



Abstract—This paper presents a new algorithm for

improving the speed of OpenCV’s addWeighted function for

blending images. We propose two implementations: one using

the SSE (Streaming SIMD Extension), the other employing the

AVX (Advanced Vector Extension), which increases the

function’s speed by 3.49x and 5.77x respectively. The multi-core

version of our algorithm utilizes load balancing to distribute

loads between user threads while keeping the correct memory

alignment for each SIMD instruction type. This approach

improves the function’s speed by 23.08 times compared to its

original implementation in the OpenCV library.

Index Terms—Image blending, multicore programming,

AVX.

I. INTRODUCTION

Single-instruction-multiple-data (SIMD) processing is part

of many computer architectures, such as Intel’s SSE and

AVX instructions [1], ARM’s NEON [2], and the PowerPC’s

AltiVec [3], and can drastically increase computation speeds.

For example, F. Gerneth proposed an implementation of the

FIR filter using Intel SSE instructions [4]. J.Y . Liu et al.

increased the performance of the Shallow Water equations

and Euler equations by means of AVX and OpenMP [5]. J.

Frances et al. speeded up Finite-Difference Time-Domain

(FDTD) processing using AVX and OpenMP [6]. B. L. Gal

et al. took advantage of AVX to map the successive

cancellation (SC) decoding of polar codes [7]. C. C. Chi et al.

utilized AVX instructions for accelerating

High-Efficiency-Video-Coding (HEVC) decoding [8].

OpenCV 3.0 has the ability to utilize the SSE and AVX

instruction sets [9], and some of its operations can run faster

if properly vectorised. For example, G. Mitra et al. used SSE

to augment the speed of OpenCV’s image binarization and

convolution operations [10]. We propose to increase the

speed of OpenCV’s add Weighted function by using SSE and

AVX intrinsics, combined with the distribution of loads in a

multi-core environment; speed-ups of more than 23 times are

obtained.

The paper is organized as follows: Section II introduces

the SIMD capabilities of the x86 architecture, and Section III

describes OpenCV’s addWeighted function. In Section IV,

we present our proposed add-and-weight algorithm, and the

load distribution mechanism for a multi-core architecture.

Manuscript received October 23, 2015; revised December 30, 2015.

Panyayot Chaikan is with the Department of Computer Engineering,

Faculty of Engineering, Prince of Songkla University, Thailand (e-mail:

panyayot@coe.psu.ac.th).

Somsak Mitatha is with the Department of Computer Engineering,

Faculty of Engineering, King Mongkhut’s Institute of Technology

Ladkrabang, Thailand (e-mail: kmsomsak@kmitl.ac.th).

Experimental results are given in Section V, and Section VI

concludes the paper.

II. THE SIMD SSE AND AVX INSTRUCTIONS

The SSE is a SIMD instruction set designed by Intel as an

extension to the traditional x86 architecture. Depending on

the type and amount of data that the SSE registers support, it

allows one instruction to operate on multiple data

simultaneously. In the x86’s 64-bit long mode, there are

sixteen 128-bit SSE registers, named XMM0-XMM15 [1].

Each of these registers can hold i) two double precision

floating point numbers; ii) four single precision floating point

numbers; iii) sixteen 8-bit integers; iv) eight 16-bit integers;

v) four 32-bit integers; or vi) two 64-bit integers. There are

four main ways to utilize SSE and AVX instructions: i) write

assembly code using these SIMD machine instructions; ii)

use SSE or AVX inline assembly in C or C++ [11]; iii) use

the compiler’s intrinsic functions; or iv) use the compiler’s

support for auto-vectorization [10].

The syntax of the SSE intrinsic functions follow the

pattern _mm_<operation>_ <suffix> [10], where the

operation can be the load, store, arithmetic, or logical

operations, and the suffix is the type of data used by the

operation, e.g., _mm_add_epi8 and _mm_add_epi32 stand

for adding 8-bit and 32-bit integers.

The AVX has sixteen 256-bit registers, called

YMM0-YMM15, which are a superset of the XMM registers

because each XMM is actually the lower-half of the

corresponding YMM register. The syntax of the intrinsic

functions for the AVX has the pattern

__mm256_<operation>_<suffix>. Since the AVX doubles

the size of the SSE registers, it is in theory two times faster

than the SSE.

The Intel SSE operations employ a 16-byte memory

alignment boundary so data must start at memory addresses

divisible by 16. In the Intel AVX, this memory alignment

requirement is relaxed so that data can be kept in unaligned

addresses but with some performance reduction. For this

reason, keeping data in 32-byte memory alignment is

recommended for the best performance [1].

III. THE ADDWEIGHTED FUNCTION

The most prominent use of the addWeighted function is for

blending images. If S1, S2 are the input images and D is the

output image, then D’s (x, y) pixel is calculated using:

 1 2(,) (,) (,)D x y S x y S x y       (1)

Improving the Addweighted Function in OpenCV 3.0

Using SSE and AVX Intrinsics

Panyayot Chaikan and Somsak Mitatha

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

45DOI: 10.7763/IJET.2017.V9.943

where

α = a weight for the first image,

 = a weight for the second image,

 = a scalar added to each sum [12].

IV.

OUR PROPOSED ALGORITHM

 This section begins with our proposed algorithm to

perform add-and-weight using SIMD implementations, then

the load balancing algorithm for the multi-core

implementation is presented.

A.

Our SIMD Implementations of the Add-and-Weight

Operation

Our add-and-weight function utilizes two SIMD

instruction types: the SSE and AVX.

Our SSE algorithm starts by reading sixteen pixels from

the source images S1 and S2 to the 128-bit XMM registers.

The lower eight 8-bit pixels from each register are converted

into eight 16-bit integers, using the _mm_unpacklo_epi8

instruction, and these eight pixels from each image are

multiplied by a pre-calculated α*128 and *128

simultaneously. The two multiplicands are summed, and the

result added to a pre-calculated *128. The results are

divided by 128 by shifting their bits to the right by seven

positions. These lower eight result pixels (in 16-bit integer

form) are stored in a variable named D1. The higher eight

pixels from S1 and S2, that are already in the XMM registers,

are converted into eight 16-bit integer by means of the

_mm_unpackhi_epi8 instruction, processed in the same way,

and stored in D2. The D1 and D2 variables are converted from

16-bit integers back to 8-bit integers using the

_mm_packus_epi16 function, and then the image’s fully

processed 16 pixels are stored in the destination image.

After all 16 pixels in this register have been manipulated,

the process repeats by reading from S1 and S2. This goes on

until there are less than 16 pixels left in the image, and the

remainder is processed using conventional code.

Parallelism is achieved by utilizing SSE parallel integer

operations: _mm_add_epi16, _mm_mullo_epi16, and

_mm_srli_epi16, as shown in Fig. 1. The α,  and  floating

point values are multiplied by 128 before being converted to

16-bit integers to reduce the error of floating point to integer

conversion.

The AVX implementation of our algorithm works in the

same way as the SSE version, but the AVX register size is

doubled and uses the type __m256i. The intrinsic functions

that begin with _mm in the SSE are changed to _mm256, (e.g.,

the SSE _mm_add_epi16 becomes _mm256_add_epi16).

We implemented our algorithm using integer calculations

for two reasons. The first is that more integer operands can be

computed simultaneously than floating point values in SIMD

registers. For example, sixteen 16-bit integer operands can be

executed simultaneously in the YMM registers but only eight

single precision floating point numbers. The second reason is

that integer operations have lower computational latency

than floating point values [1].

B. Multi-core Programming for SIMD

Our load balancing mechanism tries to distribute equal

loads to the cores while retaining the memory size alignment

for each SIMD instruction. The algorithm assumes that the

start of the memory storing the image pixels is aligned to the

memory required by the SIMD instructions (divisible by 16

and 32 for SSE and AVX respectively).

Let “/” be an integer division operation, Nthread the number

of threads that are running in the multi-core environment, and

Ptotal the number of pixels in the image. If all the threads are

assigned an equal load, then the number of pixels processed

by each thread is

 ./ threadtotalbalanced NPW  (2)

However, memory alignment is required for SIMD

calculations, so we cannot directly use equation (2) to

calculate the load for each thread. Let A be the number of

bytes needed for memory alignment for each SIMD

instruction (16 and 32 for SSE and AVX respectively), and

let Tid be the ID of each thread ranging from 0 to Nthread -1,

then the load of all the threads except the last one is

 AWAWW balancedbalancedthreadlastnon %__  (3)

where “%” is a modulus operation. The load of the last thread

(Tid = Nthread -1) is

   .*1 ___ threadlastnonthreadtotalthreadlast WNPW  (4)

All the threads except the last one will use SIMD

instructions to process their image pixels. For the last thread,

the load involves a SIMD part and a FPU part. The SIMD

work is determined by

 

 













.otherwise%

if0

__

_

__

AWW

AW

W

threadlastthreadlast

threadlast

threadlastsimd

 (5)

The remaining pixels of the last thread that cannot be

processed by SIMD instructions must be handled by FPU

instructions. The amount of work is

 .%___ AWW threadlastthreadlastfpu  (6)

Although each thread knows how many pixels it must

process, each thread also needs to know the beginning

address of its image pixels for performing the

add-and-weight calculation. The starting memory address,

called Sstart, of thread ID = Tid will begin at

  threadslastnonidstartstart WTIS __* (7)

where Istart stands for the starting memory address of the

image pixels.

For the last thread, any pixels that must be processed by

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

46

the FPU start at location

 .___ threadlastsimdstartstartFPU WSS  (8)

__m128i *pA, *pB, *pD;

__m128i A, B, D1, D2, alfa, beta, zero;

float a1, a2, a3;

unsigned short af1, af2, af3;

a1 = thread_params[thread_id].ulfa * 128.0f;

a2 = thread_params[thread_id].beta * 128.0f;

a3 = thread_params[thread_id].gamma*128.0f;

af1 = (unsigned short)a1;

af2 = (unsigned short)a2;

af3 = (unsigned short)a3;

alfa = _mm_set1_epi16(af1);

beta = _mm_set1_epi16(af2);

gamma= _mm_set1_epi16(af3);

zero = _mm_setzero_si128();

/* pA, pB, and point to the beginning memory address of the image

pixels in S1, S2, and D */

for (i = 0; i < N_loop; i++)

{

 A = _mm_unpacklo_epi8(*pA, zero);

 B = _mm_unpacklo_epi8(*pB, zero);

 A = _mm_mullo_epi16(A, alfa);

 B = _mm_mullo_epi16(B, beta);

 D1 = _mm_add_epi16(A, B);

 D1 = _mm_add_epi16(D1, gamma);

 D1 = _mm_srli_epi16(D1, 7);

 A = _mm_unpackhi_epi8(*pA, zero);

 B = _mm_unpackhi_epi8(*pB, zero);

 A = _mm_mullo_epi16(A, alfa);

 B = _mm_mullo_epi16(B, beta);

 D2 = _mm_add_epi16(A, B);

 D2 = _mm_add_epi16(D2, gamma);

 D2 = _mm_srli_epi16(D2, 7);

 *pD = _mm_packus_epi16(D1, D2);

 pA++;

 pB++;

 pD++;

}

//Then process the remaining pixels (if any).

Fig. 1. Our add-and-weight algorithm implemented using SSE intrinsic functions.

Image pixels are loaded into SIMD registers 16 bytes at a

time for the SSE, and 32 for the AVX. The number of loops

that the SIMD operations must perform in each thread is

defined by

 







 



otherwise./

1if/

__

__

AW

NTAW

N

threadlastsimd

threadidthreadlastnon

loop
 (9)

V. EXPERIMENTAL RESULTS

The SSE and AVX intrinsics were tested in nine

configurations using 1, 2, 4, 6, 8, 10, 12, 14, and 16 threads.

The machine was a 2.5 GHz Core i7-4710HQ with four

processing cores, and 16 GB RAM; 64-bit Windows 8.1,

Microsoft Visual Studio 15, and OpenCV 3.0 were installed.

The correct memory alignment of each SIMD configuration

was ensured by setting the environment variable

CV_MALLOC_ALIGN to 16 and 32 for SSE and AVX

respectively.

The cv2.setUseOptimized function was set to enable SIMD

optimization, and the AVX auto-vectorization feature of

Microsoft Visual Studio 15 was turned on. However,

auto-vectorization was turned off when code using the SSE

and AVX intrinsics was compiled. Five different image

resolutions were tested, and the results are shown in Table I.

The execution time has two parts : the user CPU time for

the add-and-weight operation and the system CPU time [13].

To reduce the effect of the system CPU time, our SSE and

AVX functions were run n times, and the total elapsed time

was divided by n to obtain the user CPU time for each

SIMD-enabled function. n were set to 500,000 for images

smaller than 1920x1200, and 250,000 and 30,000 for images

sized 1920x1200 and 3648x2736 respectively.

The speed up factors for the multi-core configuration

shown in Fig. 2 come from the best result for each SIMD

implementation obtained from Table I. When operating on

small images, our AVX implementation is more than 23

times faster than the original Addweighted function.

However, the performance gain tends to decrease for larger

images due to main memory bandwidth limitations. All the

pixels of smaller images can fit into the cache, and the AVX

and SSE instructions can reach the data quickly. For larger

images, repeated access to main memory is required, and

peak memory bandwidth is reached. The AVX is 1.83 times

faster than the SSE in a multi-core implementation for image

size 320240. When the size is larger, the performance

difference between these two SIMD instruction types

decreases. For the largest image (3648x2736 pixels), SSE

and AVX are only 2.54 and 2.57 times faster than the original

addWeighted function.

Configurations

Computation Time (micro seconds)

320

x240

640

x480

1024

x768

1920

x1200

3648

x2736

OpenCV

addWeighted

compiled with

AVX2

auto-vectorization

30.07 119.70 331.44 944.82 1409.1

SSE (1 thread) 8.61 34.59 116.82 359.3 704.9

SSE (2 threads) 4.43 18.55 56.41 194.4 659.0

SSE (4 threads) 2.51 11.56 31.64 129.9 637.3

SSE (6 threads) 2.54 11.92 32.03 108.1 631.9

SSE (8 threads) 2.38 11.29 30.38 112.7 646.6

SSE (10 threads) 2.55 11.60 31.00 94.7 617.1

SSE (12 threads) 2.43 11.61 30.85 92.2 620.5

SSE (14 threads) 2.52 11.87 30.58 92.4 588.5

SSE (16 threads) 2.45 11.37 30.38 91.2 554.8

AVX (1 thread) 5.21 30.63 88.87 300.4 689.0

AVX (2 threads) 2.88 15.35 44.87 183.9 650.4

AVX (4 threads) 1.55 6.84 24.38 121.9 633.7

AVX (6 threads) 1.52 7.26 22.57 91.7 628.1

AVX (8 threads) 1.30 5.58 20.98 111.6 644.0

AVX(10threads) 1.34 5.76 21.00 73.2 626.6

AVX(12threads) 1.33 5.66 20.20 67.9 612.0

AVX(14threads) 1.35 5.89 18.19 65.2 583.7

AVX(16threads) 1.31 5.73 18.02 64.0 548.5

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

47

TABLE I: COMPUTATION TIME FOR EACH CONFIGURATION OF THE

ADD-AND-WEIGHT OPERATION PERFORMED ON DIFFERENT IMAGE SIZES

Fig. 3 shows that for image sizes of 320240 and 640480,

eight is the optimum number of threads which is twice the

number of available CPU cores. However, larger image sizes

mean that more threads increase the running speed. The

multi-core AVX version follows the same pattern (see Fig.

4).

0

5

10

15

20

25

76,800 307,200 786,432 2,304,000 9,980,928
Total image pixels

S
p

e
e
d

 U
p

MultiCore_AVX

MultiCore_SSE

SingleCore_AVX

SingleCore_SSE

Fig. 2. Speed up factors for our algorithm relative to the original addWeighted function.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 2 4 6 8 10 12 14 16

Number of threads

S
p

e
e
d

 U
p

320x240

640x480

1024x768

1920x1200

3648x2736

Fig. 3. Speed up factors of our algorithm using SSE intrinsics on different numbers of threads

relative to the original addWeighted function.

0.00

5.00

10.00

15.00

20.00

25.00

1 2 4 6 8 10 12 14 16

Number of threads

S
p

e
e
d

 U
p 320x240

640x480

1024x768

1920x1200

3648x2736

Fig.4. Speed up factors of our algorithm using AVX intrinsics on different numbers of threads

compared to the original addWeighted function.

VI. DISCUSSION AND CONCLUSION

Our algorithm exceeds the speed of the addWeighted

operation in the OpenCV library in every tested

configurations, and even for very large images where peak

memory bandwidth has been reached. Although AVX is

twice as fast as SSE in theory, our work reveals that a

performance gain of this magnitude is not easy to obtain.

Memory bandwidth is one of the key factors limiting

performance improvement.

ACKNOWLEDGEMENT

The authors are grateful to Dr. Andrew Davison for his

kind help in polishing the language of this paper.

REFFERENCES

[1] Intel Corporation, Intel Advanced Vector Extensions Programming

Reference, Ref.#319433-011, June 2011.

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

48

[2] ARM Limited, Cortex-A9 NEON Media Processing Engine Technical

Reference Manual, 2011.

[3] Freescale Semiconductor Limited, AltiVec Technology Programming

Environments Manual, 2006.

[4] F. Gerneth, FIR Filter Algorithm Implementation using Intel SSE

Instructions: Optimizing for Intel Atom Architecture, Intel Corporation,

March 2010.

[5] J. Y. Liu, M. R. Smith, F. A. Kuo, and J. S. Wu, “Hybrid

OpenMP/AVX acceleration of a split HLL finite volume method for

the shallow water and euler equations,” Computer & Fluids, vol. 110,

pp. 181-188, 2015.

[6] J. Frances, S. Bleda, A. Marquez, C. Neipp, S. Gallego, B. Otero, and A.

Belendez, “Performance analysis of SSE and AVX instructions in

multi-core CPUs and GPU computation on FDTD scheme for solid and

fluid vibration problems,” The Journal of Supercomputing, vol. 70, no.

2, pp. 514-526, 2014.

[7] B. L. Gal, C. Leroux, and C. Jego, “Multi-Gb/s software decoding of

polar codes,” IEEE Transactions on Signal Processing, vol. 64, no. 2,

pp. 349-359, 2015.

[8] C. C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, and T. Schierl,

“SIMD acceleration for HEVC decoding,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 25, no. 5, pp. 841-855,

2015.

[9] Optimization. [Online]. Available:

http://docs.opencv.org/master/dc/d71/tutorial_py_opti mization.

html#gsc.tab=0

[10] G. Mitra, B. Johnston, A. P. Rendell, and E. McCreath, “Use of SIMD

vector operations to accelerate application code performance on

low-powered ARM and intel platforms,” in Proc. IEEE 27th

International Parallel and Distributed Processing Symposium

Workshops and PhD Forum, pp. 1107-1116, May 20-24, 2013.

[11] C. Juan and Y. Canqun, “Optimizing SIMD parallel computation with

non-consecutive array access in inline SSE assembly language,” in

Proc. International Conf. on Intelligent Computation Technology and

Automation, pp. 254-257, January 12-14, 2012.

[12] Addweighted. [Online]. Available:

http://docs.opencv.org/modules/core/doc/operations_

on_arrays.html?highlight=addweighted#addweighted

[13] D. Patterson and J. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, 5th edition, Morgan Kaufmann, 2013.

Panyayot Chaikan received the B.Eng. degree in

computer engineering, the M.Eng. degree in electrical

engineering from King Mongkut’s Institute of

Technology Ladkrabang, Bangkok, Thailand, in 1999

and 2002, respectively. He received the Ph.D in

computer engineering from Prince of Songkla

University, Songkhla, Thailand, in 2010. He is

currently a lecturer of the Department of Computer

Engineering at Prince of Songkla University. His

research interests include image processing, pattern recognition, parallel

programming, and embedded systems.

Somsak Mitatha received the B.Ind. degree in

television technology, the M.Eng. degree in electrical

engineering, and the D.Eng degree in electrical

engineering from the King Mongkut’s Institute of

Technology Ladkrabang, Bangkok, Thailand, in

1987, 1995, and 2008, respectively. He is currently a

lecturer and associate professor of computer

engineering with the Department of Computer

Engineering. His current research interests include

computer hardware design, pattern recognition, hybrid networks, embedded

systems, and nonlinear optical communication.

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

49

