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Abstract—This paper presents a new algorithm for 

improving the speed of OpenCV’s addWeighted function for 

blending images. We propose two implementations: one using 

the SSE (Streaming SIMD Extension), the other employing the 

AVX (Advanced Vector Extension), which increases the 

function’s speed by 3.49x and 5.77x respectively. The multi-core 

version of our algorithm utilizes load balancing to distribute 

loads between user threads while keeping the correct memory 

alignment for each SIMD instruction type. This approach 

improves the function’s speed by 23.08 times compared to its 

original implementation in the OpenCV library.  

 
Index Terms—Image blending, multicore programming, 

AVX. 

 

I. INTRODUCTION 

Single-instruction-multiple-data (SIMD) processing is part 

of many computer architectures, such as Intel’s SSE and 

AVX instructions [1], ARM’s NEON [2], and the PowerPC’s 

AltiVec [3], and can drastically increase computation speeds. 

For example, F. Gerneth proposed an implementation of the 

FIR filter using Intel SSE instructions [4].  J.Y . Liu et al. 

increased the performance of the Shallow Water equations 

and Euler equations by means of AVX and OpenMP [5]. J. 

Frances et al. speeded up Finite-Difference Time-Domain 

(FDTD) processing using AVX and OpenMP [6]. B. L. Gal 

et al. took advantage of AVX to map the successive 

cancellation (SC) decoding of polar codes [7].  C. C. Chi et al. 

utilized AVX instructions for accelerating 

High-Efficiency-Video-Coding (HEVC) decoding [8]. 

OpenCV 3.0 has the ability to utilize the SSE and AVX 

instruction sets [9], and some of its operations can run faster 

if properly vectorised. For example, G. Mitra et al. used SSE 

to augment the speed of OpenCV’s image binarization and 

convolution operations [10].  We propose to increase the 

speed of OpenCV’s add Weighted function by using SSE and 

AVX intrinsics, combined with the distribution of loads in a 

multi-core environment; speed-ups of more than 23 times are 

obtained.  

The paper is organized as follows: Section II introduces 

the SIMD capabilities of the x86 architecture, and Section III 

describes OpenCV’s addWeighted function. In Section IV, 

we present our proposed add-and-weight algorithm, and the 

load distribution mechanism for a multi-core architecture. 
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II. THE SIMD SSE AND AVX INSTRUCTIONS 

The SSE is a SIMD instruction set designed by Intel as an 

extension to the traditional x86 architecture. Depending on 

the type and amount of data that the SSE registers support, it 

allows one instruction to operate on multiple data 

simultaneously. In the x86’s 64-bit long mode, there are 

sixteen 128-bit SSE registers, named XMM0-XMM15 [1]. 

Each of these registers can hold i) two double precision 

floating point numbers; ii) four single precision floating point 

numbers; iii) sixteen 8-bit integers;  iv) eight 16-bit integers; 

v) four 32-bit integers; or vi) two 64-bit integers. There are 

four main ways to utilize SSE and AVX instructions: i) write 

assembly code using these SIMD machine instructions; ii) 

use SSE or AVX inline assembly in C or C++ [11]; iii) use 

the compiler’s intrinsic functions; or iv) use the compiler’s 

support for auto-vectorization [10].  

The syntax of the SSE intrinsic functions follow the 

pattern _mm_<operation>_ <suffix> [10], where the 

operation can be the load, store, arithmetic, or logical 

operations,  and the suffix is the type of data used by the 

operation, e.g., _mm_add_epi8 and _mm_add_epi32 stand 

for adding 8-bit and 32-bit integers. 

The AVX has sixteen 256-bit registers, called 

YMM0-YMM15, which are a superset of the XMM registers 

because each XMM is actually the lower-half of the 

corresponding YMM register. The syntax of the intrinsic 

functions for the AVX has the pattern 

__mm256_<operation>_<suffix>. Since the AVX doubles 

the size of the SSE registers, it is in theory two times faster 

than the SSE.  

The Intel SSE operations employ a 16-byte memory 

alignment boundary so data must start at memory addresses 

divisible by 16.  In the Intel AVX, this memory alignment 

requirement is relaxed so that data can be kept in unaligned 

addresses but with some performance reduction. For this 

reason, keeping data in 32-byte memory alignment is 

recommended for the best performance [1]. 

 

III. THE ADDWEIGHTED FUNCTION 

The most prominent use of the addWeighted function is for 

blending images. If S1, S2 are the input images and D is the 

output image, then D’s (x, y) pixel is calculated using: 

 

 1 2( , ) ( , ) ( , )D x y S x y S x y        (1) 

Improving the Addweighted Function in OpenCV 3.0 

Using SSE and AVX Intrinsics 

Panyayot Chaikan and Somsak Mitatha 

International Journal of Engineering and Technology, Vol. 9, No. 1, February 2017

45DOI: 10.7763/IJET.2017.V9.943



  

where  

α = a weight for the first image, 

 = a weight for the second image, 

 = a scalar added to each sum [12]. 

 

IV.

 

OUR PROPOSED ALGORITHM 

 This section begins with our proposed algorithm to 

perform add-and-weight using SIMD implementations, then 

the load balancing algorithm for the multi-core 

implementation is presented. 

A.

 

Our SIMD Implementations of the Add-and-Weight 

Operation 

Our add-and-weight function utilizes two SIMD 

instruction types: the SSE and AVX.  

Our SSE algorithm starts by reading sixteen pixels from 

the source images S1 and S2 to the 128-bit XMM registers. 

The lower eight 8-bit pixels from each register are converted 

into eight 16-bit integers, using the _mm_unpacklo_epi8 

instruction, and these eight pixels from each image are 

multiplied by a pre-calculated α*128 and *128  

simultaneously. The two multiplicands are summed, and the 

result added to a pre-calculated *128. The results are 

divided by 128 by shifting their bits to the right by seven 

positions. These lower eight result pixels (in 16-bit integer 

form) are stored in a variable named D1. The higher eight 

pixels from S1 and S2, that are already in the XMM registers, 

are converted into eight 16-bit integer by means of the 

_mm_unpackhi_epi8 instruction, processed in the same way, 

and stored in D2. The D1 and D2 variables are converted from 

16-bit integers back to 8-bit integers using the  

_mm_packus_epi16 function, and then the image’s fully 

processed 16 pixels are stored in the destination image. 

After all 16 pixels in this register have been manipulated, 

the process repeats by reading from S1 and S2. This goes on 

until there are less than 16 pixels left in the image, and the 

remainder is processed using conventional code. 

Parallelism is achieved by utilizing SSE parallel integer 

operations: _mm_add_epi16, _mm_mullo_epi16, and 

_mm_srli_epi16, as shown in Fig. 1. The α,  and   floating 

point values are multiplied by 128 before being converted to 

16-bit integers to reduce the error of floating point to integer 

conversion.  

The AVX implementation of our algorithm works in the 

same way as the SSE version, but the AVX register size is 

doubled and uses the type __m256i. The intrinsic functions 

that begin with _mm in the SSE are changed to _mm256, (e.g., 

the SSE _mm_add_epi16 becomes _mm256_add_epi16).  

We implemented our algorithm using integer calculations 

for two reasons. The first is that more integer operands can be 

computed simultaneously than floating point values in SIMD 

registers. For example, sixteen 16-bit integer operands can be 

executed simultaneously in the YMM registers but only eight 

single precision floating point numbers. The second reason is 

that integer operations have lower computational latency 

than floating point values [1]. 

B. Multi-core Programming for SIMD  

Our load balancing mechanism tries to distribute equal 

loads to the cores while retaining the memory size alignment 

for each SIMD instruction. The algorithm assumes that the 

start of the memory storing the image pixels is aligned to the 

memory required by the SIMD instructions (divisible by 16 

and 32 for SSE and AVX respectively).  

Let “/” be an integer division operation, Nthread  the number 

of threads that are running in the multi-core environment, and 

Ptotal the number of pixels in the image. If all the threads are 

assigned an equal load, then the number of pixels processed 

by each thread is 

 

 ./ threadtotalbalanced NPW   (2) 

 

However, memory alignment is required for SIMD 

calculations, so we cannot directly use equation (2) to 

calculate the load for each thread. Let A be the number of 

bytes needed for memory alignment for each SIMD 

instruction (16 and 32 for SSE and AVX respectively), and 

let Tid be the ID of each thread ranging from 0 to Nthread -1, 

then the load of all the threads except the last one is 

 

 AWAWW balancedbalancedthreadlastnon %__   (3) 

 

where “%” is a modulus operation. The load of the last thread 

(Tid = Nthread -1) is  

 

   .*1 ___ threadlastnonthreadtotalthreadlast WNPW   (4) 

 

All the threads except the last one will use SIMD 

instructions to process their image pixels. For the last thread, 

the load involves a SIMD part and a FPU part. The SIMD 

work is determined by 
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  (5) 

 

The remaining pixels of the last thread that cannot be 

processed by SIMD instructions must be handled by FPU 

instructions. The amount of work is 

 

 .%___ AWW threadlastthreadlastfpu   (6) 

 

Although each thread knows how many pixels it must 

process, each thread also needs to know the beginning 

address of its image pixels for performing the 

add-and-weight calculation. The starting memory address, 

called Sstart,  of thread ID = Tid will begin at 

 

  threadslastnonidstartstart WTIS __*  (7) 

 

where Istart stands for the starting memory address of the 

image pixels. 

For the last thread, any pixels that must be processed by 
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the FPU start at location 

 

 .___ threadlastsimdstartstartFPU WSS   (8) 

 
 

 

__m128i *pA, *pB, *pD; 

__m128i A, B, D1, D2, alfa, beta, zero; 

float a1, a2, a3; 

unsigned short af1, af2, af3; 

a1 = thread_params[thread_id].ulfa * 128.0f; 

a2 = thread_params[thread_id].beta * 128.0f; 

a3 = thread_params[thread_id].gamma*128.0f; 

af1 = (unsigned short)a1; 

af2 = (unsigned short)a2; 

af3 = (unsigned short)a3; 

alfa = _mm_set1_epi16(af1); 

beta = _mm_set1_epi16(af2); 

gamma= _mm_set1_epi16(af3); 

zero = _mm_setzero_si128();  

 

/* pA, pB, and point to the beginning memory address of the image 

pixels in S1, S2, and D */ 

for (i = 0; i < N_loop; i++) 

{ 

 A = _mm_unpacklo_epi8(*pA, zero); 

 B = _mm_unpacklo_epi8(*pB, zero); 

 A = _mm_mullo_epi16(A, alfa); 

 B = _mm_mullo_epi16(B, beta); 

 D1 = _mm_add_epi16(A, B); 

 D1 = _mm_add_epi16(D1, gamma); 

 D1 = _mm_srli_epi16(D1, 7); 

 A = _mm_unpackhi_epi8(*pA, zero); 

 B = _mm_unpackhi_epi8(*pB, zero); 

 A = _mm_mullo_epi16(A, alfa); 

 B = _mm_mullo_epi16(B, beta); 

 D2 = _mm_add_epi16(A, B); 

 D2 = _mm_add_epi16(D2, gamma); 

 D2 = _mm_srli_epi16(D2, 7); 

 *pD = _mm_packus_epi16(D1, D2); 

 pA++; 

 pB++; 

 pD++; 

} 

//Then process the remaining pixels (if any). 

Fig. 1. Our add-and-weight algorithm implemented using SSE intrinsic functions. 

 

Image pixels are loaded into SIMD registers 16 bytes at a 

time for the SSE, and 32 for the AVX. The number of loops 

that the SIMD operations must perform in each thread is 

defined by 
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
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otherwise./
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V. EXPERIMENTAL RESULTS 

The SSE and AVX intrinsics were tested in nine 

configurations using 1, 2, 4, 6, 8, 10, 12, 14, and 16 threads. 

The machine was a 2.5 GHz Core i7-4710HQ with four 

processing cores, and 16 GB RAM;  64-bit Windows 8.1, 

Microsoft Visual Studio 15, and OpenCV 3.0 were installed. 

The correct memory alignment of each SIMD configuration 

was ensured by setting the environment variable 

CV_MALLOC_ALIGN to 16 and 32 for SSE and AVX 

respectively. 

The cv2.setUseOptimized function was set to enable SIMD 

optimization, and the AVX auto-vectorization feature of 

Microsoft Visual Studio 15 was turned on. However, 

auto-vectorization was turned off when code using the SSE 

and AVX intrinsics was compiled. Five different image 

resolutions were tested, and the results are shown in Table I. 

The execution time has two parts : the user CPU time for 

the add-and-weight operation and the system CPU time [13]. 

To reduce the effect of the system CPU time, our SSE and 

AVX functions were run n times, and the total elapsed time 

was divided by n to obtain the user CPU time for each 

SIMD-enabled function. n were set to 500,000 for images 

smaller than 1920x1200, and 250,000 and 30,000 for images 

sized 1920x1200 and 3648x2736 respectively. 

The speed up factors for the multi-core configuration 

shown in Fig. 2 come from the best result for each SIMD 

implementation obtained from Table I. When operating on 

small images, our AVX implementation is more than 23 

times faster than the original Addweighted function. 

However, the performance gain tends to decrease for larger 

images due to main memory bandwidth limitations. All the 

pixels of smaller images can fit into the cache, and the AVX 

and SSE instructions can reach the data quickly. For larger 

images, repeated access to main memory is required, and 

peak memory bandwidth is reached. The AVX is 1.83 times 

faster than the SSE in a multi-core implementation for image 

size 320240. When the size is larger, the performance 

difference between these two SIMD instruction types 

decreases. For the largest image (3648x2736 pixels), SSE 

and AVX are only 2.54 and 2.57 times faster than the original 

addWeighted function. 

 
  

Configurations 

Computation Time (micro seconds) 

320 

x240 

640 

x480 

1024 

x768 

1920 

x1200 

3648 

x2736 

OpenCV 

addWeighted 

compiled with 

AVX2             

auto-vectorization 

30.07 119.70 331.44 944.82 1409.1 

SSE (1 thread) 8.61 34.59 116.82 359.3 704.9 

SSE (2 threads) 4.43 18.55 56.41 194.4 659.0 

SSE (4 threads) 2.51 11.56 31.64 129.9 637.3 

SSE (6 threads) 2.54 11.92 32.03 108.1 631.9 

SSE (8 threads) 2.38 11.29 30.38 112.7 646.6 

SSE (10 threads) 2.55 11.60 31.00 94.7 617.1 

SSE (12 threads) 2.43 11.61 30.85 92.2 620.5 

SSE (14 threads) 2.52 11.87 30.58 92.4 588.5 

SSE (16 threads) 2.45 11.37 30.38 91.2 554.8 

AVX (1 thread) 5.21 30.63 88.87 300.4 689.0 

AVX (2 threads) 2.88 15.35 44.87 183.9 650.4 

AVX (4 threads) 1.55 6.84 24.38 121.9 633.7 

AVX (6 threads) 1.52 7.26 22.57 91.7 628.1 

AVX (8 threads) 1.30 5.58 20.98 111.6 644.0 

AVX(10threads) 1.34 5.76 21.00 73.2 626.6 

AVX(12threads) 1.33 5.66 20.20 67.9 612.0 

AVX(14threads) 1.35 5.89 18.19 65.2 583.7 

AVX(16threads) 1.31 5.73 18.02 64.0 548.5 
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TABLE I: COMPUTATION TIME FOR EACH CONFIGURATION OF THE 

ADD-AND-WEIGHT OPERATION PERFORMED ON DIFFERENT IMAGE SIZES



  

Fig. 3 shows that for image sizes of 320240 and 640480, 

eight is the optimum number of threads which is twice the 

number of available CPU cores. However, larger image sizes 

mean that more threads increase the running speed. The 

multi-core AVX version follows the same pattern (see Fig. 

4). 
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Fig. 2. Speed up factors for our algorithm relative to the original addWeighted function. 
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Fig. 3. Speed up factors of our algorithm using  SSE intrinsics on different numbers of threads 

relative to the original addWeighted function. 
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Fig.4. Speed up factors of our algorithm using AVX intrinsics on different numbers of threads 

compared to the original addWeighted function. 

VI. DISCUSSION AND CONCLUSION 

Our algorithm exceeds the speed of the addWeighted 

operation in the OpenCV library in every tested 

configurations, and even for very large images where peak 

memory bandwidth has been reached. Although AVX is 

twice as fast as SSE in theory, our work reveals that a 

performance gain of this magnitude is not easy to obtain. 

Memory bandwidth is one of the key factors limiting 

performance improvement. 
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