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Abstract—For a usual occurrence of wave scattering, the 

amplitude of the reflected wave is less than that of the incident 

wave because the incident wave loses energy to the reflective 

obstacle. However, for the so-called superradiance phenomenon, 

the amplitude of the reflected wave is more than that of the 

incident wave since the incident wave extracts energy from the 

reflective obstacle. In this paper, a simple toy model of 

superradiance is presented. The results show that for the case of 

superradiance, we derive a conservation of flux instead of the 

conservation of probability. 

 
Index Terms—Conservation, flux, probability, 

superradiance. 

 

I. INTRODUCTION 

The phenomena of scattering can be described by the 

interaction of wave with a reflective physical obstacle. In a 

general situation, the incident wave loses some of its energy 

to the obstacle, resulting in the amplitude of the reflected 

wave being less than that of the incident wave. However, in 

some systems, the incident wave gains energy from the 

obstacle instead of losing energy. Therefore, the amplitude of 

the reflected wave becomes greater than that of the incident 

wave. This unusual phenomenon is called superradiance. 

Matters of superradiance in literature can be found in 

[1]-[20]. 

Despite a long scientific history, superradiance still 

generates some degree of confusion. Part of the confusion 

comes from a lack of understanding of the differences 

between fluxes and probabilities. In this paper, a simple toy 

model of superradiance is presented to clarify the concept. 

 

II. SUPERRADIANCE 

In non-relativistic quantum mechanics, superradiance does 

not take place [21]. To see this, consider the Schrodinger  

equation 

 
2

2( , ) ( , ) ( ) ( , )
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t xi x t x t V x x t
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       .        (1) 

 

Assuming the solution 
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The Schrodinger  equation becomes 

 
2

2 ( ) [ ( ) ] ( )
2

x x V x x
m

    .                  (3) 

 

On the other hand, in the relativistic regime we have the 

Klein-Gordon equation 

 
2 2( ( )) ( ) ( , ) 0t xi x V x t x        

.          (4) 

 

For a neutral scalar field, we assume the solution 

 

( , ) ( )i tx t e x  .                            (5) 

 

The Klein-Gordon equation becomes 

 
2 2( ) [ ( ) { ( )} ] ( )x x V x x x       .              (6) 

 

In this case, superradiance can occur. We see that the term 
2[ ( )]x   is responsible for superradiance. For a charged 

scalar field, we obtain 

 
2 2( ) [ ( ) { ( ) ( )} ] ( )x x V x x q x x         ,     (7) 

 

where q is the charge of the scalar field. The term 
2[ ( ) ( )]x q x     is also responsible for superradiance. 

 

III. FLUXES IN SUPERRADIANCE PHENOMENON 

In ordinary phenomena of wave scattering, we are familiar 

with the term ‘probability’ through both ‘reflection 

probability’ and ‘transmission probability’. For a more 

general situation, including the case of superradiance, it is 

preferable to calculate the quantities in terms of fluxes rather 

than probabilities. The general conservation law can be 

described by 

 

reflected transmitted dissipated1F F F   .                (8) 

 

In this paper, we are interested in cases of non-dissipation, 

where 
dissipated 0F  . The general cases, including dissipation, 

can be found in [21]. In ordinary cases, if the transmitted flux 

is non-negative 
transmitted 0F  , it can be reduced to 

transmission probability 
transmittedF T . Moreover, the 

reflected flux also reduces to reflection probability 

reflectedF R . Therefore (8) becomes 
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1R T  .                                   (9) 

 

This is the familiar conservation law of probabilities. On 

the other hand, in the case of superradiance, we have 

transmitted 0F  . It cannot be interpreted as the transmission 

probability. Thus, in any situation, we should work with 

quantities in terms of fluxes rather than probabilities. 

 

IV. TOY MODEL FOR SUPERRADIANCE 

Consider the Klein-Gordon equation in 1+1 dimensions 

 
2 2 2( ( )) ( ) ( , ) 0t xi x c V x t x         

.        (10) 

 

Assuming the solution ( , ) ( )i tt x e x  , we obtain 

 
2 2 2( ) [ ( ) { ( )} ] ( )xc x V x x x       .         (11) 

 

Now, we simplify the problem by letting ( ) 0V x   and 

taking 

 

( ) sign( )x x  ,                            (12) 

 

where   is a constant. Moreover, we set 1c  . Therefore, 

(11) becomes 

 
2 2( ) [ sign( )] ( )x x x x     .               (13) 

 

The solutions to (13) are given by 

 

for

for

0
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0
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,             (14) 

 

where r is the reflection amplitude, t is the transmission 

amplitude, and 

 
2 2( )k 

  .                             (15) 

 

Note that 

 
2 2k k 

 
  .                            (16) 

 

Thus, we obtain 

 
2 2sign sign( ) ( )k k 

 
  .              (17) 

 

Assuming that wave moves from left to right and crosses 

the border at the origin, we have 

 
ik x ik x ik xe re te  

 š .                        (18) 

 

The continuity of the wave function leads to 

 

1 r t  .                                  (19) 

The continuity of the derivative of the wave function leads 

to 

 

(1 )k r k t
 

  .                            (20) 

 

Solving the equations, we obtain 

 

1 (1 )
k

r r
k




   .                           (21) 

 

Rearranging it gives 

 

( ) ( )

( ) ( )

k k
r

k k

 

  
 

 

    
     

   
.      (22) 

 

Since the reflection amplitude is normalization 

independent, the result is valid. The reflected flux is given by 

 
2

2
reflected 2

| |F r



  .                          (23) 

 

However, the transmission amplitude depends on the 

normalization. For the relativistic Klein-Gordon equation, 

the normalization factor is 

 

2| |

ik xe

k





.                                  (24) 

 

Therefore, the normalized solutions to (13) are given by 
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The continuity of the wave function leads to 

 

1

2| | 2| |

r t

k k
 


 .                          (26) 

 

The continuity of the derivative of the wave function leads 

to 

(1 )
2| | 2| |

k k
r t

k k
 

 

  .                   (27) 

Solving the equations, we obtain 

1 1

2| | 2| |

kr r

kk k


 

 
 .                      (28) 

Rearranging it gives 

 

( ) ( )

( ) ( )

k k
r
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 

  
 

 

    
     

   
.      (29) 

Substituting in (26), we obtain 
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| | | |
1

| | | |

k
t

k

 

  




     
     

   
.        (27) 

The reflected flux is given by 

2
2

reflected 2
| |F r




  .                         (28) 

If | | | |   , we have 

2 2

t
  

  

   
    

 

2

2
sign( ) 1




  .                                  (29) 

Therefore, the transmitted flux is given by 

2
2

2
| | 1 0t




   .                          (30) 

We see that 

2
reflected | | 1F t  .                           (31) 

In this case, we can write 

2
transmitted | | 0F t  .                          (32) 

On the other hand, if | | | |   , we have 

2 2( )

( )
t

  

  

    
   

  
 

2

2
sign( ) 1




  .                                   (33) 

The transmitted flux is given by 

2
2

2
| | 1t




  .                             (34) 

We see that 

2
reflected | | 1F t  .                            (35) 

In this case, we can write 

2
transmitted | | 0F t   .                        (36) 

We summarize both the cases by 

2
2

transmitted 2
sign( )| | 1F k k t


 


   .            (37) 

Thus, we can write 

reflected transmitted 1F F  .                       (38) 

Using (17), this can be rewritten as 

2 2| | sign( )| | 1r k k t
 

  .                    (39) 

Explicitly, this is not a conservation of probability, but 

rather, a conservation of flux. 

 

V. CONCLUSION 

Superradiance is a phenomenon of scattering in which the 

amplitude of the reflected wave is more than that of the 

incident wave because the incident wave extracts energy 

from the reflective obstacle. In this paper, a simple toy model 

of superradiance has been presented. In the case of 

superradiance, we have achieved the conservation of flux 

instead of the conservation of probability. The concept of 

conservation of probability is only valid in the absence of 

superradiance. So, in any situation (both with and without 

superradiance) we can write the conservation of flux 

reflected transmitted 1F F                         (40) 

if there is no dissipation. This can be rewritten as 

2 2| | sign( )| | 1r k k t
 

  .                    (41) 
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