
  

  
Abstract—The deformation of grout is a very important 

property because of demands that this material is subjected 
when applied to façades. To set such parameter, compression 
tests are needed to determine the elasticity modulus or the 
ultrasound technique might be applied, which is a 
non-destructive test that allows the determination of the 
flexibility material matrix and therefore the elastic constants 
such as longitudinal elasticity modulus (E), transversal 
elasticity modulus (G) and Poisson's ratio (ν). The aim of this 
study was to obtain the grout elastic constants with ultrasound 
tests. For this purpose, we selected three colors and two 
manufacturers for grout, totaling six samples. The results 
indicated that the elastic constants determined with ultrasound 
are equivalent to values obtained for destructive tests. 

 
Index Terms—Elasticity modulus, nondestructive test. 

 

I. INTRODUCTION 
The most important aspect for the performance of grout, 

bearing efforts from the movement of ceramic tiles and base, 
is to provid a strength relief on the ceramic coating during the 
building’s lifetime. In this case, the stiffness and resilience of 
grout are important factors. Other aspects, like flexibility and 
adhesion are closely related, since the appearance of cracks 
by adhesion loss leaves a clear path for the penetration of 
water and other harmful agents, not only to the grout, but also 
to the ceramic coating [1]. 

The Brazilian standard (regulation) NBR 14992 (2003) [2] 
defines the grout’s properties through six tests (determination 
of water retention, determination of dimensional variation, 
determination of the compression strength, determination of 
tensile strength in bending, determination of water absorption 
by capillarity and determination of permeability), but  that 
standard does not cite any tests to determine elastic properties 
of this material. Other standards also do not include this type 
of test because the destructive tests required obtaining the 
elastic properties (elasticity modulus and Poisson’s ratio) are 
complex and expensive. Therefore, these values are adopted 
as standards and researches made [3]-[5]. 

There are specific standards for determining the dynamic 
elasticity modulus in laying and coating mortar [6], [7], 
however, these standards adopt a value for Poisson's ratio 
(0.2), the same as the concrete which cannot be generalized 
because specific properties for each types of mortar.  

For determining the elastic constant by means of 
ultrasound it is necessary to perform measurements of 
propagation time on longitudinal and transversal waves. In 
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the case of direct measurements (compression waves), the 
wave path is the distance between the transducers. Having the 
distance and propagation time, the speed of wave propagation 
is determined. The frequency of the transducers is adopted 
based on the analyzed sample size as well as the anatomical 
structure of the material. Gonçalves et al. [8] determined by 
means of ultrasound test the longitudinal and transversal 
elasticity modulus and the Poisson's ratio for a 
35-MPa-strength-compressive concrete. The frequency of 
longitudinal and transversal transducers used by these 
authors was 100 kHz. 

The generalized Hooke's law [9] allows the correlation of 
materialstrength (F), deformation (∆L) and K (coefficient) by 
means of stiffness matrix components (Equation 1). 

 
F k L= ×Δ                            (1) 

 
Non-destructive methods using wave propagation can be 

used for obtaining the stiffness matrix [C] in which the 
number of independent components is associated with the 
complexity of the material to be evaluated [10]. In the case of 
mortar, considered isotropic, the matrix is composed of only 
three independent elements (Equation 2). 
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Having the terms of the stiffness matrix [C], by inversion, 

the flexibility matrix [S] is obtained, which makes possible to 
determine all the elastic constants of a material, ie, the 
longitudinal and transversal elasticity modulus and the 
Poisson's ratio. Equation 3 shows the flexibility matrix of 
isotropic materials. 

 

      (3) 
 
On the other hand, by using Newton's second law for the 

movement of bodies (F = m × a) it may be associated stresses 
on the movement in the internal structure of the material. In 
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The values obtained for the ultrasonic pulse speed obtained 
for manufacturers B and C were consistent with the literature 
[11] which had average values of 3,000 m/s for samples of 
cement mortar. However, the manufacturer A showed 
significantly lower results. This result may indicate a lower 
quality for this sample. For CLL observed values near to those 
obtained for the longitudinal elasticity modulus (E), however, 
can’t be considered equal. 
 

TABLE III: ELASTIC CONSTANTS FOR GROUTSOBTAINED BY THE 
ULTRASSOUND TEST 

Elastic Constants 

 
Color 
grout Average 

Eus (MPa) 
 

5,600 

Gus (MPa) 
A1 2,200 

νus 
 

0.24 

Eus (MPa) 
 

3,600 

Gus (MPa) 
A2 1,500 

νus 
 

0.19 

Eus (MPa) 
 
 

B1 
7,200 

Gus (MPa) 2,600 

νus 0.40 

Eus (MPa) 
 
 

B2 
7,000 

Gus (MPa) 2,400 

νus 0.42 

Eus (MPa) 
 
 

C1 
7,000 

Gus (MPa) 2,600 

νus 0.38 

Eus (MPa) 
 
 

C2 
6,500 

Gus (MPa) 2,400 

νus 0.39 
 

The results indicated that it is feasible to apply the 
ultrasound test to determine the grout elastic constants. It was 
observed that the longitudinal elasticity modulus varied as a 
function of the mechanical strength, with higher values for 
the grout with greater tensile strength in bending (C1-S: 3 
MPa and Eus: 7.1 GPa). These values were consistent with the 
literature [1], who obtained values for static tests between 5 
and 7 GPa. However for Poisson's coefficient(νus)there was a 
wide variation between the grouts studied, which were quite 
different from the value adopted in national and international 
Standards (ν=0.20).  Table IV-Table VI show the results 
from physical and mechanical characterization. Statistical 
regression analysis between the colors studied (homogeneous 
groups) and the correlation coefficients obtained between the 
tensile strength and ultrasonic pulse speed and between the 
tensile strength and stiffness coefficient obtained in the 
ultrasound test, respectively (Tables VII and VIII). 

By only using ST to classify for the grouts studied, the 
manufacturer A was ranked as type I and the other two (B and 
C) were ranked as type II, according to standard NBR 
14992:2003 [2]. In this standard, grouts type I are suitable for 
indoor and low traffic, type II are recommended for high 
traffic and outdoor environments. However, this information 

is not given by manufacturers to consumers. This same 
classification can be observed for the other parameters 
considered by standard, except for the absorption for 
capillarity (all were ranked as type I).  
TABLE IV: TENSILE STRENGTH IN BENDING AND COMPRESSION STRENGTH 

OF THE AVERAGE COLORS OF GROUT(S) OBTAINED FOR 3 DIFFERENT 
MANUFACTURERS (A, B, C) 

Color 
grout 

*ST (MPa) *SC (MPa) 

A1 2.0 6.0 
A2 2.0 4.0 
B1 3.1 11.0 
B2 3.9 15.8 
C1 2.7 11.5 
C2 3.0 10.5 

* NBR14992:2003 (ST: ≤ 2 MPa – type I; ≤ 1 MPa – type II) and (SC: ≤ 8 MPa 
– type I; ≤ 10 MPa – type II). 
 

TABLE V: WATER RETENTION AVERAGE OF THE COLORS OF GROUTS 
OBTAINED FOR 3 MANUFACTURERS (A, B, C) 

Color 
grout 

**Water retention 
(%) 

A1 97 
A2 97 
B1 98 
B2 97.5 
C1 96.5 
C2 97 

*NBR14992:2003 (≤ 75%-type I; ≤ 65%-type II) 
 
TABLE VI: DIMENSIONAL VARIATION, CAPILLARY ABSORPTION OF WATER 
AND PERMEABILITY AVERAGE OF THE COLORS OF GROUTS OBTAINED FOR 3 

MANUFACTURERS (A, B, C) 
Color 
grout

*Dimensional variation
(mm/m) 

**Absorption 
for capillarity 

(g/cm3) 

***Permeability 
(cm3) 

 length Cross 
section

  

A1 1.60 0.05 0.45 0.48 
A2 1.20 0.04 0.45 0.45 
B1 0.20 0.05 0.45 0.40 
B2 0.70 0.05 0.45 0.44 
C1 0.40 0.10 0.45 0.45 
C2 0.70 0.20 0.45 0.44 

* NBR 14992 (≤ 2.0 mm/m); **NBR 14992 (≤ 0.60 g/cm3-type I; ≤ 
0.30-type II); ***NBR14992 (≤ 2.0 cm3-type I; ≤ 1.0 cm3-type II). 
 
TABLE VII: STATISTICAL REGRESSION ANALYSIS PERFORMED TO DEFINE 
HOMOGENEOUS GROUPS AMONG THE COLORS OF GROUT ADOPTED IN THIS 

STUDY 
Color grout Homogeneous groups 

A2 X    
A1  X   
B1   X  
C1   X  
C2   X  
B2    X 

 
TABLE VIII: CORRELATIONS BETWEEN TENSILE STRENGTH (S) AND SPEED 
(V); CORRELATIONS BETWEEN STIFFNESS COEFFICIENT (CLL) AND TENSILE 

STRENGTH (S) FOR A PRISMATIC SPECIMEN (25 × 25 × 250 MM) 
Test Correlation model R* 

Ultrasound and ST = 1.33 + 0.1263 × CLL 0.85 
Tensile strength in 

bending 
ST = 0.36 + 0.00098 ×V 0.82 

*R=Correlation Coefficient 
 
To confirm the variability between manufacturers, we 

carried out a statistical analysis to determine whether there 
was a statistically significant difference between 
manufacturers and colors studied. Manufacturers A and B 
statistically differ in their respective colors of grout, but only 
manufacturer A was classified as type I (lower mechanical 
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performance). This can be explained by the material 
permeability [12] and the type of pigment used can also 
influence (organic or inorganic). The manufacturer C showed 
no statistical difference for its colors and also with color B1 
(manufacturer B 

), which corroborated on their mechanical performance. 
Correlations obtained from ST × CLL (0.85) e ST × V (0.82) 

were close to those found by other authors. This proves the 
efficiency of ultrasound technique to estimate grouts 
mechanical strength [1], [13]-[15]. 
 

IV. CONCLUSIONS 
The ultrasound test allowed us to infer quickly and 

accurately the properties of elasticity in grout, especially in 
relation to the longitudinal elastic modulus. The ultrasound 
technique efficiency has been demonstrated to estimate the 
material strength from the correlation with the ultrasonic 
speed. The ultrasound test allowed the detection of 
differences in mechanical properties between the selected 
manufacturers and it is concluded that the technique can be 
used in technological control of them. 
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