
 

 

 

 

Abstract—The Sensor Placement Optimization (SPO) in 3D 

environments aims to find an optimal solution of putting sensors 

of a Wireless Sensor Network on a 3D terrain such as Digital 

Elevation Model (DEM). This is an optimization problem 

involving network infrastructures and terrain factors. An 

improvement of Particle Swarm Optimization (PSO) has been 

presented to deal with this matter. It achieved satisfactory 

results in comparison with the relevant ones. A concerning issue 

that was not be totally settled in the PSO algorithm is the 

impact of terrain factors to the performance of the algorithm. It 

is obvious that the performance of the planning algorithm 

would change according to various types of terrains having 

different morphologies and distributions of events. In this paper, 

we perform an experimental analysis for such the research 

question. Specifically, we aim to investigate i) Which types of 

terrains would make the PSO algorithm achieve the best 

performance? ii) How will various distributions of events affect 

the performance? iii) Which are the most appropriate values of 

terrain parameters that should be opted for the algorithm in 

order to get desired performance? Those analyses would help 

practitioners make usage of the algorithm in real world 

applications. 

 

Index Terms—3D terrains, particle swarm optimization, 

sensor placement optimization, terrain factor, wireless sensor 

network. 

 

I. INTRODUCTION 

The Sensor Placement Optimization in 3D environments 

problem and its variants have been widely investigated [1]- 

[3]. A major challenge of this problem in comparison with 

those in 2D environments is the capability to handle the 

complex of 3D structures in a terrain; thus making the 

planning harder than that in 2D areas. A terrain has many 

environmental factors namely blocks of high-rise buildings, 

hills, rivers, lakes, etc. A planning algorithm should take into 

account those factors to the calculation of global coverage. It 

is necessary to design such the algorithm in order to have 

good network planning solutions which are then used for 

decision-making processes. 

In our previous work [4], we have proposed a wireless 

sensor network (WSN) model on a 3D terrain that considers  

structures, sensor angles, obstacles, holes in their real forms 

instead of flat planes as in the existing 2D models. Coverage 
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capabilities of sensors are measured within the use of 

Line-of-Sight function, which validates whether a sensor can 

observe an event or not. Physical holes, which are restricted 

regions in a terrain like ponds, lakes, etc., are automatically 

detected and attached to the model’s parameters [5]. A 

Particle Swarm Optimization (PSO) based planning 

algorithm is used to determine optimal locations of sensors 

that maximize global coverage to all events. The achieved 

planning solutions are useful for practitioners to make 

effective network planning on a given terrain. 

The remain question of our previous researches is to 

determine the impact of terrain factors to performance of the 

planning algorithm. That is to say, how the performance will 

be when either terrain morphology, sensor distribution or 

parameters of the planning algorithm vary. Is there any 

method to determine a possible range of performance of the 

algorithm for a given terrain? Those questions raise the 

motivation for this paper. 

In this paper, we perform an experimental analysis for 

such the research question. Specifically, we aim to 

investigate: 1) which types of terrains would make the PSO 

algorithm achieve the best performance? 2) how will various 

distributions of events affect the performance? 3) which are 

the most appropriate values of terrain parameters that should 

be opted for the algorithm in order to get desired performance? 

Those analyses would help practitioners make usage of the 

algorithm in real world applications. 

The rest of the paper is organized as follows. Section II 

presents an overview of our previous works regarding the 

WSN model on a 3D terrain (a.k.a. 3D sensing model) and 

the PSO-based planning algorithm. The experimental results 

and discussion will be presented in Section III. Finally, 

conclusions are given in Section IV. 

 

II. PLEMINARY 

A. 3D Sensing Model 

Given a 3D terrain with H physical holes and a WSN 

consisting of N sensors. Our aim is to determine locations of 

those sensors on the terrain that maximize global coverage to 

M events. The 3D sensing model for this problem is 

demonstrated below [4]. 

 T is a Digital Elevation Model (DEM) terrain, which is a 

matrix whose values representing for elevations of grid 

points. Some parameters are: 

a) cellsize: the size of grid cell;  

b) nrows and ncols: the number of rows and columns of 

DEM respectively; 
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c) h(xi, yi): values representing for the elevations of grid 

points. 

 WSN={s1,s2,...,sN} is a sensor network where, 
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r is the sensing radius of sj; 

d) θj is the pan angle of sj around the vertical axis (X 

direction); 

e) αj is the angle to define the orientation of the directional 

sensor sj around X direction, 0 ≤  αj  ≤  2π ; 

f) ξj is the tilt angle sj around the horizontal axis (Z 

direction); 

g) βj is the angle to define the orientation of the directional 

sensor sj around Z direction, 0 ≤  βj  ≤  2π.  

 R={(x1, y1), (x2, y2),…,(xH, yH) } is a set of physical holes 

[5]. 

 E= {e1, e2,...,eM} is a set of events, 
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h) M is the number of grid points which is not in physical 

holes; 

i) ),( s

i

s

i yx  is coordinate of point ei in Oxy which is a grid 

point; 

j) ωi is the weight of ei. 

 A point ei is said to be covered by sensor si if and only if the 

following conditions are satisfied: 

a) The Euclidean distance between the location of sensor sj 

and point ei less than or equal sensing radius of sj; 

b) The angle between the sensor sj and point ei along the X 

direction less than or equal the pan angle of sj; 

c) The angle between the sensor sj and point ei along the Z 

direction less than or equal the tilt angle of sj; 

d) Visibility from the sensor sj  to point ei. 

Therefore, the sensing model mainly depends on distance, 

orientation, and visibility. 

a) µd is the binary function to measure the distance between 

sj  and ei: 
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b) µp is the binary function to measure the coverage 

capabilities of sensor sj  to the point ei by angle of the 

sensors along vertical axis: 
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 is the angle between the sensor sj  

and the point ei along the X direction 

c) µt is the binary function to measure the coverage 

capabilities of sensor sj  to the point ei by angle of the 

sensors along horizontal axis: 
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 is the angle between the sensor 

sj  and the point ei along the Z direction 

d) vij represent visibility between sj  and ei: 
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where num_Obstacles(sj , ei) is the number of abstacles 

between sensor sj  and point ei , it is determined by LoS 

method. 

 The coverage C(sj, ei) of sj at point ei can be defined as 

functions of distance µd , pan angle µp, tilt angle µt and 

visibility vij from sensor: 

ijptdij vesC  ),(                (7) 

 The probability of the environment that covers point ei is: 
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 The objective function of the problem is: 
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B. PSO-Based Planning Algorithm 

PSO [6] is a population based stochastic optimization 

technique inspired by social behavior of bird flocking or fish 

schooling. Combining with the virtual forces algorithm [7], 

the authors [4] proposed a planning method to derive optimal 

solutions of the 3D sensing model. Some notations used in 

the algorithm are: 

 Xi=(X1i, X2i,…,XNi) and Vi=(V1i,V2i,…,VNi) represent for 

position and velocity pi where Xji=(xji,yji) and Vji=(vji, v’ji) 

represent for the position and the velocity of sensor sj in 

particle Njpi ,1 . 

 pbesti={pbest1i, pbest2i,…,pbestNi } denotes the best 

particle of particle ith , where pbestji is the best position of 

sensor sj in particle pi. 

 gbesti={pbest1, gbest2,…,gbestN } is the best particle in the 

swarm, where pbestj is the best position of sensors sj  in 

history of the swarm. 

 f (gbest ) is the best fitness value of the swarm.  

Details of this algorithm are shown below: 
Step 1: (Initialization). The beginning population is 

initiated with Npop particles, where Npop is a designated 

parameter. Each particle is randomly initiated their position 

and velocity. 

Step 2: Calculate fitness values of all particles. The 

procedure is shown as in Table  I. 

 
TABLE I:  CALCULATE FITNESS 

Fitness (f) 

1 For i = 0 to M 

2        For j = 0 to N 

3              Calculate µd by equation  (3) 

4 
             Calculate µp by equation  (4) 

5              Calculate µt by equation  (5) 

6              Calculate vij by equation  (6) 

7   C(sj, ei)  µd × µp × µt × vij  

8 
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Step 3: Update pbest and gbest. The procedure is shown as 

in Table II. 

            
TABLE II: UPDATE PBEST AND GBEST 

Update pbest process  Update gbest process 

1 For i=1 to Npop 1 For i=1 to Npop 

2      If f(pi) > f(pbesti)  2      If f(gbset)< f(pbesti)  

3         f(pbesti)  f(pi)  3           f(gbset) f(pbesti)    

4    For j=1 to N      4       For j=1 to N 

5       pbestji  Xji   5       gbestj  pbestji 

6 End For 6 End For 

 
TABLE III:  UPDATE THE VELOCITIES AND POSITION OF PARTICLES 

Update 

1 For i=1 to Npop 

2 For  j=1 to N 

3 
     Vij =ω×Vij + r1×c1×(pbestij-Xij) + r2×c2×(gbestj-Xij)  

              + r3×c3×Fj 

4 
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5 End For 

6 End For 

 

Step 4: Update the velocities and positions of particles by 

virtual forces. The procedure is shown in Table III. 

 d(si, sj) is the Euclidean distance between sensors. 

 adj(si) is the adjacency set of sensor si. sensor sj is called 

adjacency of si sensor if and only if  d(si, sj) ≤ rc , where rc is 

communication radius, rc = 2 × rs . 

  Fij is the virtual force exterted by the neighborhood sj on si. 

 Fi is the total virtual force action on sensor si. 

 dave  is the average distance between two sensors when they 

are evenly distributed in the area, 

The virtual force function is calculated below, 
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Step 5: Repeat the whole process from Step 2 to Step 4 

until the maximal interation step (PSO_MaxIter) is reached. 

 

III. EXPERIMENTAL ANALYSIS 

A. Data Description 

Our experiments were implemented on DEM terrains of 

Vietnam that were collected by EarthExplorer software [8]. 

They have various morphologies with size being 200 x 250 

and cell sizes being 25 meters. Fig. 1 illustrates some 

terrains. Table IV gives a brief summary of morphologies 

of these terrains. 

 

  
a) Terrain T1 b) Terrain T2 

  

c) Terrain T5 d) Terrain T6 

  
e) Terrain T7 f) Terrain T10 

Fig. 1. Terrains. 
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TABLE IV: BRIEF SUMMARY OF MORPHOLOGIES OF TERRAINS 

Terrain Morphology 

T1 City region has many diverse buildings; no hills and rivers. 

T2 City region has many buildings with medium height; low 

altitude hills; partial sea. 

T3 The island has low hills with different altitudes, surrounded by 

the sea. 

T4 Plain region with few buildings, rivers and canals, no hills. 

T5 Plain region with few buildings, many rivers and canals, no 

hills.   

T6 Highland region has few buildings, high number of mountains 

and hills. 

T7 Highland region with high mountains, hills elevations 

ascending. 

T8 City region has few buildings, with high number of mountains 

bordering the sea. 

T9 City region has many buildings and uniformly distributed 

ponds. 

T10 Coastal has many small islands of varying heights. 

 

B. Parameter Setting 

 In the first experiment, we aim to validate performance of 

the planning algorithm according to various terrains. Thus, 

other parameters are set as fixed values. The number of 

events is equal to 5% of total grid points of the terrain. The 

number of sensors are equal to 25% of the number of 

events.  Each sensor is assumed to be a disk with radius of 

50m, the tilt angle is 90 degree, and the pan angle is 180 

degree. Table V. describes input parameters for this 

experiment. 

 
TABLE V: DESCRIPTION THE INPUT PARAMETERS OF TERRAINS 

Terrain Number of 

events 

Number of 

holes 

Number of 

sensors 

T1 1206 25871 301 

T2 998 30040 249 

T3 1026 29465 256 

T4 1879 12401 469 

T5 731 35373 182 

T6 2402 1950 600 

T7 2286 4275 571 

T8 2304 3911 576 

T9 1704 15915 426 

T10 919 31620 229 

 

 In the second experiment, we aim to check how various 

distributions of events affect performance of the algorithm. 

In this test, 5 distributions namely Gaussian, Poisson, 

Uniform, Gamma and Beta are used (Fig.  2).  

 
a) Gaussian distribution 

 
b) Poison distribution 

 

 
c) Uniform distribution 

 

 
d) Gamma distribution 

 

 
e) Beta distribution 

Fig. 2. Distributions of events. 
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 In the third experiment, we aim to check impact of different 

values of C1, C2, C3 in Table III to the performance. We 

examine some cases as follows: C1=2, C2=2, C3=1; C1=2, 

C2=2, C3=2 ; C1=1, C2=2, C3=2;  and C2=2, C2=1, C=2. 

 In the last experiment, we aim to check impact of various 

number of events namely 1%, 2%, 3%, and 4% of total grid 

points of the terrain to the performance. 

C. Experimental Results 

 
TABLE VI: COVERAGE VALUES OF THE PLANNING ALGORITHM 

Terrain Min Value Max Value Average Value 

T1 0.228891 0.265247 0.244538 

T2 0.590864 0.628873 0.605027 

T3 0.338342 0.426738 0.391295 

T4 0.295525 0.340363 0.324394 

T5 0.188031 0.210779 0.195810      * 

T6 0.362412 0.373797 0.366907 

T7 0.360370 0.351660 0.357110 

T8 0.344343 0.386764 0.371549 

T9 0.280303 0.329146 0.302650 

T10 0.622013 0.656260 0.645131      ** 

* :  Value indicates the worse in a column 

**: Value indicates the best in a column 

 

Table VI shows coverage values of the algorithm on 10 

terrains represented in maximal, minimal and average values. 

It is obvious that performances of the algorithm in most of 

terrains are nearly identical. The best and worst terrains in 

term of performance are T10 and T5, respectively. 

 
TABLE VII:  COVERAGE VALUES BY DIFFERENT DISTRIBUTIONS 

Terrain Gaussian Poisson Uniform Gamma Beta 

T1 0.386170 0.259292 0.265125 0.240101 0.190317 

T2 0.430054 0.822218 0.530167 0.752624 0.843394 

T3 0.415834 0.758162 0.801171 0.686666 0.704594 

T4 0.431134 0.474998 0.347384 0.347384 0.324372 

T5 0.359759 0.327509 0.273244 0.273244 0.185137 

T6 0.438247 0.480433 0.390034 0.323516 0.360818 

T7 0.474147 0.491770 0.401771 0.294031 0.321172 

T8 0.507227 0.413100 0.426098 0.340400 0.485997 

T9 0.429488 0.438889 0.341801 0.236682 0.239807 

T10 0.489270 0.627169 0.506267 0.316434 0.517716 

Average 0.436133 0.509354 0.428306 0.381108 0.417332 

  **  *  

* :  Value indicates the worse in a column 

**: Value indicates the best in a column 

 

TABLE VIII:  COVERAGE VALUES BY DIFFERENT PARAMETERS OF PSO 

Terrain C1=2  

C2=2  

C3=1 

C1=2 

C2=2 

C3=2 

C1=1 

C2=2 

C3=2 

C1=2 

C2=1 

C3=2 

T1 0.386170 0.421415 0.443077 0.365518 

T2 0.430054 0.420420 0.427584 0.373082 

T3 0.415834 0.454275 0.418320 0.357536 

T4 0.431134 0.454505 0.438380 0.410934 

T5 0.359759 0.363359 0.354259 0.324321 

T6 0.438247 0.531827 0.531827 0.385366 

T7 0.474147 0.483313 0.483313 0.383494 

T8 0.507227 0.490258 0.490258 0.446612 

T9 0.429488 0.424910 0.426542 0.466463 

T10 0.489270 0.509721 0.509721 0.412479 

Average 0.436133 0.45540 0.452328 0.392581 

  **  * 

* :  Value indicates the worse in a column 

**: Value indicates the best in a column 

 

Table VII shows coverage values of the algorithm by 

differerent distributions of events. It is obvious that Poisson 

and Gamma are the most and worst stable distribution 

respectively. 

Table VIII shows coverage values of the algorithm by 

differerent parameter valus of PSO. The triple (C1 =2, C2=2, 

C3=2) is the best parameters whilst (C1=2, C2=1, C3=2) is 

the worst one. 

Table IX shows coverage values of the algorithm by 

differerent proportions of events. It has been shown that 5% 

is the most ideal number of events that maximaize the 

coverage. On the contrary, 4% shows the worst results. 
 

TABLE IX:  COVERAGE VALUES BY DIFFERENT PROPORTIONS OF EVENTS 
Terrain 1%  2% 3% 4%  5%  

T1 0.357823 0.409585 0.364930 0.337227 0.386170 

T2 0.310518 0.367759 0.341214 0.305657 0.430054 

T3 0.380782 0.375361 0.355816 0.354816 0.415834 

T4 0.403294 0.385856 0.359714 0.373458 0.431134 

T5 0.254427 0.261202 0.317951 0.281454 0.359759 

T6 0.382655 0.388907 0.378387 0.386097 0.438247 

T7 0.382109 0.378631 0.384302 0.386165 0.474147 

T8 0.455415 0.443898 0.441130 0.446682 0.507227 

T9 0.354942 0.420348 0.425138 0.346300 0.429488 

T10 0.377102 0.422437 0.451212 0.356970 0.489270 

Average 0.365907 0.385398 0.381979 0.357483 0.436133 

    * ** 

* :  Value indicates the worse in a column 

**: Value indicates the best in a column 

 

D. Discussion 

According to the results obtained from experiments, the 

following remarks and notes are shown below. 

 
TABLE X: COMPARISON OF TERRAINS IN FIGURE 1 

Terrain Events Sensors 

pCoverage 

of random 

dist 

pCoverage of 

Gaussian dist 

T1 1206 301 0.244538 0.386170 

T2 998 249 0.605027 0.359759 

T5 731 182 0.195810 0.359759 

T6 2402 600 0.366907 0.438247 

T7 2286 571 0.357110 0.474147 

T10 919 229 0.645131 0.489270 

 

It has been shown in the first experiment that coverage 

values of the algorithm by different terrain morphology are 

similar. Specifically, T2 and T10 have many islands and 

holes so that their coverages are much higher than those of 

other terrains. In Fig. 1 (c), we recognize that T5 interspersed 

with numerous canals dense. The numbers of event  and 

sensors for T5 are 731 and 182, respectively. The covergage 

value of T5 is the worst among all since this terrain has too 

many holes with the number and radius of sensors being not 

large enough to cover the events. 

As summarized in Table X, the coverage value of T1 is the 

second lowest among all due to its morphology is a city with 

many high buildings and physical holes so that sensor signal 

could not cover the events. T5 and T6 contain  many hills 

with  ascending elevations and in the same direction so that 

their coverage values are similar and approximate to the 

mean of all terrain. 

The second experiment shows that terrains in Table X have 

similar coverage values with Gaussian distribution, but using 

Poisson distribution for those terrains is better. Especially, 

only coverage values of T2 and T10 decrease with Gaussian 

distribution since sensors focus on terrain’s center which is 
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not the central position of events. The Poison distribution is 

even efficient with terrains having many holes. On the other 

hand, compared to the first experiment, Gaussian distribution 

has higher coverage value than random one. T2 and T3 have 

high coverage values with Poison, Uniform, Gamma and 

Beta distributions. Fig. 3. shows the coverage values of the 

algorithm by distributions. 

 

 
Fig. 3. Coverage by distributions. 

 

 
Fig. 4. Coverage by parameters of PSO. 

 

 
Fig. 5. Coverage by proportions of events. 

 

In the 3rd experiment, we recognize that the triple (C1=2, 

C2=2, C3=2) achieve highest coverage value of the algorithm 

among all. The coverage in this triple increases 4.41% 

compared to that of the previous experiments. In order to 

enhance the coverage, this parameter triple and Poison 

distribution should be used. Another comment is that when 

changing the parameters, the changing rate is 16% of 

coverage. Changing values of (C1, C2, C3) does not affect 

the performance. For this parameter triple, T5 has smallest 

coverage value since it has a vast number of concentrated 

physical holes. T10 has highest coverage since the events are 

evenly distributed and continuous. There are seven terrains 

having coverage near the average value. This confirms the 

stability of this parameter for all kinds of terrains. Fig. 4 

shows the curve parameter (C1=2, C2=2, C3=2) located 

above the highest. 

The last experiment shows how coverage value changes 

when proportions of events varies. It is clear that coverage 

value with 4% events decreases compared to that with 1%. 

An interesting fact in Fig. 5 is that when the proportion 

increases from 1% to 5%, T1 to T10 has more varied 

coverage amplitude. The increasing of coverage from T1 to 

T5 is relatively stable. 

 

IV. CONCLUSIONS 

In this paper we performed an experimental analysis of 

terrain factors to the performance of the planning algorithm 

on 3D terrains. The findings of this paper are list below: 

1) Terrain morphologies as in T2 and T10, which have 

events and physical holes evenly distributed, are the 

ideal environment to deploy the planning algorithm. 

On the other hand, terrain like T5 having many 

physical holes at the event alternating with high 

oscillations is the worst environment. In this case, we 

must increase the number of events and sensors in 

oder to get satisfactory results. Poison is the most 

suitable distribution of events. 

2) The triple (C1=2, C2=2, C3=2) should be used. 

3)  Increasing the number of events means better 

coverage value, but this number should not be large to 

avoid computational complexity. Ideally, 5% is the 

most ideal number of events. 

4) Source codes and datasets of this research are 

available at1. Users can download them for their own 

purposes. 

This research suggests some further works such as 

handling computational complexity of the planning 

algorithm; solving the clustering of WSN 3D problem. 
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