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Abstract—To investigate the transient responses of bridges 

under moving vehicles, Finite Prism method was employed. In 

this method a combination of the finite element method 

representing the cross-section of the prism and Fourier series 

suitably chosen to represent the behavior of prism in the 

longitudinal direction (which satisfies the simply supported 

boundary conditions at the ends), is used. Explicit time 

integration scheme was used for solving the equation of motion 

for both the bridge and the vehicle. The damping was neglected 

in the formulation of the equation of motion of the bridge. This 

render was used to avoid the solution of global system of 

equations, because each equation becomes uncoupled with 

other equations. One of the main aspects in the present work is 

the coupling of the explicit solution technique of the equation of 

motion with the harmonic solution, using finite prism method 

for the problem of moving vehicles, taking into consideration 

the dynamic coupling between the vehicle and the bridge. 

 
Index Terms—Finite prism, moving vehicles, moving forces, 

vehicle-bridge coupling, explicit time integration scheme.  

 

I. INTRODUCTION 

The purpose of this work is to develop a procedure for 

obtaining the dynamic response of bridges subjected to 

moving vehicles. Naturally, the bridges are three - 

dimensional structures. The finite prism method was first 

developed by Zienkiewics and Too [1] for the static analysis 

of bridges and also developed for the free vibration analysis 

of straight and curved deck and box girder bridges by 

AL-Darzi [2]. The same method is developed and used in the 

present work, for the first time, for the dynamic analysis of 

bridges due to moving vehicles. In this method, a 

combination of the finite element method representing the 

cross section of the prism and Fourier series suitably chosen 

to represent the behavior of the prism in the longitudinal 

direction, (which satisfies the simply supported boundary 

conditions at the ends), is used. Moreover, the three 

dimensional problem is reduced to a series of two - 

dimensional problems, which are decoupled for each 

harmonic number.  

The explicit time integration scheme is used for solving the 

equation of motion for each of the bridge and the vehicle. 

These afford avoiding the solution of global system of 

equations, because each equation becomes uncoupled with 

other equations.  

One of the main aspects of the present work is the coupling 
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of the explicit solution technique of the equation of motion 

with harmonic solution using the finite prism method for the 

problem of moving vehicle, taking into consideration the 

dynamic interaction between the vehicle and the bridge. Two 

models of vehicle have been used: In the first model, called 

the moving force model, the inertia force of the vehicle and 

the dynamic interaction between the vehicle and the bridge 

has been neglected. In the second model, called the moving 

vehicle model, the vehicle is represented by a spring mass 

system in which the inertia force of the vehicle and the 

dynamic interaction between the spring mass system and the 

vibration of the bridge is taking into consideration.  

The validity of the developed numerical model has been 

studied by analyzing structures such as simply supported 

plates and beams subjected to moving vehicles with different 

speeds, for the two models of vehicles. Comparison with the 

available reported results has shown a significant matching. 

 

II. FINITE PRISM FORMULATION 

The three dimensional displacement components can be 

written as: 

 

     
 
 
 
               (1) 

 

where u, v and w are the displacements along the three 

dimensional Cartesian axes X, Y and Z, respectively as 

shown in Fig. 1: 

 

 
Fig. 1. Typical prism element 

 

The displacement at any point in the eight-node prism 

element can be interpolated as follows [1], [2]: 
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where   
 ,   

  and   
  are the nodal line displacements 

amplitudes for harmonic number   at node   for prism  ,    

is the total number of nodal lines for the prism which is equal 

to eight,    is the interpolation (shape) function in terms of 

the local coordinates     which vary from    to    within 

the cross section of the prism. 

The discretized expression for strains and stresses within 

an element can be expressed as [3]: 
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where     is the elasticity matrix [4] and the 

strain-displacement matrix    
   associated with nodal line   

for the harmonic   can be expressed as [2]: 
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The strain and stress components in vector form can be 

written as: 
 

                          
 

 (7) 

                          
 
 (8) 

 

III. DYNAMIC EQUATIONS 

The dynamic equation of motion of bridge can be 

expressed as: 
 

                            (9) 

 

where    ,     and     are the global mass, damping and 

stiffness matrices, respectively; and     ,      and     are the 

acceleration, velocity and displacement vectors, respectively. 

     is the external applied load, which is function of time t. 

The damping matrix can be written as [5,6]: 
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Due to the orthogonality properties [2] i.e.; 
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The stiffness and mass matrices for harmonic   can be 

written as: 
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The equivalent nodal force vector can be expressed as: 
 

        

       
       
       

     

  

   

 

   

 (14) 

 

The integration of stiffness and mass matrices are carried 

out numerically using Gauss quadrature method.  

 

IV. VEHICLE-BRIDGE COUPLING SYSTEM 

A. Vehicle Models 

The two vehicle models moving over the bridge are shown 

in Fig 2. In the first model the vehicle is represented as a 

moving force in which the dynamic interaction between the 

vehicle and the bridge is neglected. In the second model, 

called the moving vehicle model, the vehicle is represented 

by a single degree of freedom system comprising sprung 

mass      and unsprung mass      with viscous damping 

     included in the suspension,     is the stiffness of the 

vehicles. It is assumed that the vehicle travels at constant 

velocity and that the unsprung wheel is always in contact 

with the road surface which is assumed to be smooth. 

 

 
(a) Moving force model 
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 (b) Moving vehicle model 

Fig. 2. Vehicle models 

 

B. Solution of the Equation of Motion 

The integration of the equation of motion (9) is carried out 

using the explicit central difference scheme [7], [8]. This is 

only applicable when the mass matrix is lumped mass matrix. 

This requires the transformation of constant mass matrix in 

(13) into a lumped mass matrix as in the following. 

C. Mass Lumping 

The most simple method of lumping the prism mass matrix 

is by adding all terms of each line of the consistent mass 

matrix and placing the result on the diagonal, such a process 

gives the nodal masses in the following form [9], [10]: 

 

    
      

  (15) 

 

This method fails when applied to eight-node 

isoparametric element. The reason is that negative nodal 

masses are obtained in corner nodes. To overcome this, 

several alternative schemes have been investigated in the 

literature [10]. In the present work a new approach was 

developed in which the total mass of the element is divided 

equally between mid- side and corner nodes as follows: 
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In another approach suggested by Owen and Hinton and by 

others [8,10,11,12], the mass is lumped to the diagonal terms 

of the consistent mass matrix, as follows: 

 

    
     

  
  

    
  

   
     

    

 

   

 (17) 

 

where   is the total mass of the element. This procedure is 

also used in the present work and both approaches gave 

almost same results. 

 

V. EXPLICIT TIME INTEGRATION SCHEME 

The dynamic equation of motion for harmonic  can be 

written at time   as: 

 

      
  

 
       

  
 
     

      
  (18) 

where     
  is the global vector of internal resisting nodal 

forces and     
  is the vector of equivalent nodal forces 

resulting from the dynamic interaction force between the 

vehicle and bridge     at the contact point cp. 

The dynamic interaction force     is a function of the 

displacement, velocity and acceleration at contact point   
  

, 

   
  

 and    
  

. 

In the central difference approximation, the acceleration 

can be written as follows: 
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and the velocity may also be expressed as follows: 
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Substituting (19) and (20) in (18) and solving for        
  

yields: 

 

       
       

  

 
    

  

 

          
         

      
  

 
           

   

(21) 

 

where     
  is the residual force vector at time t, which is 

equal to: 

 

    
      

      
  (22) 

 

If the matrices     and     are both diagonal matrices 

then the solution of (21) for degree of freedom i can be easily 

written as follows: 

 

        
       

  

 
    

  

 

                      
       

  

 
            

   

(23) 

 

where         
  is the displacement in the i

th
 degree of 

freedom for harmonic number  ;     and     are the 

corresponding diagonal terms of the mass and damping 

matrices, and     is the corresponding component of residual 

force vector. 

 

VI. STARTING ALGORITHM 

Since the governing equilibrium equation (23) or (21) 

involves information at the previous time steps   and     , 
a starting algorithm is therefore required. Based on the initial 

conditions, the value at      may be obtained from (20). 

 

   
  

 

 
 

 

     
         

          
   (24) 

 

from which, we get: 

 

        
            

           
  (25) 
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Substituting (25) in (23), the displacements of the i
th

 

degree of freedom at the first time step    for harmonic   can 

be evaluated as follows: 
 

      
  

     

    

      
       

 

      
     

    

    
  

 

 
 

(26) 

 

It is reported in the literatures [13], [14], [15], [16], that the 

damping effect of the bridge is small and can be neglected in 

the analysis. The explicit algorithm is conditionally stable 

and it requires small time steps for accurate and stable 

solution. In the present work the estimation of critical time 

step given by Tsui and tony [17] was adopted. 

 

VII. DYNAMIC CONDITION AT CONTACT POINT 

The vertical displacement at the vehicle contact point 

     
  

 can be interpolated from the nodal displacement 

amplitudes at time step     , i.e.        
  by using (2). 

Also, the velocity at the contact point at time step      can 

be determined by backward finite difference scheme using 

the contact point displacement at time steps   and      as 

[3]: 
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VIII. MOVING VEHICLE RESPONSE 

The nodal force vector due to moving vehicle at time step 

     for each harmonic term        
  consists of several 

terms. The nodal force due to the contact force between the 

vehicle and the bridge      
  

 can be determined for the two 

vehicle models as follows: 

A. Moving Force Model 

For the moving force model in Fig. 2-a, the applied force 

on the bridge is due to the vehicle weight, which moves at 

constant speed, and its position is a function of time only. The 

force at the vehicle contact point can be calculated as 

follows : 

 

     
  

         (28) 

 

Then the nodal force vector for all harmonic numbers at time 

step      can be calculated using (14) and the amplitude 

displacement for each harmonic at time step      can be 

determined by (23). 

B. Moving Vehicle Model 

For the moving vehicle model shown in Fig. 2-b, the 

applied force on the bridge is due to the dynamic interaction 

between the vehicle and the bridge. The equation of motion 

for the moving vehicle model can be written as follows [3]: 
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(29-b) 

 

The displacement and velocity of the sprung mass at time 

step      i.e.  
    

 and   
    

, respectively, can be 

determined depending on the known values of       and 

       by solving the equation of motion of the vehicle (29) 

using explicit time integration scheme. After a mathematical 

manipulation and simplification, the solution of       can be 

written as : 

follows 
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where 
 

                 
  

        
  

 (31) 
 

To calculate     at time    , the term      has to be 

known beforehand. So a starting algorithm is necessary and 

    can be determined as follows: 
 

    
     

   

            

      
    

   

     

(32) 

 

The initial condition of the vehicle and the bridge at the 

contact point can be written as: 
 

  
  

      
  

      
  

                 (33) 
 

By substituting these conditions in the previous equations, 

the initial value of   can be determined as: 
 

   
     

  
 (34) 

 

Then the interaction force at contact point at time step 

     i.e.      
  

 can be determined as follows: 
 

     
  

                             
  

 (35) 
 

Substituting (35) in (29-b) yield: 
 

     
  

          
  

                 
  

 

               
  

       
(36) 

 

In view of the fact that the wheel mass    is very small in 

comparison with the vehicle mass   , it can be neglected in 

(36), and accordingly this equation can be rewritten as 

follows: 
 

                
  

                
  

  (37) 

 

The velocity of the sprung mass       can be calculated by 

using backward finite difference as follows: 

 

       
 

  
           (38) 

International Journal of Engineering and Technology, Vol. 9, No. 5, October 2017

362



  

IX. VALIDATION OF THE METHOD 

A. Moving Force Model 

In order to confirm the accuracy of the developed 

numerical model, a simply supported plate at two opposite 

edges and subjected to a moving force, as shown in Fig. 3, 

was first considered, then the plate cross section is divided 

into five prism elements. The information in Table I gives 

details of the material properties and the moving force: 

 
TABLE I: PROPERTIES OF PLATE MATERIAL AND MOVING FORCE  

Item Value 

Moving force 4.4482 N 

Force speed 96.56 km/h 

Modulus of elasticity (E) 20684.4 MPa (concrete) 

Mass density 2400 kg/m3 

Poisson's ratio 0.15 

Plate thickness 0.4572 m 

 

The dynamic response of this plate under a moving force is 

presented in terms of the normalized centre displacements, as 

shown in Fig. 4. The normalized centre displacement is 

defined as (the ratio of the dynamic centre displacement to 

the maximum static centre displacement when the load is at 

any point along the span). The present results are compared 

with those of Srinivasan and Munaswamy [18] using the 

finite strip method. Fig. 4 shows the relation of the 

normalized displacement at the centre of the plate with the 

normalized position of the vehicle along the span of the plate. 

It can be noticed from this figure that when the vehicle leaves 

the plate, the normalized displacement at the centre of the 

plate is of the order 0.16 which is due to the inertia force of 

the plate. 

B. Moving Vehicle Model 

A simply supported beam with the geometry shown in Fig. 

5, was subjected to a moving vehicle model and has been 

analyzed. The beam cross section is divided into four prism 

elements. The details of the material properties and moving 

vehicle model are given in Table II: 

 
TABLE II: PROPERTIES OF BEAM MATERIAL AND MOVING VEHICLE  

Item Value 

Sprung vehicle mass (mv) 1000 kg 

Vehicle viscous damping (cv) 8.54 N.s/mm 

Vehicle stiffness (kv) 292 N/mm 

Modulus of elasticity (E) 22000 MPa (concrete) 

Mass density 2400 kg/m3 

Poisson's ratio 0.15 

Span length 5 m 

 

 
Fig. 3. Geometry and finite prism idealization of two opposite edges simply 

supported plate. 

The analysis is carried out using five harmonic terms only. 

The predicted dynamic response is compared with that of Cai 

et al. [19] as shown in Fig. 6 and Fig. 7. It can be noticed that 

by increasing the speed of the vehicle up to 590.4 km/h; the 

maximum normalized displacement takes place when the 

vehicle is at about 0.7 of the span length, while when the 

vehicle moves at speed of 295.2 km/h the maximum 

normalized displacement takes place when the vehicle is at 

about 0.4 of the span. 
 

 
Fig. 4. Normalized centre displacement of simply supported plate. 

 

 
Fig. 5. Geometry and finite prism idealization of simply supported beam. 

 
 

 

Fig. 6. Normalized centre displacement of simply supported beam due to 
vehicle speed 590.4 km/h. 

 

X. DYNAMIC ANALYSIS OF DECK GIRDER BRIDGE 

A simply supported deck girder bridge, with the geometry 

shown in Fig. 8, was subjected to vehicle model moving over 

the central girder. The bridge cross-section is divided into 25 

prism elements as shown in Fig. 9. The details of the material 

properties and moving vehicle model is given in Table III: 
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Fig. 7. Normalized centre displacement of simply supported beam due to 

vehicle speed 295.2 km/h. 

 
TABLE III: PROPERTIES OF BRIDGE MATERIAL AND MOVING VEHICLE  

Item Value 

Vehicle Speeds Vary from 40 km/h to 100 km/h 

Sprung vehicle mass (mv) 20394 kg 

Vehicle viscous damping (cv) 69.12 N.s/mm 

Vehicle stiffness (kv) 5971.97 N/mm 

Modulus of elasticity (E) 20000 MPa (concrete) 

Mass density 2400 kg/m3 

Poisson's ratio 0.2 

Span length 15 m 

 

Fig. 10 shows the variation of the normalized static and 

dynamic displacements at the centre of the exterior girder of 

the bridge with the normalized position of the vehicle moving 

over the central girder. The figure shows the effects of 

increasing the speed of the vehicle on the dynamic response 

of the bridge. It is clear that, when the speed of the vehicle 

increases, the dynamic response completely deviate from the 

static one. 

 

 
Fig. 8. Details of cross-section of deck girder bridge. 

 

 
Fig. 9. Finite prism idealization of deck girder bridge. 

 

 
(a) Vehicle speed = 40 km/h. 

 
(b) Vehicle speed = 60 km/h. 

 

 
(c) Vehicle speed = 80 km/h. 

 

 

 
(d) Vehicle speed = 80 km/h 

Fig. 10. Normalized static and dynamic centre displacements of exterior 

girder due to vehicle model moving over central girder. 

 

XI. CONCLUSION 

A new model for the dynamic analysis of bridges due to 

moving vehicle was developed in this work. The model is 

based on the coupling of the explicit solution of the equation 

of motion with the harmonic solution of the finite prism 

method. 
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Two different models for the vehicle are presented: the 

moving force model which is assumed to be constant during 

the traveling time of the vehicle along the span, and the 

moving vehicle model which takes into consideration the 

interaction between the bridge and the vehicle model. 

Numerical results from the developed computer code in the 

present study have shown good agreement with published 

data. The interaction of the vehicle with the bridge shows that 

the dynamic response of the bridge is significantly affected 

by the speed of the vehicle. Further studies in explicit 

transient analysis of bridges subjected to sudden and 

impulsive loadings are recommended using finite prism 

method. 
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