



Abstract—Time-triggered system provides more attractive

options for many safety-related and safety-critical embedded

systems. The work is mainly concerned with developing novel

scheduling algorithms and implementation techniques which

can be automated and ensured predictability during the process

of time-triggered co-operative architecture. The major

objective of this work is to modify an automated scheduling

technique for use with time-triggered co-operative based on the

employment of multiple timer interrupts. The results show that

proposed algorithm provides the effective schedulability and

can help in a significant reduction of scheduling time as

compared with a traditional scheduler.

Index Terms—Time-triggered architecture, time-triggered

co-operative scheduler, multiple timer interrupts.

I. INTRODUCTION

This paper is specifically concerned with software

development for resource-constrained systems. When

designing for small embedded device for safety-related and

safety critical systems, it is generally recognized that the use

of “Time-Triggered” (TT) system architectures offers

significant advantages over other system approaches [1], [2].

In TT architecture, all tasks are activated at a specific time

instants based on a periodic timer [3]. Such architecture is

statically computed before the system begins to execute. As a

result, the TT system will offer a highly-predictable behavior

and can suit for many safety-related applications, such as

anti-lock brakes, airbags, or biomedical sensors [4], [5].

In TT designs, there has been interested design option

which simple, generate a complete and highly-predictable

schedule called Time-Triggered Co-operative (TTC)

scheduler. Such scheduler also known as cyclic executive

scheduler-describes as a useful design pattern that can be

used to build in resource-constrained embedded system. The

TTC can be applied in various automotive applications, a

wireless communication system, various control application

systems, data acquisition systems, washing-machine control,

and monitoring of liquid flow rates [1], [2].

Despite many advantages, TTC might be suffered from

failure modes that can greatly impair system performances

which are the fragility of scheduler, the problems of task jitter,

and task overruns [5]. To avoid suffering from inappropriate

task scheduler, there has been alternative approached by

developing the scheduler implementation based on the

Manuscript received June 8, 2016; revised October 12, 2016.

The authors are with the Department of Electronics Engineering, Faculty

of Science and Tecnology, Nakhon Pathom Rajabhat University, Thailand

(e-mail: apinan.a@msu.ac.th).

technique of “Multiple Timer Interrupt” (MTI) called

“TTC-MTI” scheduler, this technique can be addressed such

problems effectively. In literature, Kuankid et al. [3]

indicated that TTC-MTI scheduler achieved better

performance in timing behavior as opposed to the other

technique. However, in practical terms, there has been a few

studies explore the automated scheduling technique to

process of such scheduler.

According to the aim of this paper, the work has interested

to modify an automated time-triggered scheduling technique

based on MTI scheduler for use with a range of

time-triggered co-operative architecture, to ensure that user

can select appropriate task scheduler when implementing

with the technique based on multiple timer interrupts. This

paper is organized as follows: Section II gives related work

of scheduling in real-time system. Section III presents the

automated scheduling technique of TTC scheduler based on

MTI technique. Section IV finds the method and results from

experiment. Finally, Section V concludes the use of

automated scheduling technique.

II. RELATED WORK

The main components while developers create software

for use in real-time system is the task scheduler. When

categorizing scheduling algorithm based on the triggering

mechanism, there are two common approaches used in

scheduling real-time systems: Event-Triggered (ET) system

and time-triggered system [4, 5].

In the event-trigger system, all tasks are invoked as a

response to events when external events take place [5]. In this

case, the system is controlled purely by the response to

external events, typically represented by interrupts which can

arrive at any time [4]. Event-triggered system is generally

recommended for application which offers high

responsiveness, flexibility, and ability to handle sporadic

data are exchanged in the system [4]. However, due to

unknown request time from the external events, such system

might suffer in less predictable and poor determinism. As for

time-triggered system, all tasks is activated at specific time

instants under the control of a timer [4, 6, 7]. The system is

usually driven by a global clock which generates periodic

interrupts from hardware timer that overflows at specific time

instants. The system can suit for many control applications

which offers a highly-predictable behavior. In addition, such

system is preferred a choice of safety-related system in which

all system activities must be known during the design phase

[4], [5], [7]. According to this work, there has interested

software development for safety-related system. Therefore,

Automated Scheduling Technique Based on Multiple

Timer Interrupts for Time-Triggered Co-operative

Architecture

S. Kuankid and A. Aurasopon

International Journal of Engineering and Technology, Vol. 9, No. 4, August 2017

310DOI: 10.7763/IJET.2017.V9.989

the automated task scheduling is designed based on the

time-triggered architecture.

When developing software with TT architecture, there has

been interested design option called TTC scheduler. In TTC

architecture, all tasks in the system is run to completion, one

task cannot pre-empt other tasks and only one timer interrupt

is supported. Fig.1 shows the operation of TTC scheduler. In

these circumstances, Task A executes while Task B has to

wait until Task A to completion, and returns to control the

scheduler. After that, Task B will be executed. As can be seen

that the TTC can be avoided conflicts over the problems of

share resources and task can communicate safety by means of

global variables [7].

(a)

(b)

Fig. 1. (a) A schematic representation of three tasks which need to be

scheduled. (b) The operation of a typical TTC scheduler

In literatures, the TTC has a wide range of possible

implementation options available, these different options

have varying resource requirements and performance

behavior. The simplest approach for implementing TTC

scheduler in low-cost embedded devices is TTC-SL

scheduler (Time-Triggered Co-operative - Super Loop) [8].

This architecture is implemented based on the super loop, can

be seen simple, easy to implement, and very small resource

requirements. However, the TTC-SL approach is not

sufficient reliability for precise time. It also operates at

full-power because of inefficient use of idle mode. An

alternative solution to this problem is TTC-ISR architecture

(Time-Triggered Co-operative - Interrupt Service Routine)

[7]. The TTC-ISR scheduler can be created using “Interrupt

Service Routine” linked to the overflow of a hardware timer.

The timer is set to overflow at regular “tick interval”. When

tick interval occurs, the system will execute task following

the task scheduler. The main advantage is that the successive

function calls will take place at precisely-defined intervals.

However, because the system is not separate between the

“scheduler” code and the “application” code (i.e. tasks), if

this scheduler runs multiple tasks, particularly tasks with

different periods, the system will become not simple and may

be difficult to debug and/or maintain. Another problem is that

if the task exceeding it predict execution time, the system

may be ignored the timer tick interval, this can generate a

domino effect on the subsequent tasks, and causes the system

hang indefinitely. The alternative solution is TTC-Dispatch

scheduler (Time-Triggered Co-operative-Dispatch), this

scheduler can be created using ISR the same as TTC-ISR. To

avoid losing ticks from task overruns, this TTC-Dispatch

scheduler separates the timer ISR and the process of task

execution. In TTC-Dispatch scheduler, the software employs

two principal functions, which are Update and Dispatch

function. The Update function uses to update the scheduler at

regular time intervals and Dispatch function uses to organize

tasks to be executed when they are due to run. The operation

of TTC-Dispatch scheduler is illustrated in Fig.2 When the

interrupts occur, the ISR will be called the Update function.

In this Update function, the scheduler sets appropriate flags

in order to note that an interrupt has occurred. After Update

function has completed, a Dispatch function will be called,

and the identified tasks will be executed following in

sequence. The Dispatch function is called from the Main

function similar to TTC-ISR scheduler. The system is usually

placed in a Sleep function (idle mode) in order to reduce

system operating power after complete execution each task.

Fig. 2. Function call tree for the TTC-Dispatch scheduler (adapted from [2])

Fig. 3. Function call tree for the TTC-MTI scheduler (adapted from [9]).

International Journal of Engineering and Technology, Vol. 9, No. 4, August 2017

311

III. SCHEDULER IMPLEMENTATION BASED ON THE

TECHNIQUE OF MULTIPLE TIMER INTERRUPTS

More recently, there has been alternative approached to

fixed problems of TTC scheduler by developing the

scheduler implementation based on the technique of multiple

timer interrupts called “TTC-MTI” scheduler [2], as shown

in Fig. 3, the process using two interrupts update functions

which are Tick Update (ISR tick interrupt) and Task Update

(ISR task interrupt) function. The Tick Update function is

used to generate the periodic tick interval whereas Task

Update is used to notify for execution task within the period

of tick interval.

In general, the Tick Update function which is called every

tick interrupt will arrange the task which ready to execute

within the current periodic tick interval. If the system has task

to execute in this period, the scheduler will set up and enable

timer following the required release time of task interrupt,

after that placing the processor to the idle mode (Sleep

function). However, if within this period has no task to

execute, the process will disable task interrupt and go to the

Sleep mode in order to reduce power consumption within this

period.

When task interrupt occurring, the Task Update function

will run the first task until completion, after that checks the

other tasks in this tick interval. If this period has other tasks to

run, the process will set up timer for the next task interrupt

and execute all tasks until completion before placing the

processor to the sleep mode. After all tasks within the tick

interval were executed successfully, the scheduler will

disable the task interrupt, then place the processor to Sleep

function, and waiting for executing with the next tick

interval.

IV. MODIFIED AUTOMATED SCHEDULING TECHNIQUE OF

TTC SCHEDULER

In TTC architecture, the tasks are organized to execute

following the types of implementation that are TTC-SL,

TTC-ISR, TTC-Dispatch, and TTC-MTI. It can be seen that

effective scheduling techniques are the need for the TTC

architecture because an inappropriate task scheduling may

cause all tasks set cannot be scheduled at all. Moreover, if the

scheduler is implemented improper behavior, this problem

can lead to high levels of task release jitter and also increased

power consumption in the system [9]-[11].

As for TTC-MTI scheduler, Kuankid et al. [3] proposed

the scheduling algorithm which implemented based on

multiple timer interrupts to test the schedulability of system.

Such algorithm will compute the system that feasible to

schedule or not. This can help in a significant reduction of

design stage before the system execution. Therefore, to fulfill

the gap between the scheduling algorithm and scheduler

implementation, this paper proposes to modify an automated

time-triggered scheduling technique for use with TTC-MTI

scheduler. This system can help in applying the scheduler in

real-time system, especially in cases that user wants to add or

remove tasks to the system while operating.

In the implementation phases, the automated task

scheduling can be modified as show in Fig.4. In general, the

scheduler will execute task and return to run the scheduler as

the pattern of the previous section. On the other hand, if user

wants to add or remove tasks, the processor will disable both

of the tick interrupt and task interrupt to stop the scheduler.

Then calculate the schedulability of all tasks following the

scheduling algorithm [3]. In this computation, if all tasks can

be scheduled, the process will set up the new scheduler and

add or remove task to the system, after that enable the tick

interrupt to start a new scheduler. However, if all tasks is not

feasible, the process will return to run the previous scheduler

again.

V. EXPERIMENTAL METHODOLOGY AND RESULTS

To evaluate the performance of automated task scheduling,

it presents scheduling time and schedulability test of

proposed system by comparing with a traditional scheduler.

A. Scheduling Time

1) Hardware platform and software development tools

In this experiment, the target platform is a small

microcontroller LPC2129. The LPC2129 is based on a 32 bit

ARM7 microcontroller, which is used an oscillator frequency

of 12 MHz and a CPU frequency of 60 MHz. The CPU

consists of two 32 bit timers with 4 multiple channels in each

timer. Accordingly, this CPU has enough timers to

implement the TTC-MTI scheduler. As for the software

development, this paper used development tools from Keil

products[12]. The tool chain was used RealView MDK

version 4.12.

2) Task specifications

To explore the performance of this algorithm, task set

parameters which consists of 100 tasks were randomly

generated with standard uniform distribution and the random

task set can be scheduled at all. By assuming all tasks are

period, the deadline is equal to its period. The worst case

execution time and period of all tasks is generated according

to the following inequalities:

 0< 100? WCET i us
 (1)

    10000 WCET i P i us 
 (2)

3) Results

The experiments were tested and compared the

performance between traditional algorithm and proposed

TTSA-MTI algorithm. The result in Table I shows that the

scheduling time of TTSA-MTI is significant reduction in

computation time when compare with a traditional approach.

B. Schedulability Test

1) Task specifications

For meaningful testing, task set parameters which consists

of 10 tasks were randomly generated with standard uniform

distribution at different utilization (0-1) following the

inequalities 1 and 2.

2) Results

The results of percentage of schedulable can be shown in

International Journal of Engineering and Technology, Vol. 9, No. 4, August 2017

312

Fig. 5. It can be seen that the performance of proposed

algorithm is closely related to the traditional approach.

However, the traditional approach is slightly higher the

proposed algorithm at the utilization more than 0.75

Fig. 4. Function call tree of automated task scheduling of TTC-MTI scheduler

C. Scheduling Time

1) Hardware platform and software development tools

In this experiment, the target platform is a small

microcontroller LPC2129. The LPC2129 is based on a 32 bit

ARM7 microcontroller, which is used an oscillator frequency

of 12 MHz and a CPU frequency of 60 MHz. The CPU

consists of two 32 bit timers with 4 multiple channels in each

timer. Accordingly, this CPU has enough timers to

implement the TTC-MTI scheduler. As for the software

development, this paper used development tools from Keil

products[12]. The tool chain was used RealView MDK

version 4.12.

2) Task specifications

To explore the performance of this algorithm, task set

parameters which consists of 100 tasks were randomly

generated with standard uniform distribution and the random

task set can be scheduled at all. By assuming all tasks are

period, the deadline is equal to its period. The worst case

execution time and period of all tasks is generated according

to the following inequalities:

3) Results

The experiments were tested and compared the

performance between traditional algorithm and proposed

TTSA-MTI algorithm. The result in Table I shows that the

scheduling time of TTSA-MTI is significant reduction in

computation time when compare with a traditional approach.

D. Schedulability test

1) Task Specifications

For meaningful testing, task set parameters which consists

of 10 tasks were randomly generated with standard uniform

distribution at different utilization (0-1) following the

inequalities 1 and 2.

2) Results

The results of percentage of schedulable can be shown in

Fig.5. It can be seen that the performance of proposed

algorithm is closely related to the traditional approach.

However, the traditional approach is slightly higher the

proposed algorithm at the utilization more than 0.75

TABLE I: THE SCHEDULING TIME BETWEEN TTC-DISPATCH AND TTSA-MTI SCHEDULER

Tasks
TTC-Dispatch (ms) TTSA-MTI (ms)

Mean  SD Maximum Minimum Mean  SD Maximum Minimum

10 2.83  0.014 2.85 2.81 0.144  0.002 0.146 0.141

20 9.77  0.015 9.80 9.75 0.317  0.001 0.319 0.315

30 20.77  0.015 20.80 20.76 0.513  0.002 0.515 0.510

40 35.77  0.017 35.80 35.75 0.733  0.001 0.735 0.730

50 54.87  0.015 54.89 54.85 0.979  0.002 0.983 0.977

60 77.95  0.018 77.98 77.92 1.248  0.002 1.251 1.247

70 105.21  0.014 105.23 105.19 1.547  0.001 1.549 1.545

80 136.37  0.011 136.39 136.35 1.865  0.002 1.868 1.863

90 155.20  0.018 155.23 155.17 2.352  0.002 2.357 2.350

100 187.80  0.020 187.83 187.78 2.622  0.001 2.623 2.620

International Journal of Engineering and Technology, Vol. 9, No. 4, August 2017

313

Fig. 5. Schedulability test between TTC-dispatch and TTSA-MTI scheduler at different utilization.

VI. CONCLUSIONS

Due to the predictability and highly reliable behavior of

TTC architecture, this work concentrates to implement such

scheduler in real-time resource-constrained embedded

system. The work is mainly concerned with developing novel

scheduling algorithms and implementation techniques which

can be automated and ensured predictability during the

process of TTC architecture. The results show that proposed

algorithm provides the effective schedulability and can help

in a significant reduction of scheduling time as compared

with a traditional scheduler.

ACKNOWLEDGMENT

This research was financially supported by Mahasarakham

University (2015) Copyright of Mahasarakham University.

REFERENCES

[1] A. K. Gendy and M. J. Pont, "Automatically configuring time-triggered

schedulers for use with resource-constrained, single-processor

embedded systems," IEEE Trans. Electron Devices, vol. ED-11, pp.

34-39, Jan. 1959.

[2] M. Nahas, "Employing two ‘sandwich delay’ mechanisms to enhance

predictability of embedded systems which use time-triggered

co-operative architectures," Journal of Software Engineering and

Applications, vol. 04, pp. 417-425, 2011a.

[3] S. Kuankid et al., "Effective scheduling algorithm and scheduler

implementation for use with time-triggered co-operative architecture,"

Elektronika ir Elektrotechnika, vol. 20, pp. 122-127, 2014.

[4] H. Kopetz, Real-Time Systems: Design Principles for Distributed

Embedded Applications: Kluwer Academic, 1997.

[5] A. Albert, "Comparison of event-triggered and time-triggered concepts

with regard to distributed control systems," in Proc. Embedded World,

Nurnberg, Germany, 2004.

[6] J. W. S. Liu, Real-Time System, Prentice Hall, 2000.

[7] M. J. Pont, Patterns For Time-triggered Embedded Systems: Building

Reliable Applications with the 8051 Family of Microcontrollers, ACM

Press Books, 2001.

[8] S. Kurian and M. J. Pont, "Restructuring a pattern language which

supports time-triggered co-operative software architectures in

resource-constrained embedded systems," presented at the EuroPLoP

2006, 2006.

[9] M. Nahas, "Bridging the gap between scheduling algorithms and

scheduler implementations in time-triggered embedded systems,"

Doctor of Philosophy, Department of Engineering, University of

Leicester, Leicester, 2008.

[10] A. Maaita, "Techniques for enhancing the temporal predictability of

real-time embedded systems employing a time-triggered software

architecture," Doctor of Philosophy, Department of Engineering,

University of Leicester, Leicester, 2008.

[11] T. Phatrapornnant and M. J. Pont, "Reducing jitter in embedded

systems employing a time-triggered software architecture and dynamic

voltage scaling," IEEE, 2006.

[12] Keil Embedded Development Tools, 2012.

S. Kuankid was born in Thailand. He received a B.Eng.

degree in electronics engineering from King Mongkut

Institute of Technology Ladkrabang in 1999, a M. Eng.

degree in electrical engineering from King Mongkut’s

University of Technology Thonburi in 2004, and a

Ph.D. degree in electrical and computer engineering at

Mahasarakham University in 2015, Thailand. He is

currently a lecturer in department of electronics

engineering, Faculty of Science and Tecnology, Nakhon Pathom Rajabhat

University, Thailand. His main topic of research is closely related with a

background of embedded microprocessor system, information and

communication technology, and renewable energy applied in agricultural

systems.

A. Aurasopon was born in Amnat Charoen

Province, Thailand, in 1971. He received his

B.Eng. degree in electronic engineering form the

Northeastern College, Khon Kaen, Thailand, in

1995, and his M.Eng. and Ph.D. degrees in

electrical engineering form the King Mongkut’s

University of Technology Thonburi, Bangkok,

Thailand, in 2003 and 2007, respectively. He was a

lecturer in the Department of Electrical

Engineering, Faculty of Engineering, Burapha University, Chonburi,

Thailand, in 2007. He transferred to the Faculty of Engineering,

Mahasarakham University, Maha Sarakham Province, Thailand, in 2008,

where he is presently an associate professor. His current research interests

include soft-switched converters, ac choppers, converter systems for

improving harmonics, power factor and the application of electronics and

computers to agriculture.

International Journal of Engineering and Technology, Vol. 9, No. 4, August 2017

314

