

Abstract—Fault injection is mainly used to test and evaluate

the fault-tolerance based designs. In current VLSI technology

fault injection has become a popular technique for

experimentally verifying the fault tolerant based designs. There

are fundamentally two types of fault injection methods; they are

hardware-based fault injection and software-based fault

injection. Both have their own limitations and advantages. The

FPGA synthesizable fault injection model can give reasonable

solution with high speed testing platform and also allows good

controllability and observability. Even though a considerable

progress has been made in research part of the fault injection

algorithms, there is a little progress done in developing a tool

for FPGA based fault emulation.

In this paper an FPGA-based fault injection tool (FITO) that

supports several synthesizable fault models of digital systems

are implemented using VHDL. Aim is to build real time fault

injection mechanism with good controllability and observability.

Fault injection will be done by applying some extra gates and

wires to the original design description and modifying the target

VHDL model of the target system. The design will be validated

with state machine based example and applying different types

of faults. Analysis will be carried out studying the

controllability and observability of the proposed scheme.

Comparison will be carried out to estimate the speed wise

improvement with respect to software simulation based fault

injection method.

Modelsim Xilinx Edition (MXE) will be used for functional

simulation and Xilinx ISE tools will be used for synthesis and

performance analysis. Spartan-3E FPGA board will be used for

on chip verification of the results with Chipscope software

running on PC.

Index Terms—VLSI, FITO, VHDL, fault modeling,

modelsim, xilinx, GUI, spartan 3E FPGA kit.

I. INTRODUCTION

Fault injection is mainly used to evaluate fault tolerant

mechanisms. In the last decade, fault injection has become a

popular technique for experimentally determining

dependability parameters of a system, such as fault latency,

fault propagation and fault coverage [1].

Within the numerous fault injection approaches that have

been proposed, there are two classifications of fault injection

methods [2]: 1) hardware-based fault injection and 2)

software-based fault injection. Software-based fault injection

methods are divided into software-implemented fault

injections (SWIFI) and simulation-based fault injections. In

Manuscript received June 22, 2012; revised July 10, 2012.

S. Rudrakshi and S. N. K. Bhavanam are with the M. Tech. (VLSI-SD),

Dept. of E.C.E. ATRI, JNTUH, Hyderabad, A.P, India (email:

rudrakshiswathi@gmail.com, satyabhavanam@gmail.com).

V. Midasala is with the M. Tech. (VLSI-SD), Dept. of E.C.E BSIT,

JNTUH Hyderabad, A.P, India (email: vasujadevi@gmail.com).

the simulation-based fault injection, faults areinjected into

the simulation model of the circuits using VHDL or Verilog

languages. The main advantage of simulation-based fault

injection as compared with other fault injection methods is

the high observability and controllability [2]. However,

simulation-based fault injection methods are too

time-consuming. One way to provide good controllability

and observability as well as high speed in the fault injection

experiments is to use FPGA-based fault injection [3]. An

effective FPGA-based fault injection technique should

support several properties as below:

1) high controllability and observability,

2) high speed fault injection experiments with the target

system running at full speed,

3) capability of injecting permanent and transient faults,

4) minimum area and time overhead into a target system.

The techniques which developed for fault grading using

emulators proposed in[3]. These techniques are limited to the

single stuck at fault model. So, they don‟t have capability of

injecting transient faults and don‟t support the third property.

In an extension to transient faults is proposed, but the

approach is based on reprogramming the FPGA once for each

fault. The reconfiguration, even if partial, results in a time

overhead. Therefore, this technique doesn‟t support the

fourth property.[4]Perform fault injections by using the

additional combinational and sequential circuits. Because of

using the additional flip-flop for each fault injection location,

these techniques introduce too much area overhead and don‟t

support the fourth property. So, these techniques are not

sufficient for using on the same chip with the target

microprocessor after the fabrication.

The main idea of using fault injector on the same chip with

the target microprocessor was proposed in [5]. Because of

implementing the most part of the fault injection tool on the

target microprocessor, they suffer from the main drawback of

high area overhead. This paper describes the FPGA-based

fault injection tool, called, FITO1 which support all of the

fourth properties as mentioned above and is based on VHDL

description of the systems. FITO supports several fault

models into RTL- and Gate-level abstraction levels of the

target system which has been described by the VHDL. For

supporting high speed fault injection experiments, the fault

injector part of FITO with low area overhead is implemented

with synthesized microprocessor core inside the FPGA

II. DESIGN OF FITO

In this chapter the FITO design flow is explained in detail.

Fault models that are implemented in our project are clearly

explained

Implementation of FPGA Based Fault Injection Tool

(FITO) for Testing Fault Tolerant Designs

Swathi Rudrakshi, Vasujadevi Midasala, and S. NagaKishore Bhavanam

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 5, October 2012

522DOI: 10.7763/IJET.2012.V4.424

A. FITO

FITO environment consists of three parts

1) Source code modifier and fault list generator.

2) Fault injection manager

3) Results capturing with FPGA emulation

1) Source code modifier and fault list generator

Source code modifier and fault list generator are the

software parts of the FITO. This is implemented with two

tools.

 Eclipse editor

 C programs to insert faults on a specific port.

These are located on host (PC) computer. Separate C

scripts are developed for inserting each fault. A GUI

facilitates invoking the scripts by mouse right click.

2) Fault injection manager

Fault injection manger is responsible for performing the

real time fault injection. The fault injection manager is

implemented in VHDL. The fault injection manager

 VHDL pckage (dynamically updated by C programs)

 Fault scheduler

 Fault insertion components

The VHDL package is implemented to capture all the

constants, type definitions, component declarations and fault

injection time for each fault. The package also consists of

number of total faults. This VHDL file is automatically

updated by C programs every time when a fault is injected in

code.The fault scheduler runs multiple counters to schedule

each fault with required fault activation time and fault

propagation time as per the package. The fault scheduler

produces output fault number which is currently being active.

This module generates the parallel fault injection signals for

every fault. These signals are routed to all fault sites. Fault

insertion components are gates with FIS (fault injection

signal) control to inject the faults when the FIS is active high.

These components instances are automatically made when

ever faults are injected.

3) Results capturing with FPGA emulation

This hardware part is implemented on the FPGA board.

Result analysis will be carried out with FPGA emulation

results and fault list generated by C program. The analysis

shall summarize the fault responses for each injected fault.

The following Fig shows the fault injection process with

FITO.

The golden trace data is ideal trace data (results obtained)

without any faults.

 Fig. 1. FITO injection process.

B. Faults Modeled In Our Project

FITO supports the following synthesizable fault models

for injecting into any HDL level designs.

 Permanent faults

 Transition faults

 Single event upset faults (or) Bit-flip

Fault injection process can be done by applying some extra

gates and wires to the original design description and

modifying the target VHDL model of the system. One of

these extra wires is the Fault injection system (FIS) which

playing the key role in the fault injection experiments. If a

FIS takes the value 1, fault would be activated and if it takes

the value 0, the fault would become inactive.

For example in the case of Stuck-at-0 fault when the FIS is

made 1 then the signal is forced to zero, implementing the

fault condition. The below section gives the detailed

discussion about injecting the permanent faults.

1) Permanent faults

For supporting the permanent faults in VHDL design,

FITO nominates wires for fault injection and apply the FIS

signal with one extra gate,. So by selecting the FIS signal

high at fault injection time, the permanent fault into the

specified wire will be injected.

For example if the signal name in the original code is X

then the modified signal TX will be generated as below. In all

the places in the code instead of X, the TX will be replaced.

Fig. 2. Synthesizable fault model for stuck-at-0.

Similarly the following code shows the required extra gate

and control signal FIS for implementing the stuck-at-1 fault.

Fig. 3. Synthesizable fault model for stuck-at-1.

For each FIS there would be a path through all levels of

hierarchy to its modified circuit. After modification, the final

synthesizable VHDL description will be produced which is

suitable to use in emulators.

2) Transient faults

The modified circuit that is suitable for transient fault

injection is shown in below Fig.

Fig. 4. Synthesizable transient fault model.

For injecting a transient fault, after reaching the fault

injection time, the FIS signal will be made high and the timer,

which have been loaded with the duration of the transient

fault injection start to count. Therefore, the FIS will be high

(at logic 1) for the specified duration of time. As similar to

the permanent fault, the additional wire (TX) will be used and

each wire, namely X will be replacedwithTX. The fault

injection manager is responsible for managing the fault

injection experiments, such as loading the timers, setting the

FIS for the predetermined time, introducing additional wires

and performing the fault injection.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 5, October 2012

523

3) Bit flip (or) single event upset (SEU)

The fault model that is used by FITO at this level is bit-flip

(or single event upset). SEUs are the random events and may

flip the content of the memory element at unpredictable times.

FITO generate modified circuit for each memory element that

is specified for fault injection. The modified circuit for

supporting bit flip fault model is shown in below Fig.

Fig. 5. Synthesizable bit-flip model.

For supporting the bit-flip model, FITO produces the

additional signals such as Bit and FIS with one multiplexer.

The VHDL synthesizable code for supporting this fault

model is shown in above Fig. The inverted input will go to

the flip-flop for the next clock when the FIS and bit are „1‟.

The fault injection manager part of FITO is responsible for

setting and resetting the FIS and bit signals.

C. Example Fault Tolerant Design – Redundant ALU

Based Fault Tolerant Processor

In this the example fault tolerant design considered for

fault injection is explained.The design uses double ALUS

and to achieve fault tolerance in case of soft errors.

A soft error is also a signal or datum which is wrong, but is

not assumed to imply such a mistake or breakage. After

observing a soft error, there is no implication that the system

is any less reliable than before. If detected, a soft error may be

corrected by rewriting correct data in place of erroneous data.

Highly reliable systems use error correction to correct soft

errors on the fly. However, in many systems, it may be

impossible to determine the correct data, or even to discover

that an error is present at all. In addition, before the correction

can occur, the system may have crashed, in which case the

recovery procedure must include a reboot.

1) Proposed fault tolerant processor architecture:
The proposed architecture is double ALU based fault

tolerant for handling soft errors. The Fig. 6. describes the

detailed architecture of fault tolerant processor [6].

Definition - Fault-tolerant describes a computer system or

component designed so that, in the event that a component

fails, a backup component or procedure can Immediately take

its place with no loss of service. Fault tolerance can be

provided with software, or embedded in hardware, or

provided by some combination.

Fig. 6. Architecture of fault tolerant processor.

At a hardware level, fault tolerance is achieved by

duplexing each hardware component. Disks are mirrored.

Multiple processors are "lock-stepped" together and their

outputs are compared for correctness. When an anomaly

occurs, the faulty component is determined and taken out of

service, but the machine continues to function as usual.

The same technique is used in our architecture by

duplexing the ALU unit and comparing the results. An enable

signal is provided by the comparator which is used to iterate

the function and produce fault free results. The address

generator part of the block diagram access the data and is

stored in two different input registers and are processed

separately by different arithmetic and logic units to achieve

redundancy. The enable signal also indicates the occurrence

of faulty signal. When it is assured that the fault has not

occurred, the output is taken from the output register.

III. IMPLEMENTATION OF FITO MODULES

In this chapter the VHDL modules implemented for FITO

are explained in detail. As explained in chapter 2 the Fault

injection manger is responsible for performing the real time

fault injection. The fault injection manager is implemented in

VHDL. The fault injection manager

 VHDL package (dynamically updated by C programs)

 Fault scheduler

 Fault injection components

A. FITO - Package

The VHDL package is implemented to capture all the

constants, type definitions, component declarations and fault

injection time for each fault. The package also consists of

number of total faults. This VHDL file is automatically

updated by C programs every time when a fault is injected in

code.

The maximum number of faults are taken to be 63 and

based on that the other constants are defined. However there

is no limitation of the maximum number of faults that can be

inserted. Depending on the requirement one has to the

constant‟s values in this package. Another constant is defined

to give the number of injected faults. This constant value is

updated by C program every time when a new fault is

inserted. FIS_vec_type defines a bus of size equal to number

of faults. This bus goes through all modules such that any

module can use the control lines for fault injection. It may

appear that by routing 64 length wider bus to all small and big

modules of design under test we are consuming high number

of FPGA routing resources. But the synthesis tool can

optimize the resources by only routing the lines which are

used in this module. Constant by name Fault injection signal

(FIS) high duration indicates the number of clock cycles for

which fault will be injected in the design. FIS duration

constant tells the time allotted for each fault. That is even

after removing the fault we can wait for output to capture

before enabling the next fault. This will be useful in cases

where the fault propagation time is high. For every fault these

two constants are settable in the GUI.

The constant fault_type defines the type of fault as per the

below table. For each fault that is injected used will choose

this option on GUI.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 5, October 2012

524

TABLE I: TYPES OF FAULTS.

Constant value Fault type

0 Stuck at 0

1 Stuck at 1

2 Transient

3 Bit flip

Package also holds several component declarations. So

that in all module if this package is declared then fault

injection only requires to give component instantiation (no

need to declare the components)
1) Fault scheduler

The fault scheduler runs multiple counters to schedule

each fault with required fault activation time and fault

propagation time as per the constants in FITO_package. The

fault scheduler produces output fault number which is

currently being active. This module generates the parallel

fault injection signals for every fault. These signals are

routed to all fault sites.

Fig. 7.

2) Fault injection components

Fault injection components are gates with FIS (fault

injection signal) control to inject the faults when the FIS is

active high. These components instances are automatically

made in the selected module when ever faults are injected.

Since all these components are declared in package fault

injection need not add component declaration. Hence the

fault insertion becomes easy to implement only the following

steps.

 Generate code to declare a signal of the same size of

the port on which fault need to be injected.

 Add the corresponding fault injection component

instance connecting the port signal, FIS control line

and output signal.

 Replace all the port signal instances with the declared

new signal.

3) Random bit generator for bit flip fault

A random bit generator for bit flip fault is implemented

with a Gaussian random variable generated through a Look

up table. A Look up table with 127 values is taken and is used

to randomly flip the bits in memory when the bit flip fault is

activated.

IV. SIMULATION RESULTS

Simulations results of Fault tolerant processor without

injection of faults and with injection of faults are shown in

this section.

The top level test bench module implements Fault tolerant

processor with out injecting faults and after injection of faults

with necessary test inputs. The following Fig shows the

simulation results obtained by simulating the test bench.

A. Fault_Tolerant_Processor (Without Injecting Faults)

Fault tolerant processor with out injecting faults is

implemented with VHDL and simulation results for this are

shown below.

Fig. 8. The fault tolerant processor without injecting any faults.

From ins_address 00000 to 01000 the alu operations are

shown in above.

Fig. 9. The fault tolerant processor without injecting any faults (continued).

From inst_address 01001 to 10001 the alu operations

which are performed are shown in above.

Fig. 10. The fault tolerant processor without injecting any faults (continued).

From ins_address 10010 to 11010 the alu operations which

are performed are shown in above.

Fig. 11. The fault tolerant processor without injecting any faults

(contined)

The ins_address from 01011 to 11111 the alu operations

which are performed are shown in above.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 5, October 2012

525

B. Simulation Results of Fault tolerant Processor after

Faults Have Been Injected in to the Processor are Shown

Below

1) Fault tolerant processor after injection of faults

Fig. 12. Simulation results after injection of faults.

In this we injected 11faults from 0th to 10th hence the fault

id that is shown above is from 0 to 11.Fult id is represented

presently which fault is scheduled. Current_FIS represents

on each fault id how much time the current fault should be

injected i.e., activated.

The 1st 2nd 3rd 4th faults are injected and results are shown

in above.

 Fig. 13. Simulation results after injection the faults (contd.).

The results of 5th and 6th faults are shown in above.

The results of 7th 8th 9th and 10th fault responses and output

are shown below

 Fig. 14. Simulation Results after injection the faults(cont)

V. CONCLUSION

The project implements the FPGA based fault called FITO

for evaluating the digital systems modeled by VHDL.Fault

injection with FITO is done by applying some extra gates and

wires to the original design description and modifying the

target VHDL model of the target system. FITO support some

properties such as high speed good controllability and

observability and low area overhead.We have taken a

example of fault tolerant design and evaluated on FPGA and

faults have been injected in to this processor and proved that

really this fault tolerance feature is implemented and also

proved that FITO is more faster than simulation based fault

injection.

This paper is for real time application for testing the fault

tolerant designs and several other fields of VLSI testing.

ACKNOWLEDGEMENT

We would like to thank the Faculty of Aurora‟s

Technological and Research Institute for their support. We

acknowledge Mrs Humaira and Mrs. Y, Naga Supraja help in

the Implementation of FPGA Based Fault Injection Tool

(FITO) For Testing Fault Tolerant Design.

REFERENCES

[1] V. Sieh, O. Tschache, and F. Balbach, “VERIFY: evaluation of

reliability using VHDL-models with embedded fault description,” Proc.

of the International Symposium on Fault-Tolerant Computing, Jun.

1997, pp. 32-36.

[2] P. Folkesson, S. Sevensson, and J. Karlsson, “A compa-rsion of

simulation based and scan chain implemented fault injection,” Proc. of

the Annual International Symposium on Fault-Tolerant

Computing,Jun. 1998, pp. 284-293.

[3] K.-T. Cheng, S.-Y. Huang, and W.-J. Dai, “Fault emulation:A new

methodology for fault grading,” Trans. on the IEEE Computer-Aided

Design of Integrated Circuits and Systems, Oct. 1999, pp. 1487-1495.

[4] P. Civera, L. Macchiarulo, M. Rebadengo, M. S. Reorda, and M. A.

Violante, “Exploiting FPGA for accelerating fault injection

experiments,” Proc. of the International On-Line Testing Workshop,

2001, pp. 9-13.

[5] B. Rahbaran, A. Steininger, and T. Handl, “Built-in fault injection

hardware – The FIDYCO example,” Proc. of the IEEE International

Workshop on Electronic Design, Test and applications.

[6] “Fault tolerant Architecture Manual.” [Online]. Available:

http://www.opencores.org

Swathi Rudrakshi is an M.Tech Post- Graduate of

VLSI-SD from Aurora‟s Technological & Research

Institute (ATRI), Department of ECE, JNTUH. She

obtained her B.Tech from Sri Vishnu Engineering college

for women, Bhimavaram, WEST GODAVARI Dt. Her

interesting Fields are STLD, and VLSI.

S. Nagakishore Bhavanam is an M.Tech Post- Graduate

of VLSI-SD from Aurora‟s Technological and Research

Institute (ATRI), Department of ECE, JNTUH. He obtained

his B.Tech from S.V.V.S.N Engineering college ONGOLE.

His interesting Fields are Low Power VLSI and

Communications.

Vasujadevi Midasala is an M.Tech Post- Graduate of

VLSI from Bandari Institute of science & Technological

(BSIT), Department of ECE, JNTUH. She obtained her

B.Tech from S.V.V.S.N Engineering college ONGOLE.

Her interesting Fields are Low Power VLSI, Psoc and

Communications.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 5, October 2012

526

