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Abstract—These This paper presents a new method for Sage 

filtering considering the model systematic errors. This method 

adopts Sage filtering established to estimate the model 

systematic error as well as the covariance matrices of 

observation residual vector, predicted residual vector, and 

predicted state vector within a moving time window. 

Experiment results and comparison analysis with the existing 

methods demonstrate that the proposed method of Sage 

filtering considering the model systematic errors can effectively 

resist the disturbances of the model error. The achieved 

navigation accuracy is much higher than the kalman filtering 

and Sage filtering methods. 

 
Index Terms—Errors, adaptive estimation, predicted 

residual vectors, covariance matrix.  

 

I. INTRODUCTION 

The Sage filtering is a method to estimate system noise and 

observational noise at present epochs by the mean of 

historical information and then obtain the optimal estimation 

of system state by using the kalman filtering model [1]-[3]. It 

can estimate the covariance matrix of the predicted state 

residual vector, without requiring the prior covariance matrix 

of the kinematic model noise. The main ideal of the method is 

estimate the present system noise and observational noise by 

the mean of historical information, then calculate by the 

kalman filtering to obtain the system state optimal estimation. 

Xu and Jiang presented an improved adaptive Sage 

filtering for kinematic positioning. It is a method to deal with 

observation and model noises by adaptively adjusting the 

covariance matrix of system state noise through the adaptive 

factor [2]. However, this method assumes that the prior 

covariance matrix of the kinematic model noise is the 

smoothing value of the model error within a moving time 

window [4]-[6]. when large disturbances are involved in the 

kinematic model, the covariance matrices of predicted state 

vectors, which is obtained within the time windows, is not 

capable of accurately describing the practical model errors. 

Yang and Cui reported a adaptively robust filter by 

adaptive robustly factor to adjust the estimating the 

covariance matrices of observation noise and system state 

noise [6]-[8]. Nevertheless, this methods does not consider 

the influences of model systematic errors on the estimation of 
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system state parameters. 

This paper presents a new method based on Sage filtering 

and considering the model systematic errors. This method 

compensates the systematic errors by correcting kinematic 

model error vector. This method adopts Sage filtering 

established to estimate the kinematic model systematic error 

as well as the covariance matrices of observation residual 

vector, predicted residual vector, and predicted state vector 

within a moving time window. Experiment results and 

comparison analysis with the existing methods demonstrate 

that the proposed method of Sage filtering considering the 

model systematic errors cannot only control the covariance 

matrix of system state noise, but it can also effectively resist 

the disturbances of nonlinear system state noise and 

observation noise. 

 

II. ALGORITHM OF SAGE FILTERING  

Consider the kinematic model function is [3] 

, 1 1k k k kk  
 wx x                            (1) 

where 
kx  and 

1kx  are the n-dimensional state parameter 

vectors at epochs 
kt  and 

1kt 
, , 1k k  is the mn  

dimensional state transition matrix, and kw  is the p  

dimensional state error vector whose covariance matrix is 

kw
 . 

Correspondingly, the observation model is 

k k k k y H x v                               (2) 

where ky  is the m-dimensional observation vector at epoch 

kt , kH  is the nm  observation matrix, and kv  is the 

observation error vector whose covariance matrix is k . 

The predicted state vector is expressed as 

, 1 1
ˆ

k k k k k  x x w                           (3) 

where kx  is the predicted state vector at epoch 
kt , and 

1
ˆ

kx  is the estimated state vector at epoch 
1kt 

. kw  is the 

state error vector whose covariance matrix is 
kw

 . 

The solution of Sage filtering is  

ˆ ( )k k k k k k  x x K y H x                (4) 

where 
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T T 1( )
k kk k k k k

 
x x

K H H H             (5) 

1

T

ˆ, 1 , 1k k kk k k k  
x x w

                  (6) 

In addition, the observational residual vector is  

ˆ
k k k k V H x y                      (7) 

The innovation vector (predicted residual vector) is 

k k k k V H x y                      (8) 

The covariance matrices of observational residual vector 

and innovation vector are  

T

ˆk kk k k 
V x

H H                  (9) 

and 

T

k kk k k 
V x

H H                (10) 

 

III. MODEL SYSTEMATIC ERRORS 

Consider the kinematic model function is equation (1) and 

the observational model function is equation (2). Assume that 

kinematic model error and observational model error of the 

kalman filtering obey the zero mean normal distribution 

[7][8]. That is the mathematical expectations of kw  and kv  

are all zero. However, it cannot meet this assumption in 

practice. In many real applications, the kinematic model 

function and the observational model function are effect on 

most random factors, namely the mathematical expectations 

of kw  and kv  are not zero. These random parameters can be 

described by random variables which have priori statistical  

characteristics [9]-[11].  

The kinematic and observation models include errors due 

to the influence of abnormal observations and uncertainties in 

the dynamic environment. So, the kinematic and 

observational models can be rewritten as 

, 1 1 , 1k k k k k k k k    x x D s w          (11) 

and 

k k k k k k  y H x G u v                (12) 

where ks  is the kinematic model systematic error, ku  is the 

observational model systematic error, , 1k kD  and kG  are 

covariance matrices. In addition, assume that kw  and kv  

are uncorrelated. Other parameter’s definitions are same with 

equations (1) and (2). 

The error function of predicted state vector is 

, 1 1
ˆ ˆ ˆ

k k k k k k k    
x

V x x x Φ x          (13) 

where 
kx

V  is the residual vector of the predicted state vector 

kx . 

Considering the systematic error estimation, the error 

function of the kinematic model predicted state vector can be 

written as 

'

, 1 1
ˆ ˆ ˆ

k k k k k k   
x

V x x s                  (14) 

where 
'

kx
V  is the residual vector of the predicted state vector 

kx  which considering the systematic error, ˆ
ks  is the 

estimation of the kinematic model systematic error ks . 

 

IV. SAGE FILTERING CONSIDERING THE KINEMATIC MODEL 

SYSTEMATIC ERRORS 

The Sage filter method uses m  epochs of innovation 

vectors (predicted residual vectors) to estimate the current 

observation residual covariance matrix. In the case of 

innovation vectors, it is called the innovation–based adaptive 

estimation (IAE) filtering. Otherwise, it is called the 

residual-based adaptive estimation (REA) filtering [3], [7]. 

Using the IAE filtering, the estimate for the covariance 

matrix of observational error vector ˆ
kΣ  at epoch 

kt  may be 

written as 

T T

0 0

1ˆ ( )
k

m m

k k i k i k i k

i im
  

 

  Σ ΣxV V H H
     (15) 

where 
kx

  is the covariance matrix of the predicted state 

vector kx . 

Using the RAE filtering, the estimate for the covariance 

matrix of observation error vector at epoch kt  is 

T T

ˆ

0 0

1ˆ ( )
k

m m

k k i k i k k

i im
 

 

  Σ ΣxV V H H
      (16) 

where ˆkx
  is the covariance matrix of the state estimate 

vector ˆ
kx . 

According to equation (14), the residual vector of the 

predicted state vector can be rewritten as 

'

, 1 1
ˆ ˆ ˆ

k i k i k i k i k i k i         
x

V x x s   (17) 

Assumed that the variation in the kinematic model 

systematic error is small within a short time, that is, 

( )k i kE  w s . Thus the expectation of predicted state 

residual vector is zero, that is, ( ) 0
k i

E

 
x

V . Apparently, 

summing the equation (17) at both ends, then diving by m , 

we can obtained that the mean of the kinematic model 

systematic error 

 

 

0

, 1 1

0

1
ˆ ˆ

1
ˆ ˆ

m

k k i

i

m

k i k i k i k i

i

m

m





     





 





s s

x x

          (18) 

That is 

0 0

1 1
ˆ ˆ

k i

m m

k k i

i im m 

 

   xs s V                 (19) 
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The covariance estimation of the predicted state vector is 

'

' 'T

, 1

0 0

T

1 , 1 1

1 1ˆ ˆ(

ˆ ˆ ˆ ˆ ˆ)( )

k i k i
k

m m

k i k i k i

i i

k i k i k i k i k i k i k i

m m     

 

         

  

   

 
x

x xV
V V x

x s x x s





  (20) 

Substituting equation (14) into equation (20), we can 

obtain 

'

T

0

1ˆ ˆ ˆ( )( )
k k

k

m

k i k i

im
 



  
x

x xV
V s V s          (21) 

According to the covariance matrix of the predicted state 

vector 

1

T

ˆ, 1 , 1k-i k -i- k -ik k i k k i    
x x w

              (22) 

and the covariance matrix of the predicted state residual 

vector  

ˆk -i k -ik -i

 
xV x x                           (23) 

In order to directed get the velum of ˆ
kx , let ˆ

kx  is [3] 

0

1ˆ
k k i

m

im 



 x x                            (24) 

According to equation (7), (8) and (14), the following 

extremum may be established 

T 1 T 1ˆ ˆ min
k k kk k k k    x x xV V V V           (25) 

where 
1ˆ

k

  is the estimation value of the inverse matrix of 

the covariance matrix of the observation vector ky , and it 

requires adaptive estimation to the covariance matrix of 

observation vector. 
1ˆ
k



x  is the estimation value of the 

inverse matrix of the covariance matrix of the predicted state 

vector kx , and it requires adaptive estimation to the 

covariance matrix of predicted state vector. 

Let the derivatives of (25) with respect to ˆ
kx  be zero, i.e. 

T 1 T 1ˆ ˆ2 2 0
ˆ k k

k
k k k

k

  
  


x x

V H V
x

       (26) 

Obviously, 

T 1 1ˆ ˆ 0
k kk k k

  x xH V V           (27) 

By solving (27), ˆ
kx can be obtained as 

T 1 1 1 T 1 1ˆ ˆ ˆ ˆˆ ( ) ( )
k kk k k k k k k k

      x xx H H H y x      (28) 

Let 

T 1 1 1 T 1ˆ ˆ ˆ( )
kk k k k k k

     xK H H H          (29) 

That is 

T 1 1 1 1

T 1 1 1

T 1 1 1 T 1

1

ˆ ˆ( )

ˆ ˆ[( ) ]

ˆ ˆ ˆ[( ) ( ) ]

( )

k

k

k

k k k

k k k k k

k k k k k k k

k k k

   

  

   



  

  

 

x

x

x

H x

H H H x

H H H H x

K H x

 

 

  

    (30) 

Then, ˆ
kx  may be further written as 

ˆ ( )k k k k k k  x x K y H x                 (31) 

where kK  is the gain matrix, according to matrix function 

[12], kK  can be written as 

1 T 1 T 1 1ˆ ˆ ˆ( )
k kk k k k k

    x xK H H H          (32) 

The solution of Sage filtering which considering the model 

systematic errors is 

ˆ ( )

( )

k k k k k k

k k k k k

  

  

x x K y H x

I K H x K y
             (33) 

and the posterior covariance matrix of state parameter 

vector is 

1 1

ˆ
ˆ ˆ( )

k kk k

  x xI K H                   (34) 

 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Experiments were estimate the positioning accuracy of a 

SINS/SAR integrated navigation system by using the 

proposed method and compared with kalman filtering and 

Sage filtering. 

The aircraft’s initial position is at latitude E108.97 , 

longitude N34.26  and altitude 1000m , and the end 

position at latitude E106.23 , longitude N35.34  and altitude 

2064m . The aircraft’s initial velocity is 100m/s. The flight 

time is 1800s. The gyro constant drift is 0.01 h  and white 

noise is 0.001 h . The accelerometer zero bias is 43 10 g  

and random drift is 53 10 g s  . The SAR slant angle is 60  

and sampling frequency is 225MHz . The SAR horizontal 

positioning accuracy is 5m , range resolution 5m , course 

angle accuracy 300  and output period 3s . The SAR 

computational time for image matching is 5s . The accuracy 

of the altimeter is 10m . The SINS initial position is 10m , 

initial velocity error 0.1m s , and initial alignment error 

100 .  

The sampling cycle of the system state is 1s . The update 

time of the filtering is 3s . The testing time is 1000s . The 

window width of the filtering is 10m  . In order to 

demonstrate that the proposed method of Sage filtering 

considering the model systematic errors can effectively resist 

the disturbances of the kinematic model error, in observation 

epoch between 400 ~ 800s  to join a random variation 

systematic error around a constant.  
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Fig. 1. The kalman filtering. 
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Fig. 2. The sage filtering. 
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Fig. 3. The Sage filtering considering the model systematic errors. 

 

It can be seen from Fig. 1 to Fig. 3, between 400~800s. For 

the comparison purpose, experiments were conducted to 

estimate the dynamic positioning error of the aircraft at the 

same conditions by the proposed filtering method as well as 

the existing methods such as the kalman filtering and the 

Sage filtering, respectively.  

Fig. 1 shows the filtering result obtained by the kalman 

filtering. It can be seen that there are obvious oscillations in 

the filtering curve, and the positioning error is within 

[ 10m 8.2m] ， . This shows the kalman filtering is 

significantly influenced by the disturbances of the kinematic 

model error.  

Fig. 2 shows the filtering result generated by the Sage 

filtering. The positioning error can be control with 

[ 7.8m 7.8m] ， , which is much smaller than that by the 

kalman filtering. This demonstrates that the Sage filtering has 

the capability to restrain the disturbances of the kinematic 

model error and the filtering performance is much better in 

comparison with the Kalman filtering. 

Fig. 3 shows the filtering result obtained by the Sage 

filtering considering the model systematic errors method. It 

can be seen that there is no obvious oscillation in the filtering 

curve, and the curve is almost in the stable state during the 

flight time. The positioning error is control with 

[ 3.5m 3.8m] ， , which is much smaller than that obtained by 

the Sage filtering.  

This demonstrates the proposed method can effectively 

resist the disturbances caused by the kinematic model errors. 

Comparing Fig. 3 with Fig. 1 and Fig. 2, it can be seen that 

the proposed method not only has inhibiting ability, but also 

has much higher positioning accuracy than the kalman and 

Sage filtering. However, kinematic model systematic error is 

not a constant, sometimes if only use the constant systematic 

error, it cannot completely eliminate the influence of the 

non-constant systematic errors for filtering result. 

 

VI. CONCLUSION 

This new algorithm of Sage filtering considering the model 

systematic errors adopts Sage filtering established to estimate 

the kinematic model systematic error as well as the 

covariance matrices of observation residual vector, predicted 

residual vector, and predicted state vector within a moving 

time window. In addition, the model systematic errors can be 

compensated by correcting predicted residuals and 

observation residuals. Experiment results and comparison 

analysis with the existing methods demonstrate that the 

proposed method of Sage filtering considering the model 

systematic errors can effectively resist the disturbances of the 

kinematic model error. The future research work will focus 

on how to completely eliminate the influence of the 

non-constant systematic errors for filtering result.  
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