
  

  
Abstract—The use of wavelets has become increasingly 

popular in the development of numerical schemes for the 
solution of partial differential equations (PDEs), especially for 
problems with local high gradient. In this work, the Galerkin 
Method has been adapted for the direct solution of differential 
equations in a meshless formulation using Daubechies wavelets 
and Deslauriers-Dubuc interpolating functions (Interpolets). 
This approach takes advantage of wavelet properties like 
compact support, orthogonality and exact polynomial 
representation, which allow the use of a multiresolution analysis. 
Several examples based on typical differential equations for 
beams and thin plates were studied successfully. 
 

Index Terms—Wavelets, interpolets, wavelet-galerkin 
method, beam on elastic foundation, thin plates.  
 

I. INTRODUCTION 
The use of wavelet-based numerical schemes has become 

popular in the last two decades. Wavelets have several 
properties that are especially useful for representing solutions 
of partial differential equations (PDEs), such as 
orthogonality, compact support and exact representation of 
polynomials of a certain degree. Their capability of 
representing data at different levels of resolution allows the 
efficient and stable calculation of functions with high 
gradients or singularities [1].  

Compactly supported wavelets have a finite number of 
derivatives which can be highly oscillatory. This makes the 
numerical evaluation of integrals of their inner products 
difficult and unstable. Those integrals are called connection 
coefficients and they appear naturally when applying a 
numerical method for the solution of a PDE. Due to some 
properties of wavelet functions, these coefficients can be 
obtained by solving an eigenvalue problem.  

Working with dyadically refined grids, Deslauriers and 
Dubuc (1989) obtained a new family of wavelets with 
interpolating properties, later called Interpolets [2]. Unlike 
Daubechies’ wavelets [3], Interpolets are symmetric, which 
is especially interesting in numerical analysis.  

The use of wavelets as interpolating functions in numerical 
schemes holds some promise due to their multiresolution 
properties. The approximation of the solution can be 
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improved by increasing either the level resolution or the 
order of the wavelet used. 

Several examples were used for validating the proposed 
method. First, a beam with a concentrated load was used to 
test the method’s ability to capture discontinuities. As a 
second example, critical buckling loads for axially loaded 
beams on elastic foundation with several boundary 
conditions were obtained. The method was then applied for 
the static analysis of thin plates showing excellent 
performance in 2-D models. Results are presented and 
compared with analytical values, when available. 
 

II. WAVELET THEORY 
Multiresolution analysis using orthogonal, compactly 

supported wavelets has been successfully applied in 
numerical simulation. Wavelet basis are composed of two 
kinds of functions: scaling functions (ϕ) and wavelet 
functions (ψ). The two combined form a complete Hilbert 
space of square integrable functions. The spaces generated by 
scaling and wavelet functions are complementary and both 
are based on the same mother function [4].  

A. Daubechies Wavelets 
In the following expressions, known as the two-scale 

relation, ak are the scaling function filter coefficients and N is 
the Daubechies wavelet order. 
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In general, there are no analytical expressions for wavelet 

functions, which can be obtained using iterative procedures 
like (1). In order to comply with the requirements of 
orthogonality and compact support, wavelets present, in 
general, an irregular fractal-like shape. Fig. 1 shows 
Daubechies scaling function of order N = 4.  

 
Fig. 1. Daubechies scaling function of order N = 4. 
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B. Deslauriers-Dubuc Interpolets 
The term interpolet was first used by [5] to designate 

wavelets with interpolating characteristics. The basic 
characteristics of interpolating wavelets require that the 
mother scaling function satisfies the following condition [6]: 
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The filter coefficients ck for Deslauriers-Dubuc scaling 

function of order N can be obtained by an autocorrelation of 
the same order Daubechies’ filter coefficients.  
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Interpolets satisfy the same requirements as other wavelets, 

specially the two-scale relation, which is fundamental for 
their use as interpolating functions in numerical methods. Fig. 
2 shows the Interpolet IN4. Its symmetry and interpolating 
properties are evident.  

 

 
Fig. 2. Interpolet IN4 scaling function. 

 

C. Connection Coefficients 
Assuming that a function f(x) is approximated by a series 

of interpolating scale functions, the following may be 
written: 
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k
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The process of solving a differential equation (DE) 

requires the calculation of the inner products of the basis 
functions and their derivatives (d1, d2). These inner products 
are defined as connection coefficients and are given by: 
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The values for the limits of the integral in (5) depend on 

which method is used to impose boundary conditions. In this 
work, the limits are given by [0, 2m], where m is the wavelet 
level of resolution. This method allows the use of Lagrange 

multipliers to deal with boundary conditions, similarly to 
what is usually done in a meshless scheme [7]. Connection 
coefficients at level m can be obtained through the 
calculation at level 0 thus avoiding its recalculation while 
increasing the level of resolution. Wavelet dilation and 
translation properties allow the calculation of connection 
coefficients within the interval [0, 1] to be summarized by the 
solution of an eigenvalue problem based only on filter 
coefficients [8]. 
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Since (6) leads to an infinite number of solutions, there is 

the need for a normalization rule that provides a unique 
eigenvector. This unique solution comes with the inclusion of 
the so-called moment equation, derived from the wavelet 
property of exact polynomial representation [9]. 

 

1 2

2
,

,
, 1 2 1 2

1 1

01
0 0 0

( !)
( )!( )!(2 1)

1
2 2

d dk k
i j i j

i j

j k N
j j k l k l

i ij
k l i

kM M
k d k d k d d

j k
M i M a i

k l

− −
− −

+
= = =

Γ =
− − − − +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑

∑ ∑ ∑
  (7) 

 

III. WAVELET-GALERKIN METHOD 
The numerical solution of DE’s is one of the possible 

applications of the wavelet theory. The Wavelet-Galerkin 
Method (WGM) results from the use of wavelets as 
interpolating functions in a traditional Galerkin scheme. In 
the following sections, the WGM will be applied to solve 
typical DE’s for structures like beams and plates. 

A. Axially Loaded Beam on Elastic Foundation 
The homogeneous DE for a beam with rigidity EI on a 

Winkler-type foundation of stiffness c subjected to an axial 
load P is given by: 
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Stiffness (k), foundation (b) and geometry (g) matrices can 

be obtained by substituting the displacement v by a series of 
interpolating functions. Non-dimensional coordinates ξ 
within the interval [0 1] are used in wavelet space, leading to 
the subsequent expressions: 
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As done in the traditional Finite Element Method (FEM), 
critical loads and buckling modes can be obtained by solving 
an eigenvalue problem of the form: 
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where the matrix A is associated with boundary conditions 
and λ is a vector of Lagrange multipliers. The main 
difference in relation to the FEM is that the unknowns in 
vector α are interpolating coefficients of the basis functions 
instead of nodal displacements. In fact, there is no need to 
establish nodal coordinates. 

B. Thin Plate 
The bending of a thin plate with thickness t consisting of a 

material with Young’s modulus E and Poisson’s ratio ν is 
modeled by the following DE: 
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Displacement w(ξ,η) is modeled using bi-dimensional 

wavelets, which are products between one-dimensional 
wavelets: 

( , ) ( ) ( ).ij
i j

w d i jξ η φ ξ φ η= − −∑∑              (12)  

As done in a traditional Galerkin approach, Eq. (16) is 
substituted in the DE and integrated, leading to a system of 
equations which contains the wavelets’ connection 
coefficients [10]. 
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The symbol ⊗ indicates Kronecker product. The system is 

solved for vector d using the stiffness matrix k and force 
vector f provided by (13) and imposing essential boundary 
conditions with Lagrange multipliers as done before for 
one-dimensional DE’s. 
 

IV. EXAMPLES 

A. Simply Supported Beam 
Fig. 3 shows a simple example of a beam subjected to a 

concentrated load at its midpoint. This example was 
formulated in order to verify the ability of the wavelet 
method to deal with singularities, since the load generates a 

discontinuity in the shear force diagram. 
This example is easily solved by dividing the beam in two 

elements and applying the load as a nodal force. In this work, 
since degrees of freedom don’t have a fixed position, the load 
must be transformed into the wavelet space: 

 

 1 1( )
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The example was solved using the IN8 Interpolet at 

different levels of resolution and the results for bending 
moment and shear force diagrams are shown in Figs. 4 and 5. 
It is clear that higher levels of resolution are necessary in 
order to capture the singularity that occurs where the load is 
applied. Nevertheless, results are considerably good, since 
the solution is obtained in wavelet space and no discretization 
was performed. The discontinuity in the slope of the bending 
moment is captured even for a low level of resolution. 

 

 
Fig. 3. Beam with concentrated load. 
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Fig. 4. Bending moment using IN8. 
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Fig. 5. Shear force using IN8. 

 

B. Axially Loaded Beams on Elastic Foundation 

1) Simply supported 
A simply supported beam on elastic foundation is shown in 
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Fig. 6. Reference [11] presents some possible values for 
critical loads of a simply supported beam on elastic 
foundation: 
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Fig. 6. Axially loaded simply supported beam on elastic foundation. 

 
Fig. 7. Buckling mode of an infinitely long simply supported beam. 

 
Depending on the stiffness of the foundation and the 

length of the beam, different values of n can give the smallest 
critical load. For example, the transition between n = 1 and n 
= 2 occurs when 4 44c EI Lπ= . 

For 4c EI L� , the critical load is the same obtained to 

guarantee a periodical solution, 2P cEI= . This is 
normally due to a rigid foundation or an infinitely long beam.  

Table I presents the results obtained for the first and 
second critical loads considering 4 4c EI Lπ= . Results are 
shown for Daubechies (DB) and Interpolet (IN) wavelets and 
are compared with exact values. 

 
TABLE I:  RESULTS FOR A SIMPLY SUPPORTED BEAM ON ELASTIC 

FOUNDATION  
Critical Loads ( )2EI L  

mode exact 
DB10 IN4 

level of resolution level of resolution 
0 4 8 0 4 8 

1 19.739 19.744 19.739 19.739 20.219 19.741 19.739
2 41.946 59.193 42.004 41.946 48.925 42.069 41.946

 
TABLE II:  RESULTS FOR A SIMPLY SUPPORTED BEAM ON ELASTIC 

FOUNDATION WITH C = 4π4 EI/L4 

Critical Loads ( )2EI L  

mode exact 
DB10 IN4 

level of resolution level of resolution 
0 4 8 0 4 8 

1 49.348 49.352 49.348 49.348 49.754 49.350 49.348
2 49.348 66.297 49.406 49.348 56.131 49.471 49.348
 
For a value of 4 44c EI Lπ= , it is expected to find both 

critical loads to be identical for different buckling modes. 
Results are in Table II. 

In order to consider the beam as infinitely long, the value 
4 4256c EI Lπ=  was used as the stiffness of the foundation. 

In this case, the critical load is the lower bound given by 
2P cEI= . Results are in Table III. The corresponding 

buckling mode features 4 half-waves (n = 4), as seen in Fig. 
7. 

 
TABLE III:  RESULTS FOR AN INFINITELY LONG SIMPLY SUPPORTED BEAM 

ON ELASTIC FOUNDATION (IN TERMS OF EI/L2) 

exact 
DB10 IN4 

level of resolution level of resolution 
0 4 8 0 4 8 

315.827 410.365 329.604 315.827 537.083 322.015 315.827

2) Infinitely long beam free at both ends 
In the case of an infinitely long beam, free at both ends, 

subjected to an axial load (Fig. 8), the critical load has an 
analytical value of P cEI=  and the buckling mode is a 
sinusoidal wave with increasing amplitude towards the ends 
of the structure. There are two possible modes: symmetric 
and anti-symmetric, both corresponding to the same critical 
load. Results for the first and second critical loads using 

4 4256c EI Lπ=  are shown in table IV and the 
corresponding buckling modes are shown in Fig. 9. 

 
Fig. 8. Infinitely long beam free at both ends. 

 
TABLE IV:  RESULTS FOR AN INFINITELY LONG BEAM FREE AT BOTH ENDS 

Critical Loads ( )2EI L  

mode exact
DB10 IN4 

level of resolution level of resolution 
0 4 8 0 4 8 

1 157.91 180.20 160.89 157.25 195.06 159.10 157.25
2 157.91 187.03 162.94 158.60 243.62 160.75 158.60

 
Fig. 9. Symmetric and anti-symmetric buckling modes. 

 
It is interesting to notice that even at high levels of 

resolution critical loads are not accurately obtained. In all 
cases, the first one is lower than the exact value and the 
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second one is greater. 

3) Other boundary conditions 
There are no analytical values for boundary conditions 

different from the ones studied in previous sections. For that 
reason, in this case results are compared with the ones 
obtained by standard beam finite elements. Results are shown 
in Table V, where (CF) stands for clamped-free, (C) for fully 
clamped and (CS) for clamped and supported.  

 
TABLE V: CRITICAL LOADS OF BEAMS ON ELASTIC FOUNDATION  

Critical Loads ( )2EI L  

DB10 IN4 FEM 
level of resolution level of resolution no of elements 
0 4 8 0 4 8 10 100 1000

CF 187.7 162.0 157.9 218.4 159.9 157.9 158.4 157.9 157.9
C 753.8 389.4 353.2 771.5 368.3 353.2 354.7 353.2 353.2

CS 508.2 343.4 325.6 609.8 333.6 325.6 326.3 325.6 325.6
 

TABLE VI: RESULTS FOR BOUNDARY CONDITIONS (BC) AND LOADINGS (L) 
BC / L EXACT WGM ERROR
C / U 40.00126qL D  40.00126qL D  0.4 % 

C / C 20.00560PL D  20.00557 PL D  0.5 % 

S / U 40.00406qL D  40.00406qL D  0.1 % 

S / C 20.01160PL D  20.01156PL D  0.3 % 

 

C. Thin Plate 
Finally, to test the possibility of extending the method to 

two-dimensional problems, a thin plate was modeled using 
the equations developed in previous sections. Fig. 10 shows a 

square plate with all edges clamped subjected to a 
concentrated load applied at its center. 

The plate was modeled using the IN6 Interpolet at level 3, 
leading to a total number of 289 degrees of freedom. The 
result for the central displacement was w = −0.00557 PL2/D 
which represents an error of 0.5% when compared to the 
exact solution w = −0.00560 PL2/D. Results were extremely 
good, considering that a FE mesh using 32x32 plate elements 
(3267 degrees of freedom) gives an error of 0.7% in the 
central displacement. 

Fig. 11 shows the results for displacements, bending 
moments Mx, My and twisting moment Mxy. Bending and 
twisting moment distribution were obtained using the 
moment-curvature relation (second derivative of 
displacement). Errors in the bending moments Mx and My at 
the center point were approximately 4%. 

 

 
Fig. 10. Clamped plate subjected to a concentrated load at the center. 

 

 
 

Fig. 11. Results for moments Mx, My, Mxy and displacement w. 

Different types of boundary conditions and loadings were 
tested for a square plate and the values obtained for central 

displacement are summarized in Table VI, where (U) stands 
for uniformly distributed loading. Results were compared 
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with exact solutions given by [12]. 
 

V. CONCLUSION 
This work presented the formulation and validation of the 

Wavelet-Galerkin Method using Daubechies wavelets and 
Deslauriers-Dubuc Interpolets. It was also shown that 
wavelets have the ability of capturing discontinuities without 
the need to place nodes where they occur. 

As in the traditional FEM and other numerical methods, 
the accuracy of the solution can be improved either by 
increasing the level of resolution or the wavelet order. 
Sometimes, lower order wavelets at higher resolution can 
give better results than higher order wavelets at lower 
resolutions. 

In the case of an infinitely long beam free at both ends, the 
small inaccuracy in the calculation of critical loads is 
probably due to mode interaction. 

For two-dimensional problems, results for displacements 
and bending moments were extremely good, although only 
regular geometry problems were studied. The extension of 
the method to irregular geometries is still a challenge. 

Since the unknowns of the method are interpolation 
coefficients instead of nodal displacements it is possible to 
obtain a smooth representation even with a reduced number 
of degrees of freedom.  

All matrices involved can be stored and operated in a 
sparse form, since most of their components are null, thus 
saving computer resources. Due to the compact support of 
wavelets, the sparseness of matrices increases along with the 
level of resolution. 
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