
  

  
Abstract—Cubature particle filter with Markovian Chain 

Monte Carlo process (CPF-MC) is proposed in order to 
alleviate the degeneracy and impoverishment problems existing 
in the particle filter, and the CPF-MC algorithm is improved 
from two aspects. On the one hand, CPF-MC uses the square 
root cubature Kalman filter (SRCKF) as proposal distribution 
that integrates the latest measurement into the particle filter 
and approximates the optimal posterior probability distribution 
more accurately. On the other hand, after resampling, a 
SRCKF based Markovian Chain Monte Carlo (MCMC) 
process is used to make the particles diversity and suppress the 
impoverish phenomenon. The CPF-MC algorithm is applied to 
re-entry ballistic target tracking; simulation results 
demonstrate that the CPF-MC achieves the better performance 
and is superior to generic particle filter with MCMC (GPF-MC), 
extended particle filter with MCMC (EPF-MC) and unscented 
particle filter with MCMC (UPF-MC), furthermore, the 
CPF-MC run faster. 
 

Index Terms—Markovian chain Monte Carlo, nonlinear 
filter, particle filter, re-entry ballistic target 
 

I. INTRODUCTION 
Particle filters (PFs), or the sequential Monte Carlo filters, 

are widely used for a wide range of target tracking problems 
in the nonlinear system since they can efficiently handle 
non-Gaussian and nonlinearity [1], [2]. The PFs have the 
superior characteristics of allowing for a complete 
representation of the posterior distribution of states, so that 
any statistical estimate, such as the mean, modes, kurtosis 
and variance, can be easily computed [3]. However, in some 
case, the state posterior distribution doesn’t exit [4]. One 
method solved is using the proposal distribution. Generic 
particle filter (GPF) in [2] uses the transition prior as 
proposal function; a common problem in the GPF is the 
degeneracy phenomenon because the variance of the 
importance weights increases stochastically over time [4]. In 
order to solve the degeneracy problem, one strategy is to 
choose the proper proposal distribution that can approximate 
the posterior distribution reasonably well. The extended 
particle filter (EPF) in [5] and unscented particle filter (UPF) 
in [6] were proposed in which the extended Kalman filter 
(EKF) and unscented Kalman filter (UKF) were used to 
generate the proposal distributions, respectively. The 
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PF-based including incremental principle component 
analysis [7], the adaptive Gaussian mixture filter bridging the 
ensemble Kalman filter and PFs [8], and memory-based PF 
[9] were proposed. Their combination has shown superior 
performance in terms of accuracy and robustness, but it 
suffers from the heavy computational load. Another strategy 
to reduce the effects of the degeneracy problem is the 
resampling step, the particles that have high weights are 
statistically selected many times, this leads to a loss of 
diversity among the particles, i.e., it introduces sample 
impoverishment. The sample impoverishment is severe in the 
case of small process noise, especially, for the case of very 
small process noise; all particles will collapse to a single 
point within a few iterations [2]. Schemes, such as 
Markovian chain Monte Carlo (MCMC) process, exist to 
improve particles diversity [10]. 

In general, it is hard to design the proper proposal 
distribution. Recently, cubature Klaman filter (CKF) uses a 
third-degree cubature rule to compute integrals numerically 
and solve high-dimensional nonlinear filtering problems with 
minimal computational effort; moreover, the square root 
cubature Kalman filter (SRCKF) was developed to improve 
the numerical stability [11], [12]. So, the combination of the 
CKF and PF forms an attractive framework, so cubature 
particle filter was proposed for continuous system [13]. In the 
study, we develop cubature particle filter with MCMC 
(CPF-MC) for discrete nonlinear system that captures the 
virtues of the SRCKF and PF and performs better than 
conventional PFs in terms of robustness and accuracy.  

 

II. DEVELOPMENT OF CUBATURE PARTICLE FILTER WITH 
MCMC 

Considering the following non-linear system: 

1 1( )k k kx − −= +f x w                         (1) 

( )k k kz v= +h x                              (2) 

where xn
kx ∈\ is state , zn

kz ∈\   is the measurement; 1{ }k −w   
and { }kv  are process and measurement Gaussian noise 
sequences with zero means and covariance 1k −Q  and kR , 
respectively, and they are mutually uncorrelated. 

A. Cubature Particle Filter with MCMC 
Initialization : 0k =  
Draw the states (particles) ( )

0
ix from 0( )p x , calculate 

( ) ( )
0 0[ ]i iE=x x and ( ) ( ) ( ) ( ) ( )

0 0 0 0 0( [( )( ) ])i i i i i TChol E= − −S x x x x  , 
here, 1,i N= " , Cho () is cholesky decomposition. 
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For 1, 2,k = "   
The particles and the square root of their corresponding 

covariances at k-1 time are (1) (2) ( ) ( )
1 1 1 1, , , ,i N

k k k k− − − −" "x x x x   

and (1) (2) ( ) ( )
1 1 1 1, , , ,i N

k k k k− − − −" "S S S S  , respectively. 
Importance sampling step 
Update the particles ( 1,i N= "  ) using the SRCKF 

algorithm 
Calculate cubature points here, 2[1]j jm=ξ and 

1j mω = ( 1,2, , 2 xj m n= =" ) are the basic cubature points 

and their corresponding weights,  the way of [1] j generated is 
introduced in [11]. 

( ) ( ) ( )
1, 1 1

i i i
k j k j k− − −= +X S ξ x                          (3) 

Propagate particles into future 
( )* ( )
, 1,( )i i

k j k j−=X f X                         (4) 

( ) ( )*
,1

mi i
k j k jj

ω
=

=∑x X                         (5) 
( ) *( )

, 1([ ])i i
k k Q kTria  S −=S χ                        (6) 

Here, , 1Q k −S  is a square root of 1k −Q , Tria() is denoted as a 
general triagularization algorithm, the weighted, centered 
matrix *( )i

kχ   is defined as: 

*( ) ( )* ( ) ( )* ( ) ( )* ( )
,1 ,2 ,1 [   , , ]i i i i i i i

k k k k k k m km= − − −"χ X x X x X x   (7) 

Incorporate new observation 
( ) ( ) ( )
,
i i i

k j k j k= +X S ξ x                                   (8) 
( ) ( )
, ,( )i i

k j k j=Z h X                                        (9) 
( ) ( )

,1

mi i
k j k jj

ω
=

=∑z Z                                 (10) 
( ) ( )

, ,([  ])i i
zz k k R kTria ϒ=S S                            (11) 

( ) ( ) ( )
,
i i i T

xz k k kϒ= χP                                  (12) 
( ) ( ) ( )

, , ,( / ) /i i T i
k xz k zz k zz k=W P S S                            (13) 

( ) ( ) ( )ˆ ( )i i i
k k k k t= + −x x W z z                            (14) 

( ) ( ) ( )
,([   ])i i i

k k k k k R kTria ϒ= −χS W W S                 (15) 

Here, ,R kS  is a square root of kR , the matrices ( )i
kχ , ( )i

kϒ   
are defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
,1 ,2 ,1 [  , , ]i i i i i i i

k k k k k k m km= − − −χ "X x X x X x      (16) 
( ) ( ) ( ) ( ) ( ) ( ) ( )

,1 ,2 ,1 [   , , ]i i i i i i i
k k k k k k m kmϒ = − − −"Z z Z z Z z       (17) 

Sample ( ) ( ) ( ) ( ) ( ) ( )
0: 1 1: ˆ( | , ) ( , )i i i i i i T

k k k k k k kq − =� ∼ Nx x x z x S S   

 Realize: ( ) ( ) ( )ˆ randn( ,1)i i i
k k k xn= + ×�x x S  Set 

( ) ( ) ( )
0: 0: 1( , )i i i

k k k−
� ��x x x  and ( ) ( ) ( )

0: 0: 1( , )i i i
k k k−

�
�S S S  

Evaluate the importance weights for each particle 
( ) ( ) ( )

1( )
( ) ( )

0: 1 1:

( ) ( )

( , )

i i i
k k k ki

k i i
k k k

p p
w

q
−

−

∝
� �

�
z x x x

x x z
                    (18) 

Obtain normalized weights ( )i
kw�  

( ) ( ) ( )
1

Ni i i
k k ki

w w w
=

= ∑�                        (19) 

Resampling 
Multiply/Suppress particles ( ) ( )

0: 0:( , )i i
k k

��x S  or ( ( ) ( ),i i
k k
�x S  ) with 

high/low importance weights ( )i
tw�  respectively, to obtain N  

random particles ( ) ( )
0: 0:( , )i i

k k
��x S  or ( ) ( )( , )i i

k k
��x S   with weight 

1 N  . 
SRCKF based MCMC process (this process is       

elaborately derived in Section 2.2) 
Apply a Markov transition kernel with invariant 

distribution given by ( )
0: 1:( )i

k kp x z  to obtain ( ) ( )
0: 0:( , )i i

k kx S  

or ( ) ( )( , )i i
k kx S  . 

Output 
Obtain the particles and corresponding covariance 
( ) ( )
0: 0:( , )i i

k kx S or ( ) ( )( , )i i
k kx S , and the estimated state ˆkx and 

corresponding covariance kP  at k time: 

( )
1

ˆ 1 N i
k ki

x N
=

= ∑ x                              (20) 
( ) ( )

1
ˆ ˆ1 N i i T T

k k k k ki
N

=
= −∑P x x x x                    (21) 

Denoting the particles as ( ){ , 1, , }j
k j N=x� "  after 

resampling, assuming there exists a Markov transition kernel 
( ) ( )( )i i
k kK �x x   which meets the following constant condition 

[3]: 

( )

( ) ( ) ( ) ( ) ( )
0: 1 1:

( ) ( )
0: 1 1:

( ) ( , )

( , )

j
k

i j j i j
k k k k k k

i i
k k k

K p d

p

−

−=

∫x�
� � � �

�

x x x x z x

x x z
          (22) 

Applying ( ) ( )( )i i
k kK �x x  with invariant distribution given 

by ( )
0: 1:( )i

k kp x z  to obtain ( ) ( )
0: 0:( , )i i

k kx P and making the particles 

diversity, the particles ( ) ( )
0: 0:( , )i i

k kx P  can be still approximated 

by ( )
0: 1:( )i

k kp x z . This is the theory of implementing MCMC 

process. There are usually two MCMC methods used in 
practice, such as, the Metropolis-Hastings (M-H) algorithm 
and Gibbs sampler. The commonly used method is M-H 
method. 

B. SRCKF based MCMC 

We obtain ( ) ( )
0: 0:( , )i i

k k
��x S  after resampling. In fact we only 

need: ( ) ( )
1 1( , )i i

k k− −
��x S . 

Sample v from a uniform distribution: [0,1]v U∼  
Update the particles with the SRCKF algorithm 
Calculate the cubature points and propagate the particle 

through state equation 
( ) ( ) ( )

1, 1 1
i i i

k j k j k− − −= +�� �X S ξ x                        (23) 
( )* ( )
, 1,( )i i

k j k j−=� �X f X                             (24) 

Time update 
( ) ( )*

,1

mi i
k j k jj

ω
=

=∑ ��x X                          (25) 

( ) *( )
, 1([  ])i i

k k Q kTria −=� �S χ S                  (26) 
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where the matrix *( )i
k�χ is defined as: 

*( ) ( )* ( ) ( )* ( ) ( )* ( )
,1 ,2 ,1 [   , , ]i i i i i i i

k k k k k k m km= − − −� � � �"X X x X x X x  (27) 
Measurement update 

( ) ( ) ( )
,
i i i

k j k j k= +�� �X S ξ x                                 (28) 
( ) ( )
, ,( )i i

k j k j=� �Z h X                                   (29) 
( ) ( )

,1

mi i
k j k jj

ω
=

=∑ ��z Z                              (30) 

           ( ) ( )
, ,([  ])i i

zz k k R kTria ϒ=� �S S                           (31) 
( ) ( ) ( )

,
i i i T

xz k k kϒ=� ��P χ                              (32) 
( ) ( ) ( )

, , ,( / ) /i i T i
k xz k zz k zz k= � ��W P S S                       (33) 

*( ) ( ) ( )( )i i i
k k k k k= + −� � �x x W z z                          (34) 

*( ) ( ) ( )
,Tria( )i i i

k k k k k R k  W Sϒ⎡ ⎤= −⎣ ⎦
� ��S χ W            (35) 

where the matrices ( )i
kχ� , ( )i

kϒ� are defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
,1 ,2 ,1 [  , , ]i i i i i i i

k k k k k k m km= − − −χ � � �� � �� "X x X x X x    (36) 
( ) ( ) ( ) ( ) ( ) ( ) ( )

,1 ,2 ,1 [   , , ]i i i i i i i
k k k k k k m kmϒ = − − −� � � �� � �"Z z Z z Z z    (37) 

Sample the candidate 
*( ) ( ) *( ) *( ) *( )

0: 1 1:( | , ) ( , )i i i i i T
k k k k k k kq − = � �� �∼ Nx x x y x S S  

If 
*( ) *( ) ( ) ( ) ( )

1 0: 1 1:

( ) ( ) ( ) *( ) ( )
1 0: 1 1:

( ) ( ) ( , )
min{1, }

( ) ( ) ( , )

i i i i i
k k k k k k k

i i i i i
k k k k k k k

p p q
v

p p q
− −

− −

≤
� � �

� � � �

z x x x x x z

z x x x x x z
then 

accept move 
( ) ( ) ( ) ( ) ( ) ( )
0: 0: 1 0: 0: 1( , ), ( , )i i i i i i

k k k k k k
∗ ∗

− −= = ��x x x S S S  

Else reject move 
( ) ( ) ( ) ( )
0: 0: 0: 0:,i i i i

k k k k= =� ��x x S S  

From the above descriptions, the paper has two 
contributions. The first contribution is that the CPF-MC uses 
the SRCKF as proposal distribution that integrates the latest 
measurement into the particle filter and approximates the 
optimal posterior probability distribution more accurately. 
The second contribution is that the SRCKF based MCMC 
process after resampling is used to make the particles 
diversity and suppress the impoverish phenomenon. Because 
the SRCKF is more accurate and numerical stability; 
furthermore, has less computation cost, so CPF-MC should 
perform better and its computation cost is decreased.  

 

III.  RE-ENTRY BALLISTIC TARGET TRACKING 
To demonstrate the superiority of the CPF-MC, we apply it 

to a practical re-entry ballistic target tracking with a 
six-dimensional state space. All the simulations were done in 
MATLAB on a ThinkPad PC with an Intel (R) CORE i5 
M480 processor with the 2.67GHz clock speed and 3GB 
physical memory. 

A. Model of Target Motion and of Radar Measurements 
Assume that the Earth is spherical and non-rotating; the 

radar is situated at the surface of the Earth, the relative 

location of the re-entry ballistic target and the radar is 
depicted in [14]. 

There are two significant forces, gravity and aerodynamic 
drag, acting on the target in the re-entry phase [15]. With this 
formulation, the re-entry ballistic target motion is described 
by the following discrete-time nonlinear dynamic state 
equation in the East-North-Up coordinates system 
(ENU-CS): 

1 1 1k k k k− − −= + +Φ ψ( )x x G x w              (38) 

where the state vector is defined as: 

    [ ]     T
k k k k k k kx x y y z z= � � �x  

    diag([   ])φ φ φ=Φ  
    [1 ;0 1]Tφ =   
    diag([ ])τ τ τ=G  

    2[ 2; ]T T=τ  

And 1 1 2 1 3 1[ ( )  ( )  ( )]T
k k k kf f f− − −=ψ( )x x x x is formulated 

as: 
3

1 1 1 1 1 1 1( ) ( )  2k k k k k kf h V x x rρ β μ− − − − − −= − −�x    (39) 
3

2 1 1 1 1 1 1( ) ( )  2k k k k k kf h V y y rρ β μ− − − − − −= − −�x    (40) 
3

3 1 1 1 1 1 1( ) ( )  2 ( )k k k k k e kf h V z z R rρ β μ− − − − − −= − − +�x    (41) 

Here: 

2 2 2
1 1 1 1( )k k k k er x y z R− − − −= + + +  

2 2 2
1 1 1 1k k k kV x y z− − − −= + +� � �  

1 1k k eh r R− −= −  

T (in s) is the time interval between radar measurements, μis 
Earth's gravitational constant ( μ =3.986005×1014m3/s2) 
and eR is Earth’s radius (Re=6378.137km), respectively. 

( )hρ is the air density (kg/m3). Below 90km at height, the air 
density ( )hρ is approximately modeled as an exponentially 

decaying function of height, i.e. 2
1( ) c hh c eρ −= , c1 and c2 are 

dimensionless constants, i.e.c1=1.754 and c2=1.49×10-4 [16]. 
β is ballistic coefficient (kg/m2). 

Process noise 1k −w  is assumed to be a zero-mean white 
Gaussian process with non-singular covariance 
matrix diag([   ])kQ q q q= θ θ θ , 3 2 2[ 3  2; 2  ]T T T T=θ , 
parameter q (in m2/s3) controls the amount of process noise in 
target dynamics. 

The measurements, collected by the radar for target 
tracking, are the range kR , elevation kE and azimuth kA . 
According to the geometry, the measurement equation is: 

k k k= +( )z h x v                            (42) 

where [ ]T
k k k kR E A=z , and 

2 2 2
k k k k RR x y z v= + + +                            (43) 

2 2arctan ( )k k k k EE z x y v= + +                        (44) 

arctan( )k k k AA y x v= +                     (45) 
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kv  is modeled as zero-mean white Gaussian measurement 

noise with covariance matrix 2 2 2diag([   ])k R E Aσ σ σ=N  , 

Rσ , Eσ and Aσ  are the error standard deviations of range, 
elevation and azimuth. It is independent of the process noise 

kw  and initial state 0x . 

B. Simulations and analysis 
In the simulation, the parameters used are selected as 

T=0.1s, q=1m2/s3, the initial position and module of the 
velocity: x0=232km, y0=232km, z0=90km, and V0=3000m/s; 
the initial elevation and azimuth angle: E0=210°, and A0=60°. 
The ballistic coefficient:β =4000kg/m2. The ballistic 
trajectory is generated using fourth-order Runge-Kutta 
method. Then the true initial state can be obtained as 
x0=[232km -1299m/s 232km -2250m/s 90km -1500m/s], and 
the corresponding covariance is selected as  P0=diag[5002  
2002  5002  2002 5002  2002] . 

The initial state estimate 0x̂ is chosen randomly from 

0 0 0ˆ ( , )Nx x P∼  in each run. The error standard deviations 
of the measurements are selected as σR =100m, and σE =σA 
=1mrad. All of the particle filters used 400 particles. 
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Fig. 1. RMSEs in position for CPF and CPF-MC. 
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Fig. 2. RMSEs in velocity for CPF and CPF-MC. 

 
To compare the performance of the various PFs, we use the 

performance metrics of root-mean square error (RMSE) and 
average accumulated mean-square root error (AMSRE) in 
the position and velocity which are separately defined in [14]. 
All following performance curves and figures were obtained 
by averaging over 100 independent Monte Carlo runs. All 
filters were initialized with the same condition in each run. 

Firstly, we compare the performance of the CPF (no with 

MCMC) and CPF-MC on re-entry ballistic target tracking. 
Fig.1 and Fig. 2 show the RMSEs for the CPF and CPF-MC 
in position and velocity. The means and variances of the 
AMSREs of two algorithms in position and velocity are listed 
in Table I. Table II lists the runtime of the two algorithms. 

 
TABLE I: MEAN AND COVARIANCE OF AMRSES FOR VARIOUS FILTERS IN 

POSITION AND VELOCITY 

 
 

TABLE II: MEAN RUNTIME FOR VARIOUS FILTERS 

 
 
From Fig. 1, Fig. 2 and Table I, we can see the RMSEs of 

CPF-MC in position and velocity are less than those of CPF 
because the CPF-MC includes the MCMC process after 
resampling. Again we see that the performance of the 
CPF-MC is superior to that of the CPF. Meantime, from 
Table II, we also see that CPF-MC has large amount of 
computational load because the runtime of CPF-MC is more 
than twice that of CPF. 

Now the CPF-MC algorithm is compared to the GPF with 
MCMC (GPF-MC), EPF with MCMC based on EKF  
(EPF-MC) and UPF with MCMC based on UKF (UPF-MC)  
for re-entry ballistic target tracking. Fig.3 and Fig.4 show the 
RMSEs for the four filters in position and velocity. Table III 
lists the means and variances of AMSREs for the four filters 
in position and velocity. The runtime of the four filters is 
listed in Table IV. The GPF-MC algorithm is not listed in 
Figures and Tables because it is divergent to the re-entry 
ballistic target tracking. 

 

 
Fig. 3. RMSEs in position for various filters. 

 

 
Fig. 4. RMSEs in velocity for various filters. 
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From Table IV, the runtime of UPF-MC is about three 
times that of EPF-MC and CPF-MC, and the runtime of 
CPF-MC is slightly larger than that of EPF-MC. Hence the 
CPF-MC has better performance on re-entry ballistic target 
tracking. 

 
TABLE III: MEAN AND VARIANCE OF AMRSES IN POSITION AND VELOCITY 

FOR VARIOUS ALGORITHMS 

 
 

TABLE IV: MEAN RUNTIME FOR VARIOUS 
ALGORITHMS

 
 
From Fig. 3, Fig. 4 and Table III, the EPF-MC use EKF 

algorithm as the proposal distribution, the EKE algorithm 
uses linearization and Gaussian assumption to introduce the 
large error, the performance of EPF-MC is poor on re-entry 
ballistic target tracking. The RMSEs and means and 
variances of UPF-MC in position and velocity decrease 
compared to those of EPF-MC. And the RMSEs and means 
and variances of CPF-MC in position and velocity 
significantly reduce compared to EPF-MC and UPF-MC 
algorithms.   

From Table IV, the runtime of UPF-MC is about three 
times that of EPF-MC and CPF-MC, and the runtime of 
CPF-MC is slightly larger than that of EPF-MC. Hence the 
CPF-MC has better performance on re-entry ballistic target 
tracking. 

 

IV. CONCLUSION 
In this study, we develop the CPF-MC algorithm, which 

uses a SRCKF as proposal distribution, making it better 
suitable for proposal distribution generation, and the SRCKF 
based MCMC process after resampling is used to effectively 
alleviate the degeneracy and impoverishment problems in the 
particle filter. Applications of reentry ballistic target tracking 
demonstrate that the CPF-MC is superior to the GPF-MC, 
EPF-MC and UPF-MC, and the runtime of CPF-MC is less 
than that of EPF-MC, and is about third of that of UPF-MC. 
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