGAs expanded. Some customers now

wanted to implement system standards, mostly

communication standards, on the boards. FPGAs started to

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

32DOI: 10.7763/IJET.2024.V16.1251

play a bigger role in customer’s overall system logic,

resulting in growing cost and power. To address these

concerns, manufacturers shifted their architecture strategy to

add more dedicated logic blocks that were more efficient and

cost-effective [5]. By 2005, FPGAs had been adapted to

accommodate a growing range of applications.

II. METHODOLOGY

FPGAs can provide significant improvements in both

overall performance and power efficiency by customizing the

datapath of the algorithm and optimizing memory

accesses [8]. The key to the flexibility of FPGAs is in their

architecture, where sets of various kinds of programmable

blocks, like logic and IO, are connected to routing tracks

through programmable switches. The configuration of these

units is controlled by millions of Static Random-Access

Memory (SRAM) cells that are programmed at run time to

realize a specific function described by the user. Known as

field-programmable, FPGAs can easily implement a bug fix

or a hardware upgrade by loading a new bitstream after

launching. Furthermore, FPGAs, possessing a shorter time-

to-market, can carry out new product designs in a matter of

weeks. From version to version, FPGA architects use an

evaluation process to improve performance. This architecture

evaluation flow consists of three sections, namely a suite of

benchmark applications, an architecture model, and a

Computer-Aided Design (CAD) system [9].

Due to the wide range of applications and future

extendibility of FPGAs, an FPGA architecture is evaluated

based on its efficiency running various benchmark designs

that are representations of popular market applications. These

benchmark applications are collected by FPGA vendors from

their customers as well as proprietary systems. Subsequently,

all the components in a new design will be modeled to

provide an overview of the architecture and to justify the

decisions made. The organization of blocks and routing

structure are represented in architecture description files,

while area and timing characteristics are extracted from

individual component implementations. The last step of

evaluation is to map the benchmark designs onto the FPGA

architecture using a CAD system. The performance is then

measured by several key metrics: total area occupied by

application, maximum frequency of application’s clock, and

power consumption [9]. Finally, the architecture is evaluated

based on the averages across all benchmarks considering its

designated purpose.

Programmable logic, being one of the essential parts of

FPGA architecture, originated from the Programmable Array

Logic (PAL) architecture that was built off from a two-level

sum-of-products function. A PAL was configurable and

offered constant delay against various logic functions. On the

other hand, a PAL was not as efficient when facing large

numbers of inputs. Growing device logic capacity would

accumulate connecting wires and demand more

programmable switches, thus, resulting in slower

transmission. Complex Programmable logic Devices

(CPLDs), a subsequent design, addressed the scalability

problem by cross-connecting multiple PALs on the same die

[9]. However, the implementation of CPLDs required more

complicated design tools as a tradeoff. In 1984, the creation

of the first Lookup-Table-based (LUT-based) FPGA solved

the issue with a structure consisting of an array of SRAM-

based LUTs interconnected [9]. Compared to the PAL

architecture, LUTs were more compact in size, which made

it popular ever since.

As the fundamental components of today’s FPGA, LUTs

were studied by manufacturers to find the most suitable

combination of size and speed. A K-LUT can handle any K-

input Boolean functions. It stores the truth table of the

function in its configuration SRAM cells and uses the K input

signals to select an output from the truth table. According to

the studies conducted by [9], “LUTs of size 4-6 and logic

blocks (LBs) of size 3–10 Basic Logic Elements (BLEs) offer

the best area-delay product for an FPGA architecture”. LUTs

with less inputs correspond to a smaller size, while LUTs with

more inputs provide a higher speed. In 2003, Altera

introduced fracturable LUTs that were designed to combine

the pros of both small and large LUTs. Fracturable LUTs

improved the usage of the original under-utilized K-LUT by

separating it into two K-1 sized LUT that could be configured

as a K-LUT when needed. Fracturable LUTs also support

additional inputs with an area cost based on design choice.

Affected by the emergence of fracturable LUTs was the

number of Flip-Flops (FFs) per BLE. Early FPGAs with a

non-fracturable LUT installed only one FF. Along with the

introduction of fracturable LUTs and an increased demand

for FFs to achieve higher performances, the number of FFs

per BLE had increased significantly, as large as four in the

Stratix V architecture [9]. Later, Stratix V replaced its FFs

with pulse latches to remove one of the two latches in the

master-slave architecture of an FF, further reducing the area

and delay.

Programmable routing, another essential part of the FPGA

architecture, generally covers more than half of both the die

area and the critical path delay of applications. Programmable

routing is usually made up of prefabricated wiring segments

and programmable switches. FPGA routing architecture

consists of two main types: hierarchical and island-style [9].

Hierarchical architecture, by its name, maintains a

hierarchy between modules in which high-level modules

instantiate low-level modules. The hierarchical design

enables more frequent communications between modules that

are closer in hierarchy. These communications are

implemented with short wires that connect small regions on

the chip [9]. On the flip side, the delay of long wires in the

upper level does not improve much when the process is scaled.

Additionally, physical distance does not correlate to the

number of wires and switches needed to connect two logic

blocks in a hierarchical architecture. Logic blocks that are

physically close to each other may still communicate through

a bunch of wires and switches. Thus, this routing architecture

is mainly used for small FPGAs.

Island-style architecture constructs each logic block in an

isolated manner that communicates with the outside world

through switch and connection blocks. This architecture is

made up of three key components: routing wire segments,

connection blocks, and switch blocks. Connection blocks

establish a connection between function block inputs and

routing wires, while switch blocks arrange wiring to attain

longer routes [9]. Utilizing intelligent placement algorithms,

the CAD tool distributes elements of design to function

blocks in a way that produces minimum wiring. Therefore,

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

33

the connections between function blocks are shorter and

fewer routing wires are required in this architecture. Wire

length is also an important property to consider in the design

of island-style architecture. Modern applications adopt wires

with multiple lengths to account for connections of different

distances. The most popular option remains the moderate-

length wires since a metal stack can only accommodate a

certain number of long wires and short wires call for more

programmable switches than needed.

A challenge that programmable routing faces is that

process scaling decreases the size of processes but not

necessarily the propagation time through long wires. On the

contrary, the wire delay appears longer in terms of clock

periods compared to an increasing clock frequency because

of smaller processes. FPGA application developers address

this problem by implementing more pipelining in their

designs, which allows multiple clock cycles for long routes.

They also use multiple clock domains to maximize the

frequency that each individual component runs on. To perfect

this strategy, some FPGA manufacturers have added registers

to the routing network.

Widely used in designing switching circuits, Boolean

algebra notation commonly describes the performance of a

single-output combinational circuit with some input variables.

The behaviour of a Boolean function, also known as the

circuit transmission, can be described in a table of

combinations, which lists all possible combinations of inputs

and their corresponding outputs. Among which, the

combinations where an output exists are regarded as

elementary product terms (p-terms). A transmission can

therefore be represented in a sum of p-terms, called a

canonical expansion. Simplifying the canonical expansion

can often achieve savings in gates needed to build a circuit,

thus making it one of the most important problems of

switching circuit theory. Famous simplification methods by

Karnaugh, Aiken, and Quine are effective in addressing the

problem on a smaller scale, but vulnerable to more complex

functions or can hardly be implemented on digital computers.

A more thorough approach by McCluskey [2] suggests that a

more systematic way of handling complex functions is

plausible.

The objective of McCluskey’s [2] approach is to determine

the minimum sums of a Boolean function, a sum of p-terms

function with the fewest terms and fewest literals. The

minimum sums can be obtained by choosing the sum

functions that have the fewest terms and the fewest literal

from an enumeration of all possibilities. However, finding the

minimum sums by enumeration does not scale well. A more

practical strategy by Quine involves prime implicants. Prime

implicants of a function are obtained by a repeated

application of theorem 𝑥1𝑥2
′ + 𝑥1𝑥2 = 𝑥1 to all possible

pairs of p-terms, then the resulting terms until it cannot be

applied anymore. Combining the fewest prime implicants that

satisfy the table of combinations will produce the minimum

sum, with its terms referred to as ms-terms. The shortcoming

of Quine’s method is exposed when given a transmission

containing many variables or p-terms [2]. countered with a

solution that simplifies the notation and makes the procedure

more systematic. Specifically, the literals are replaced by

binary numbers and the omitted literals during simplification

are represented using dashes. The revised method for

determining prime implicants by McCluskey [2] is as follows:

1. List in a column the binary equivalents of the decimal

numbers which specify the function.

2. Order the binary equivalents by the number of 1’s and

divide them into groups based on the number of 1’s.

An example is shown in Fig. 1.

Fig. 1. Determination of prime implicants for Transmission [3].

3. Compare each number with all the numbers from the

group with exactly one more 1’s.

4. For each number which has 1’s or -’s wherever the

number with which it is being compared has 1’s or -’s,

a new character is formed and recorded in a separate

column.

5. Place a check mark next to each number which is used

in forming a new character.

6. Repeat the process until no further reductions are

possible.

7. The unchecked characters represent the prime

implicants.

To determine the minimum sums from the obtained prime

implicants, a prime implicant table is used, as shown in Fig.

2. Each column in the prime implicant table corresponds to a

row in the table of combinations which outputs one, while

each row represents a prime implicant. A cross is placed at

the intersection if a prime implicant has value one for a

transmission. Selecting the fewest rows such that each

column has a cross in at least one selected row produces a

minimum sum and the selected rows are known as basis rows.

as shown in Fig. 3.

Fig. 2. Prime implicant table for the transmission of table in Fig. 1 [3].

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

34

Fig. 3. Determination of Basis Rows for a Cyclic Prime

Implicant Table [3].

The choice of basis rows can be complex, as it is an NP-

complete set covering problem. McCluskey [2] gives some

heuristics that work well:

1. Translate the table into a Boolean expression where
addition stands for the choice of row in a column and
multiplication connects such a condition with all
columns.

2. Assign each row in the expression with a weight, w =
n-log_2 k, where n is the number of variables in a
transmission and k is the number of crosses in a row.

3. Compute the total weight of each row set by summing
the weights of its rows. The row set with the smallest
total weight corresponds to the minimum sums.

An example of such procedures is shown in Fig. 4. Even

though the expressions derived from the table and the

multiplication process can be lengthy, this method is

systematic and suitable for automation.

Fig. 4. Determination of the minimum sums for the prime implicant table in

Fig. 3 by means of the Boolean representation [3].

Now that the user description specifying the combinational

signals of a logic network can be simplified, a method is

needed to convert the hardware independent description

written by the user to a logic network, namely, a net list of

logic components. Before this point, design was done by

schematic capture. The creation of Hardware Description

Language (HDL) opened the door to inference. HDL

presented users with a way to describe the functionalities of a

desired logic circuit and was also technology independent. On

the flip side, early HDLs supported limited operation

descriptions of circuit elements. Complex circuit elements

like high impedance drivers, level sensitive latches and edge

sensitive flip-flops would require the user to first specify the

element type and then describe its connections, which

assumed that the user had detailed knowledge of the desired

circuit. Thus, HDL was only suitable for designers that knew

both the operational behaviours and the hardware elements of

the desired circuit.

To broaden applicable users, Gregory and Segal [3]

suggested an automated logic design system with a circuit

element independent HDL. The method proposed by Gregory

and Segal [3], a logic circuit synthesizer, consisted of a

preprocessor and a logic circuit generator. The preprocessor

transformed the user description of signals and conditions

into an equivalent representation in terms of nodes connected

by edges, which indicated the conditions of the node being

traversed. The logic circuit generator would then turn this

structure into the actual logic network that performed as

described by the user. In detail, the preprocessor was made

up of a parser, a graph generator, and a condition generator.

Upon receiving the signal information specified in the user

description, the preprocessor would parse the description,

convert it into a control flow graph, and determine the edge

conditions for each node. The parser in the preprocessor

would parse the statements in the description and store parsed

results in a parse tree and symbol table for the graph generator,

while the latter would then construct a control flow graph

from them. Passing on to the condition generator, every node

in the control flow graph would be analyzed to determine the

condition necessary to reach that node. As the second portion

of the logic circuit synthesizer, the logic circuit generator

would take over the edge conditions and the nodes of the

control flow graph generated by the preprocessor and convert

them into assignment conditions. Overall, the logic circuit

generator consisted of an assignment condition generator and

a hardware generator. The task of the assignment condition

generator was to produce an assignment condition matrix

using the conditions and the control flow graph generated

previously. Ultimately, following the assignment condition

generator, the hardware generator was responsible for

creating a logic circuit for each row of the assignment

condition matrix.

Digging deeper into the inferring process that transforms

user descriptions to hardware, the logic circuit generator is

first tasked to determine an assignment condition for each

variable in a Hardware Description Function (HDF). By

definition, an assignment condition represents the condition

under which the HDF is true for a particular variable. HDFs

can be separated into synchronous and asynchronous

functions, where synchronous functions are variable

assignments on clock edges and asynchronous functions are

all the other assignments. In the assignment condition matrix

suggested by Gregory and Segal [3], six HDFs are considered.

They are asynchronous Load Function (AL), Asynchronous

Data Function (AD), Synchronous Load Function (SL),

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

35

synchronous Data Function (SD), Don’T Care function (DC),

and High-Impedance function (Z). AL refers to the condition

under which a variable is assigned any value, while AD tells

the condition under which a variable is assigned the value one.

Similarly, SL and SD represent the same conditions as AL

and AD respectively but only on a clock edge. DC describes

the condition under which a variable is assigned the value

“X”, meaning that the signal level of the variable is not

important. Z, by its name, reflects the condition under which

a variable is assigned the value “Z”, saying the variable is

high-impedance.

An example conversion from a user description, shown in

Table 1, to its corresponding assignment conditions, shown

in Table 2, is complemented for further comprehension.

According to the user description, variable P is always

assigned a value and is assigned the value one only when the

condition COND1 is true. Neither assignment is associated

with clock edges. Therefore, the AL of variable P is one and

the AD of variable P has the value of COND1. Conversely,

variable Q specified by the user is only assigned a value of B

when COND2 is true. Thus, the AL of variable Q is COND2

and the AD of variable Q is the product of COND2 and B.

Table 1. An example of user description [3]

An Example of User Description 110

if (COND1)

P:=1

 else

 P:=0

 endif

 if (COND2

 Q:=B

 else

 endif.

Table 2. Assignment conditions for the user description oF Table 1 [3]

 Assignment Conditions

Variable Load Function (AL)
Asynchronous Data

Function (AD)
Synchronous Load (SL) Data Function (SD) Don’t Care (DC) High-Impedance (Z)

P 1 COND1 0 0 0 0

Q COND2 COND2×B 0 0 0 0

The final step of the logic circuit generator will be

transforming the produced assignment conditions to the

corresponding hardware components. The hardware

generator will generate a logic circuit for each row of the

assignment condition matrix. Using the assignment

conditions, shown in Table 6 above, for variable Q as an

example, the behaviour of the assignment conditions related

to variable Q can be replicated by a flow through latch

controlled by AL where AD is the data input signal and the

value of Q is the output signal. Seeing the complete

converting process, this strategy by Gregory and Segal [3]

presented a systematic way of inferring from user

descriptions to generate a corresponding logic circuit.

In recent years, a number of different schemes have been

proposed to implement optical flow algorithms in real-

time [10]. Taking the logic network generated from inference,

technology mapping transforms it into an interconnection of

components that are instances of elements of a given library.

Formally, technology mapping, also known as cell-library

binding, is the process of transforming an unbound logic

network into a bound network. Searching for the most

optimized library component that performs the desired task

presents a complex and difficult problem. Area cost,

propagation delays, and testability enhancement are aspects

to be considered in the binding process. Existing solutions are

categorized into two types: heuristic algorithms and rule-

based approaches. Both have their advantages and drawbacks.

Heuristic algorithms handle only single-output combinational

cells, while rule-based approaches are capable of complex

libraries but require much effort in creation and maintenance

of the set of rules and are also slower. Thus, the two

approaches are often combined to achieve optimum

performance.

Assuming a combinational logic network that has already

been optimized using the Boolean minimization and

inference techniques discussed previously, cell-library

binding aims at finding an equivalent logic network

composed of instances of library cells. Finding such a logic

network is very complex, because the essential determination

of equivalence between an unbound and a bound network

presents a tautology problem. In general, the library binding

problem can be interpreted as a network covering problem

where a portion of an optimized logic network is substituted

by cell-library elements with minimized area or delay. A cell

is said to match a subnetwork when they have the same

functionalities. When library instances achieve one-to-one

mappings with the vertices in a network, the binding is trivial.

For the network covering problem to have a solution, each

local function needs to have at least one match in the cell

library. Nevertheless, solving the library binding problem

with the network covering approach is difficult due to its

binate nature. The choice of any library cell in a network

requires the selection of other cells to prove its connectivity.

Therefore, heuristic algorithms were developed to

approximate the solution of the network covering problem.

Algorithms for library binding can be divided into two

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

36

major types based on how the network and the library are

represented: Boolean and structural. In the Boolean

representation, the library cells and the portion of the network

of interest are described in Boolean equations. In the

structural representation, the Boolean equations describing

the library cells and subnetworks are further reduced into an

algebraic representation that can be cast into a graph. The

usage of the two representations mainly differs in matching

strategies.

Structural matching identifies the common patterns

between a subject graph, obtained from the logic network,

and its corresponding pattern graphs, associated with library

elements. The subject and pattern graphs are acyclic and

rooted. The method can then be simplified by representing

library cells in the form of rooted trees. Tree matching and

tree covering problems can be solved in linear time.

Two tree-based matching methods are considered here:

simple tree-based matching and tree-based matching using

automata. The simple matching method determines if a

pattern tree is of the same structure as a portion of the subject

tree. Starting from the root of the pattern tree and a vertex of

the subject tree, the simple method compares the degrees of

pairs of vertices in both trees until the leaves of the pattern

tree are reached. The runtime of this algorithm is linear in the

size of the graphs. The other tree matching method relied on

an encoding of the trees by strings and a string recognition

algorithm to represent the cell library systematically. In short,

the algorithm would process strings that encode paths in the

subject tree and recognize those that match paths in pattern

trees. In comparison, the method using automata could match

all patterns concurrently while the simple method could only

match one at a time. However, this advantage would be

countered by the increased complexity of handling trees as

separate strings.

To obtain optimum tree covering, dynamic programming

would be used. First, the minimum-area covering problem

was considered. The tree covering algorithm would traverse

the subject graph in a bottom-up fashion to minimize the total

area of the bound network knowing the area cost of

independent cells. For all vertices of the subject tree, the

algorithm would match the locally rooted subtrees with the

pattern trees. Next, the minimum-delay problem would be

considered, with each cell’s timing cost characterized by its

input and output propagation delay. The subject tree would

be traversed in the same bottom-up fashion to find the binding

that minimized the data-ready time at each vertex, and thus,

the minimum delay at the root. The runtime of these

algorithms are linear with respect to the size of the subject

tree.

Nevertheless, the covering algorithms utilizing structural

matching had certain drawbacks. First, a library cell could be

associated with more than one pattern graph, which led to

cumbersome testing for the vertices of the subject graph.

Second, there were cells that could not be represented by trees,

like the EXOR and EXNOR gates. Although they could be

replaced with leaf-dags, directed acyclic graphs where paths

stem from the root can only reconverge at the leaves, the

usage of these cells would be limited. Third, structural

matching did not support the use of don’t care in the binding

process. The result could be not perfectly optimized.

Boolean matching complemented the disadvantages of

structural matching. Boolean matching would perform an

equivalence check between two functions, one being the

cluster function that represented a portion of the network and

the other being the pattern function that represented a cell.

The Boolean covering algorithm would identify matches

between the cluster functions of subnetworks and the pattern

functions in the library, and subsequently, choose an amount

of identified matches that minimize the area cost or delay of

the network. Although Boolean covering and matching

seemed more computationally expensive given that it

required function derivations, studies showed that its

computing times were comparable to that of structural

covering and matching. One advantage that the Boolean

covering algorithms had over the structural counterparts was

their ability to exploit the degrees of freedom provided by

don’t care conditions and discover matches missed by

algorithms based on structural matching, resulting in better

solutions.

Given that FPGAs are pre-wired circuits, specific library

binding techniques are required. Two types of FPGAs are

considered in the following discussion of binding algorithms:

Look-Up Table FPGAs and Anti-Fuse-Based FPGAs. For

look-up table FPGAs, the virtual library is too gigantic for

binding algorithms using enumeration and varies depending

on the FPGA model. Thus, the suggested binding algorithm

for look-up-table-based FPGAs focuses on combinational

networks. The objective is to find an equivalent logic network

with minimum critical path delay such that each vertex is

matched by a function implementable by a look-up table.

Micheli [4] adapted tree covering in their binding algorithm

so that a subject graph was decomposed into parts that were

put into a look-up table. Each decomposed part of the subject

graph was meant to possess as much functionality as possible

within the input size constraint.

An algorithm that optimizes the capacity of look-up tables

is proposed by Micheli [4]. Any n-input single-output

function can be represented in a sum of products form with at

most n variables. First, the algorithm finds the product term

with the most variables and puts it into the first table that fits.

If none exists, a new table will be created to store the term.

This process is repeated until all product terms are assigned

to a table. Next, the table with the most variables is declared

final and is associated with a new variable. Again, the

algorithm looks for possible fitting tables to hold the new

variable. The number of required tables decreases on every

iteration. In the end where there is only one table left, that

table produces the final result. This algorithm works well

when the product terms are disjoint and the size of input n is

less than or equal to six.

For anti-fuse-based FPGAs, the virtual library holds all

logic functions implementable by personalizing the logic

module. Since the layout of the FPGAs and the type of logic

module differ from model to model, the problem was

generalized to accommodate various anti-fuse-based FPGAs.

All programmable modules are assumed to implement the

same single-output combinational function, from here on

referred to as the module function. Binding aims to determine

an equivalent logic network with a minimum number of

vertices such that each vertex can be matched with a

personalization of the module function. In general, the size of

the virtual library is so large that the previously mentioned

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

37

binding algorithms will not be useful. Alternative binding

algorithms are proposed based on structural and Boolean

representations. When employing a structural representation,

the algorithm takes advantage of the uncommitted module to

decompose the subject graph. Then, the library can be

represented by pattern graphs that have a similar

decomposition. Finally, the results can be obtained through

structural covering with dynamic programming. Boolean

approaches make use of the previous Boolean covering

algorithm along with a modified matching algorithm that

checks the implementability of a cluster function by module

personalization.

III. CONCLUSION

Putting together the combinational logic synthesis,

sequential logic inference, and technology mapping sections,

an automated process of transforming the user circuit

description to logic components employment on FPGA is

obtained, which represents the logic control flow of FPGA.

Another crucial aspect of FPGAs is place-and-route, which is

not covered in this paper. In further studies, algorithms that

optimize placing and routing among hardware components

can be investigated.

CONFLICT OF INTEREST

The author declares no conflict of interest.

ACKNOWLEDGMENT

I deeply appreciate Professor Bill Nace, who is professor

of Electrical and Computer Engineering department in

Carnegie Mellon University, for guiding me through every

step of this project. Professor Bill Nace has shown the utmost

dedication and passion towards helping me comprehend

many concepts that were novel to me.

In addition to understanding books and articles and their

implications to this paper, Professor Nace was also of

immerse help during the drafting and editing phase. Many of

my ideas came into shape with his guidance. His help made

this project possible.

REFERENCES

[1] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, “Recent advances in

FPGA reverse engineering,” Electronics, vol. 7, no. 10, 246, 2018.

[2] E. J. McCluskey, “Minimization of Boolean Functions*,” Bell System
Technical Journal, vol. 35, no. 6, pp. 1417–1444, Nov. 1956.

doi: 10.1002/j.1538-7305.1956.tb03835.x

[3] B. Gregory and R. Segal, Method for Generating a Logic Circuit from
a Hardware Independent User Description Using Assignment

Conditions, May 5, 1998

[4] G. D. Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill Science, Engineering & Mathematics, 1994.

[5] S. M. Trimberger, “Three ages of FPGAs: A retrospective on the first

thirty years of FPGA technology,” in Pro. the IEEE, vol. 103, no. 3, pp.
318–331, Mar. 2015. doi: 10.1109/JPROC.2015.2392104

[6] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D.-J. Lee, “Real-time

optical flow calculations on FPGA and GPU architectures: A

comparison study,” in Proc. 2008 16th International Symposium on

Field-Programmable Custom Computing Machines, April 14–15, 2008.

doi: 10.1109/fccm13926.2008
[7] Z. Wei, D.-J. Lee, B. Nelson, and M. Martineau, “A fast and accurate

tensor-based optical flow algorithm implemented in FPGA,” in Proc.

2007 IEEE Workshop on Applications of Computer Vision (WACV '07),
Feb. 21–22, 2007. doi: 10.1109/WACV.2007

[8] J. Monson, M. Wirthlin, and B. L. Hut, “Implementing high-

performance, low-power FPGA-based optical flow accelerators,” in
Proc. International Conference on Application Specific Systems

(ASAP), Architectures and Processors, June 5–7, 2013.

doi: 10.1109/ASAP31104.2013
[9] A. Boutros and V. Betz, “FPGA Architecture: Principles and

progression,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp.

4–29, 2021. doi: 10.1109/mcas.2021.3071607
[10] Z. Wei, D.-J. Lee, and E. N. Brent, “FPGA-based real-time optical flow

algorithm design and implementation,” Journal of Multimedia, vol. 2,
no. 5, Sep. 2007.

Copyright © 2024 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Engineering and Technology, Vol. 16, No. 1, 2024

38

https://creativecommons.org/licenses/by/4.0/

	1251-CE13001

