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Abstract—The liquid flow and the free surface shape during 

the initial stage of dam breaking are investigated. A numerical 

scheme is developed to predict the wave of an unsteady, 

incompressible viscous flow with free surface. The method 

involves a two dimensional finite element (2D), in a vertical plan. 

The Naiver-Stokes equations for conservation of momentum 

and mass for Newtonian fluids, continuity equation, and full 

nonlinear kinematic free-surface equation, were used as the 

governing equations. The mapping developed to solve highly 

deformed free surface problems common in waves formed 

during wave propagation, transforms the run up model from 

the physical domain to a computational domain with Arbitrary 

Lagrangian Eulerian (ALE) finite element modeling technique. 

 

Index Terms—Dam break, naiver-stokes equations, free-

surface flows, arbitrary lagrangian eulerian. 

 

I. INTRODUCTION 

Gravity-driven flows due to dam breaking studied by 

Zienkiewicz [1], Pohle [2] and Stoker [3] using the 

Lagrangian description. Pohle presented a systematic 

procedure for the determination of the successive terms in 

these expansions. However, only the leading-order terms 

were constructed and analyzed. In both Lagrangian and 

Eulerian descriptions the expansions of the solution in time 

power series should be considered as ‘outer’ solutions, which 

are needed to be corrected with ‘inner’ solutions near the 

intersection point. However, such an inner solution was 

successfully derived in a relevant problem concerning a 

uniformly accelerating wave maker by King and Needham 

[4]. Several numerical studies performed during the past few 

years were based on the solution of nonlinear shallow-water 

equations using different methods such as the finite-volume 

method, the finite-difference method and so on (see [5]–[10]). 

There are very analyses of the dam-break problem. Hunt [11] 

used a kinematic wave approximation to obtain a closed-

form solution for a sloping channel and mentioned that his 

solution is valid for large times. The dam-break problem can 

be interpreted in the context of a liquid column collapsing 

under gravity [12]. Penney and Thornhill [12] studied the 

collapse of a fluid column, which is surrounded by a lighter 

fluid. The analysis was performed in Eulerian variables both 

for small and moderate times. 

They derived the initial asymptotic of the solution for 
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fluid columns of semi-cylindrical and hemispherical shapes, 

and showed that these asymptotic are not valid close to the 

base, where the fluid velocity is much higher than in the rest 

of the column.  

The numerical solution for free surfaces has been 

developed using three defined theories: 1) Lagrangian; 2) 

Eulerian; 3) Arbitrary Lagrangian-Eulerian description. For 

waves in particular, the Arbitrary Lagrangian-Eulerian is 

superior in terms of handling high distortion in the grids. To 

have a versatile description of the fluid domain, it is 

necessary to have a method with the benefits of both 

Lagrangian and Eulerian descriptions, without their 

deficiencies. Such a method, developed in the last two 

decades, is the "Arbitrary Lagrangian- Eulerian formulation" 

in which grid points may be moved with the fluid in normal 

Lagrangian description. This method allows the grids move 

independent of the fluid motion.  

 

II. PROBLEM FORMULATION 

We consider the plane problem of gravity-driven flow, 

which is generated when a vertical dam in front of a liquid 

region is suddenly removed. Initially condition of the liquid 

is in 0. 

 

 
Fig. 1. Flow region at initial time instant t = 0. 

 

At the initial time instant, t = 0, the dam is instantly 

removed and the gravity-driven flow starts. The resulting 

flow is potential and two-dimensional. We shall determine 

the liquid flow and the shape of its free surface during the 

early stages of the process. 

The physical domain V surrounded by a piecewise smooth 

boundary S is shown in 0This domain is occupied by a 

viscous incompressible fluid with the coefficient of constant 

kinematic viscosity of ν and the specific mass of ρ. The 

problem under consideration is the unsteady motion of a 

surface wave under gravity. Two-dimensional unsteady 

incompressible viscous flow is considered. The governing 

equations are expressed by the unsteady Navier-Stokes 

equation and the equation of continuity. Let the rectangular 

coordinates be denoted by x, y and the corresponding 

velocity components be denoted by u, v. As a result, the 

equations of conservation of momentum and mass, for 

incompressible Newtonian fluids, in the arbitrary 
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Lagrangian-Eulerian form are given as follows: 
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where wu and wv are the mesh velocities in x and y directions. 

The boundary S  consists of two types of boundaries: one is 

the 1S  on which velocity is given; the other is the free 

surface boundary 2S  on which the surface force is specified. 

The boundary conditions can be expressed as the followings, 
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where the superscript caret denotes a function which is given 

on the boundary and nx and ny symbolize the direction 

cosines of the outward normal to the boundary with respect 

to co-ordinate x and y. Top Equations can be rendered 

dimensionless by introducing the following variables: 
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Using these transformations, the Eq. (1) and Eq. (2) are 

modified as follows: 

III. NUMERICAL ANALYSIS 

The numerical model is based on a finite element method 

for the spatial discretization of partial differential equations. 

This method is implemented using weighted residual 

variational technique for the solution approach within each 

element. 

A. Basic Concept 

In the temporal discretization, the total time t  is divided 

into a number of short time increments t . Each time point 

is denoted by n . Velocity and pressure at the n th time point 

can be defined as: 
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where x and y denote the coordinate at the nth time point in 

the physical domain. The parameters   and   are the fixed 

coordinate at the n th time point in the reference domain. 

Velocity and pressure at time point 1n  can be defined 

subsequently as: 
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In the Eulerian treatment, the spatial differentiation can be 

approximated in the form: 
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With substituting Equations, the equations of motion, 

continuity and kinematic boundary condition can be 

discredited into, 

The boundary conditions corresponding are described by: 
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The analysis procedure presented here involves computing 

the unknown variable 
1nu  , 

1nv  , 
1np  , 

1nh  and the 

boundary conditions, starting from the known variable 
nu  , 

nv  , 
np  , 

nh . 

To solve Equations, the fractional method is employed. 

This method is one of the earliest and the most widely used 

method for solving fluid dynamic problems. In this method, 

by discretizing the equations of motion, the intermediate 

velocity can be obtained. However, this velocity may not 

satisfy the equation of continuity. To correct the obtained 

intermediate velocity, a correction potential should be 

introduced. The Poisson equation for the correction potential 

can be derived by trying to satisfy the equation of continuity. 

By solving the resultant Poisson equation, the correction 

velocity vector can be obtained.  
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This equation implies that 
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where   is a scalar which is referred to as the correction 

potential. By taking the partial derivation on both sides with 

regard to x and y respectively and adding them together, we 

have 
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With substitutingthe equation of continuity, the equation 

for   can be derived as 
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With substituting, the equation of controlling the evolution 

of pressure can be expressed 
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In order to implement a numerical solution procedure for 

the arbitrary Lagrangian Eulerian formulation, the 

momentum equation and the incompressibility constraint of 

the Navier-Stokes problem are analyzed using a procedure 

which consists of six separate phases. Let 
nu  , 

nv  , 
np  , 

nh  be the velocities, pressure and wave height fields at time 

tn, where ttt nn 1
. From 

nu  , 
nv  , 

np  , 
nh  and the 

boundary specifications, the fields 
1nu  , 

1nv  , 
1np  , 

1nh   are calculated. 

 

IV. TRANSFORMATION OF THE BASIC EQUATIONS INTO THE 

MAPPED COORDINATE SYSTEM 

The computation of the propagation of free surface waves 

involves computational boundaries that do not coincide with 

coordinate lines in physical space. For the finite element 

method, such problem requires a complicated interpolation 

function on the local grid lines which results in the local loss 

of accuracy in the computational solution. Such difficulties 

require a mapping or transformation from physical space to a 

generalized space. This transformation simplifies the 

problem of highly deformed air-fluid interface that arises in 

the analysis of wave breaking. This mapping transforms the 

wave propagation model from the physical domain, ),( yx  to 

a computational domain, ),(  . The use of generalized 

coordinates implies that a distorted region in physical space, 

such as breaking wave, is mapped into a rectangular region 

in the generalized coordinate space, where the unknown 

interface coincides with a coordinate line as in 0 

Since the interior points in the computational domain form 

a regular grid and the boundaries coincide with coordinate 

lines, the determination of ),( x , ),( y  is easier than 
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working in the irregular physical domain. With Referring to 

the physical and computational meshes picture 0, the 

following mapping, can be established. 

 
Fig. 2. The computational grid is shown mapped back to the physical space. 
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Employing three point interpolations as shown in 0, we have: 

2

3

2

2

2

1

2)(

44)(

231)(













F

F

F

                         

(16)

 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F()



 

 

F1()

F2()

F3()

 
Fig. 3. Three point interpolation function. 

A. Eulerian Description 

To have an Eulerian description, where the physical co-

ordinate system coincide with the generalized coordinate 

system, it is necessary to set 0 hi  . 

B. Eulerian Description in x Direction and Lagrangian 

Description in y Direction 

Eulerian Description in x direction and Lagrangian 

Description in direction can be applied for nonbreaking 

waves. In this case, it is necessary to set 0i . The 

transformation is Lagrangian in y direction and Eulerian in x 

direction and the problems associated with this 

transformation should have single value profile.  

C. Arbitrary Lagrangian-Eulerian Description 

The Arbitrary Lagrangian-Eulerian algorithm is employed 

in modelling wave propagation both over sloping beaches, 

where the evolution occurs over bathymetry topography, and 

over constant depth regions. Different types of i  values are 

provided and depending on the nature of the problem. To 

coinside physical and computational boundary, the i  

values are considered to be a fifth order polynomial function 

of   as followed: 
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Definitions of b, , l and 0  are illustrated in 0. 

Parameter C is a constant coefficient and its value is 

obtained by trial and error to stabilize the problem. 

 
Fig. 4. Definition of parameters in 

i  function. 

D. Variational Equations in the Transformed Domain 

Spatial discretization of partial differential equations in 

the numerical model is based on a Galerkin finite element 

method. This method is implemented using the weighted 

residual variational method for solution within each element. 

Using standard linear shape functions for a rectangular 

element in natural coordinate system, the velocity, pressure 

and correction potential fields within the element are 

interpolated in terms of their nodal values as follows: 
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where  is the interpolation function and 

hvu ,,,  represent the nodal values at the node of the 
thj  

element.   is a scalar which is referred to as the correction 

potential base on the Fractional step method presented by 

Hayashi and hatanaka (1991). By dividing the total time t 
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into a number of short time increments t, the equations of 

motion, continuity and kinematic boundary condition can be 

discretized into: 
where 
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It should be noted that all of the derivations are with 

respect to i . 

 
Fig. 5. Dam break model with present numerical model at t=0.0 

(H1/H2=2.0). 

 

 
Fig. 6. Dam break model with present numerical model at t=2.5 

(H1/H2=2.0). 

 

 
Fig. 7. Dam break model with present numerical model at t=5.0 

(H1/H2=2.0). 

 

V. CONCLUSION  

The propagation and deformation of free surface in 

dam break over flat bathymetry is investigated. Here a 

dam separating two stationary water levels is suddenly 

removed and the almost vertical waves progress into the two 

domains. 0Illustrates 'dam break' problem diagrammatically 

with H1/H2=2.0 . 0and 0show the dam break at t=2.5 sec and 

t=5 sec, respectively.  

This model has the capability of dam break model until 

H1/H2=4.5. The arbitrary Lagrangian-Eulerian description is 

examined where the spatial coordinates are moving with the 

velocity and the computation is done in the reference 

coordinate system and . The reason for the selecting of 

arbitrary Lagrangian-Eulerian description for modeling of 

dam breaking wave is force the model to cope with several 

of wave profiles and the model can be employed in any 

geometry, under complicated boundary conditions, and with 

arbitrary bathymetry, without any additional computational 

effort. The model is validated by comparing numerical 

results with theoretical solutions and with results obtained 

numerically. Overall, the conformity between the available 

data and the computations is well and in most cases the 

numerical model gives excellent results. The method is 

tested on a free, steady wave of finite amplitude, and then 

applied to unsteady waves and is found to give excellent 

agreement with independent calculations based on the other 

existing theories.  
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