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Abstract—Descriptive features of nuclei positions from tumor 

tissue samples are studied to construct mathematical models for 

tumor growth. Extracted from kidney cancer patients, 

tumorous tissue pieces are implanted in the flanks of mice to 

measure the course of tumor mass, which are then sampled on 

glass slides. H&E slides are digitized under light microscope 

and analyzed to identify the structure of nuclei positions. Using 

k-means clustering method, the nuclei locations of each H&E 

slide are evaluated. The cluster features are used as inputs to 

our artificial intelligence based personalized tumor growth 

parameter computation method, called PReP-C. The 

exponential linear tumor growth model parameters and the 

corresponding growth curves computed by PReP-C are 

compared to the preclinical tumor volume measurements. The 

correlation between the computed results and the 

measurements from 14 H&E pathology slides is encouraging to 

build personalized mathematical models for tumor growth.  

 
Index Terms—H&E slide, tumor growth models, kidney 

cancer, exponential linear model, k-means clustering. 

 

I. INTRODUCTION 

Modeling tumorous cell proliferation has an effective role 

in cancer research to study the characteristics of disease 

progress. Empirical models describe tumor growth using 

mathematical equations without in-depth analysis of basal 

processes, whereas functional models concentrate on 

physiological hypotheses and biochemical processes [1],      

[2]. Exponential-linear tumor growth model [1] built based 

on experimental observations is a well-accepted empirical 

model. Tumor mass grows exponentially until it reaches a 

certain weight and volume, at which increase in tumor size 

becomes linear due to nutritional and oxygen limitations [3]. 

In exponential-linear model, tumor growth is expressed as a 

function of rate constants and tumor weight or volume when 

no drug is administered [1]. In our previous work [4], we 

computed tumor growth curves using genetic information 

from breast cancer patients in our artificial intelligence based 

methods. In this paper, we study the generation of tumor 

 
   

 

 

 

    

 

 

growth models based on stained tissue samples of pathology 

slides from kidney cancer patients. 

Hematoxylin-Eosin (H&E) staining is a technique to 

visualize tumorous tissue components dyed with a number of 

stains of different colors [5]. Under a microscope a 

pathologist identifies cell nuclei stained in blue color by 

hematoxylin and cytoplasm and connective tissues stained in 

pink color by eosin [5]. The particles distributed on H&E 

slides are clinically examined by a pathologist to determine 

the grade and the type of cancer. We analyze the spatial 

distribution of nuclei on H&E pathology slides and nuclei 

clusters to identify the patient specific features. 

Clustering is a method to group data sets, where each 

cluster consists of similar data points [6]. Structure of clusters 

is quantified by a variety of methods reported in literature [7], 

[8], [9]. Typically, the validity of clusters is evaluated by 

either the dispersion of data each cluster contains, or the data 

separation between clusters, or both [8]. We apply k-means 

clustering approach to H&E pathology slides to analyze the 

spatial distribution of nuclei. 

In our process, we have first obtained human kidney tumor 

samples from kidney cancer patients. The samples are cut 

into small fragments and implanted in the flanks of mice in 

Memorial Sloan Kettering Cancer Center (MSKCC) to 

measure tumor volume for approximately one-month period. 
The tissue samples are then collected and equipped on glass 

slides for H&E staining. Digitized H&E slide samples are 

analyzed to examine the relation between nuclei distribution 

specific to each slide and the tumor growth characteristics. 

Using k-means clustering method we define the clusters of 

nuclei on H&E slide samples and determine the features. At 

the end of the data extraction process, we use the features 

from each H&E slides in our artificial intelligence based 

Personalized Relevance Parameterization (PReP-C) 

approach to compute patient specific tumor growth curves. In 

this study, the correlation between the computed results by 

PReP-C and the measurements from 14 H&E pathology 

slides is encouraging. 

 

II. MODELING TUMOR GROWTH 

Exponential-linear model [1], [10], [11] is an empirical 

method to analyze the tumor cell proliferation quantitatively 

based on parameters defined for exponential and linear 

phases of tumor growth. We build artificial intelligence based 

mathematical models to compute tumor growth and related 

parameters including exponential-linear model parameters. 

In our earlier research [4], we have studied the relationship 

between the genetic information from breast cancer patients 

and the growth parameters, based on the genetic data 

retrieved from 79 breast cancer patients with ER+ status 
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provided in I-SPY 1 TRIAL database [12]. Using the 

expression values of 74 breast cancer related genes from 

these patients and the tumor volume measurements obtained 

from NBIA database [13] as inputs to our computational 

models, we have computed tumor growth parameters. In this 

paper, building on our earlier results, we utilize H&E slides 

of kidney cancer patients as the patient specific data source to 

model tumor proliferation for computations in PReP-C 

model. 

Based on the extracted features of nuclei clusters, we 

construct an m dimensional feature data vector, namely    , 

for a patient   . In vector     , the correlation between 

features is expressed mathematically with the parameter 

assignment function  i which is stated as: 

 

         
    
             (1) 

 

where      is the value of the     cluster feature and      is the 

total number of features in subset    for        .        for 

correlated pairs of cluster features. With the inclusion of 

correlation of parameters, the feature data vector     can be 

expressed as: 

 

                             (2) 

 

where integer   is the total number of cluster features, integer 

  is  the total number of correlated feature subsets, and 

integer   is an offset parameter. To compute the growth 

parameters, the elements of feature data vector     are then 

weighted with a     dimensional coefficient matrix 

       . The relation between the features and the 

parameters can be stated for a patient    as: 

 

                     (3) 

 

where the vector                 for   number of 

tumor growth parameters. Weight coefficients matrix, 

represented as   in Eq. (3), is computed using the cluster 

features extracted from H&E slides. For this purpose, we 

define vector   i of   elements corresponding to different 

values of the     tumor growth parameter for   number of 

H&E slides as follows: 

 
                                   (4) 

 

where        is the value of the     parameter for patient   . 

The set of equations to calculate     is: 

 

             
 
  
           (5) 

 

where   is a single row of   elements of the offset constant  , 

and    is the     row of matrix  . In Eq. (5),   , the reduced 

form of matrix  , can be formulated as: 

 

                        (6) 

 

where the constant coefficient   is excluded from matrix   to 

form the         dimensional matrix   . 

Using Eq. (5), we find out each row vector    of matrix  . 

Plugging vector    into Eq. 3, we compute the tumor growth 

parameters. The explicit formulation to compute the     

tumor growth parameter    for patient    can be represented 

as: 

                 

                                
 

                             

    
      (7) 

 

where     is the     coefficient of the row vector   . In our 

PReP-C model, we obtain an over-determined system of 

equations. The artificial intelligence based computation 

techniques from our previous works [14], [15] is adapted to 

compute growth parameters of exponential-linear model. 

 

III. METHODOLOGY 

A. H&E Staining and Preclinical Study  

The research protocol was approved by the Institutional 

Animal Care and Use Committee (IACUC) to generate 

patient-derived tumor xenograft models (PDX) in MSKCC. 

NOD scid gamma (NSG) 4-6 week-old male mice obtained 

from Jackson Laboratory were used. For tumor implantation 

process, mice were anesthetized by inhalation with an 

isoflurane vaporizer. Patient-derived primary tumor cells 

obtained from kidney cancer patients were cut into small 

       fragments and implanted in the flanks of 

mice subcutaneously. While the mice were still anesthetized 

carprofen was administered by intraperitoneal injection 

within 24 hours after surgery. 

Tumor growth was monitored twice per week for 30 days. 

Tumor volume was calculated with the formula:         
    when the length   and width   of tumor mass is 

measured by caliper. Tumor growth curves are generated 

using GraphPad Prism software. Tumor mass is excised and 

cut into          fragments and implantation process 

is repeated for more mice when the volume of tumor reaches 

        . Mice were euthanized if the length   of tumor 

size measured with caliper reached      in length. The 

experiments have ended approximately in one-month period 

for each mouse. The tissue samples are collected and fixed in 

     formalin for histopathological analysis at the end of the 

experiments. Using microtome      tumor sections were cut, 

and baked to use for standard H&E staining. 

B. Nuclei Clusters 

Cluster analysis methods organize a collection of 

unlabelled data set into meaningful groups based on their 

proximity [8], [9]. For example, two main methods are 

defined as partitioning and hierarchical clustering, where an 

optimization rule applied to define clusters for the former 

type and a recursive approach which results in dendograms is 

introduced for the latter [7]. K-means clustering defines 

closeness as the metric for similarity to group data sets into 

clusters. With k-means, the similarity of data set is defined as 

their closeness, whereas the dissimilarity is determined as the 

separation of cluster centers in an Euclidian plane [16]. 

K-means aims to determine the best number of clusters for a 
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given data set and to divide the data points into the 

corresponding K groups. The data can be grouped by 

minimizing the total squared distances between data points 

and centroids (i.e. geometric mean of clusters) inside a cluster 

and by maximizing the separation between different clusters 

[8], [17], [16]. Several algorithms are reported in the 

literature for computation of the best number of clusters [6], 

[9], [18], [19]. Jain et al. [9] presents various approaches for 

clustering including evolutionary approaches, artificial 

neural networks, and search based approaches to determine 

the number of clusters and corresponding groups. Liu et al. 

[6], Murthy et al. [18], and Bandyopadhyay et al. [19] 

implement genetic algorithm to identify the best structure for 

clustering. Ray et al. [17] propose a validity measure to draw 

best structure of clusters based on sum of the distances 

between cluster centers and data points inside all clusters (i.e. 

intra distance) and the minimum of the distance between 

cluster centroids (i.e. inter distance). In this paper, we 

compute the best number for clusters and their corresponding 

centroids using our artificial intelligence based techniques 

developed in our Bio-Inspired Computation Laboratory at the 

City College of New York [14], [15], [20], [21]. 

In our process, after selecting k as the number of clusters, 

the sets of nuclei belonging to the same clusters are 

determined. The centroid (i.e. geometric mean) of each 

cluster is computed as the nucleus with the smallest total 

distance to the other nuclei in the same cluster. The centroid 

nuclei set consists of centroids    of the clusters    for integer 

        and can be computed as: 

 

                    
     

        (8) 

 

where the nucleus        and      is the dimension of 

cluster   . Using the centroids of k number of clusters and the 

remaining    nuclei in Euclidian space where          , 

we compute average of intra distances between the centroids 

and all other nuclei of the same clusters: 

 

             
 

 
   

 

  
         

 
     

  
      (9) 

 

and the minimum inter distance between nuclei cluster 

centroids: 

 

                  
 
          (10) 

 

where integer         and integer         identify the 

compactness and separation of clusters, respectively. The 

minimum of the distances between centroids (i.e. inter 

distances) is taken into account to ensure that an acceptable 

amount of separation is provided among all clusters. We use 

the ratio of                as the metric to compute the best 

number of clusters. 

In our study, a digitized H&E sample slide is processed to 

identify the nuclei positions which are considered as distinct 

nodes in the Euclidian space. The nuclei of pathology slides 

are divided into clusters with the corresponding polygonal 

regions around their location. In Fig. 1a, the digitized H&E 

slide obtained from Sample 51008-R is presented. As the 

slides are composed of hundreds of nuclei, we select a region 

(yellow box in Fig. 1a) to focus on the slide details. As shown 

in Fig. 1b, the best value for the number of clusters is 

calculated as five for Sample 51008-R. The region of 

clustering diagram inside the highlighted box in Fig. 1b 

corresponds to the selected region in Fig. 1a. 

C. Cluster Features 

The H&E pathology slides can be digitized to extract 

features based on the positions of the nuclei. Doyle et al. [22] 

apply textural and graphical feature assignment techniques 

(e.g. Voronoi tessellation, Delaunay triangulation, and 

minimum spanning tree, etc.) to analyze the characteristics of 

the digitized H&E stained slides. Gurcan et al. [5] list feature 

extraction methodologies which are used to support 

pathological studies. Orlov et al. [23] defines multiple 

features extracted from raw medical images and their various 

transforms.  

In our approach, the spatial distribution of nuclei of kidney 

cancer tissue samples is analyzed to define the descriptors of 

images of H&E pathology slides. We analyze the nuclei 

clusters obtained from H&E slides using k-means clustering 

approach to extract quantitative results representing cluster 

characteristic for each slide.  

 
Fig. 1. H&E stained slide and computed nuclei clusters for sample 51008-R. 

 
TABLE I: MEASUREMENTS FROM SAMPLE H&E SLIDES 

Cluster Features 
Sample 

51010L 

Sample 

51008R 

Sample 

37385R 

Sample 

50052 

Number of Clusters 4 5 5 6 

Min Inter Distance 510.304 479.335 483.889 431.269 

Min Cluster Area 269 178 194 177 

Max Cluster Area 355 287 299 244 

Mean Cluster Diameter 731.018 687.461 720.408 590.096 

Min Number of Nodes 124 79 94 96 

Max Number of Nodes 157 128 161 136 

Intra Distance Mean 216.101 199.131 194.54 175.418 

Intra Distance Std. Dev. 84.947 83.512 85.129 70.395 

Intra Distance Skewness 0.037 0.179 0.373 -0.084 

 

The extracted features include the area of clusters, the total 

number of nuclei in clusters, cluster diameter measurements 

(i.e. the distance between the most distant two nuclei), 

statistical measurements of intra distances (i.e. average, 

standard deviation and skewness of distances), and the 

minimum distance between cluster centroids. The feature 

data vector used in our PReP-C model is constructed using 10 

cluster descriptors of each H&E sample as listed in Table I. 

In our study, each tumorous tissue sample initially 

obtained from kidney cancer patients are implanted into 
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flanks of multiple mice to increase the variety of samples 

labelled with different ID numbers. In Table I, the cluster 

features are listed with the results we obtained for four of the 

H&E slide samples, namely 51010-L, 51008-R, 37385-R, 

and 50052. As can be observed from Table I, the calculated 

feature values for these slides show that the number of 

clusters is inversely proportional to several other features 

(e.g., the cluster size and the number of nuclei).  

 

 
(a). Tumor growth for experiment schedule A. 

 

 
(b). Tumor growth for experiment schedule B. 

 

 
(c) Tumor growth for experiment Schedule C. 

Fig. 2. Preclinical tumor volume measurements and error ranges of PReP-C 

results for 7 sample H&E slides. 

 

IV. RESULTS AND DISCUSSION 

In this paper, we focus on the linear phase of tumor growth 

as the preclinical stage of the study was conducted after the 

tumor volume has reached 400mm3 and the tumor mass has 

already started to proliferate at a linear rate. The linear tumor 

growth parameter    of exponential-linear tumor growth 

model [1] is computed with our PReP-C model with the 

feature data vectors generated using the information obtained 

from 14 H&E slide samples. 

Volume of tumor mass in mice was measured at certain 

days during the one-month period in preclinical phase of our 

study. We evaluate the performance of our PReP-C model 

using the leave-one-out-cross-validation (LOOCV) 

technique [24]. In Fig. 2, we represent the preclinical tumor 

volume measurements with the LOOCV error rates 

corresponding to PReP-C results for 7 of the 14 sample slides. 

The results shown are grouped based on the three different 

daily experimental schedules. In Fig. 2a, the pre-clinical 

measurements and the results computed with our PReP-C 

model for the H&E slides of 51010-L, 51008-R, and 51006-R 

are shown. The measured and computed volumes for Sample 

Slides of 50052 and 50054 are given in Fig. 2b, and for Slides 

37385-R and 37385-L in Fig. 2c. The difference between 

preclinical volume measurements and volume results 

computed with PReP-C model is represented with the error 

bars on top of each volume bar, where the magnitude of bars 

corresponds to the difference.  

 

 
Fig. 3. The LOOCV error rate of the H&E slides. 

 

As illustrated in Fig. 2a, the results computed with our 

PReP-C model for the H&E slide samples 51010-L, 51008-R, 

and 51006-R are close to the preclinical measurements, even 

though the tumor volumes are significantly different for each 

sample. A similar consistency between the measured and 

computed results can be observed for the samples shown in 

Figs. 2b and 2c although the experiments were conducted in 

different cycles. The LOOCV error rates for the measured 

and computed tumor volume results for 14 sample slides are 

presented in Fig. 3. Despite the variations on pre-clinical 

tumor volume measurements and the experiment schedules, 

the average error rate for all samples is calculated as 11.6 %.  

The goal of our PReP-C model is to study the 

construction of personalized mathematical models for tumor 

progression. PReP-C was able to generate tumor growth 

curves with a relatively small error based on the features 

extracted from the 14 H&E slides of kidney cancer patients. 

We are planning to extent our study on personalized 

mathematical models using information from a larger set of 

pre-clinical experiments including the measurements for 

tumor shrinkage. 
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