
  

  
Abstract—The aim of this article is to contribute to 

determination of generation criteria for roll waves in mud flows. 
Flow is represented byCauchy’s equations system (general mass 
and momentum conservation equations), wherenon-Newtonian 
rheology (mud materials) is inserted and shallow water 
conditions are imposed, then leading to aroll waves model for 
laminar non-Newtonian viscous flow. Linear stability analysis is 
then applied and two criteria are established for roll waves 
generation: one related to Froude number and another by 
means of disturbance frequency. Confrontation of these criteria 
to numerical results is observed and good agreement is found 
regarding amplitude, length and propagation speed of roll 
waves. For Newtonian fluids, waves profile is also compared to 
experimental results. Preliminaries results based on 
non-Newtonian fluids experiments from literature are explored. 
 

Index Terms—Mudflows, non-newtonian fluid, risks, roll 
waves. 
 

I. INTRODUCTION 
Natural hazards are, in fact, natural phenomena which may 

cause, directly or not, serious damage to buildings and people. 
In places where there is no human interest, those phenomena 
are not considered as disasters and are simply natural events. 
The magnitude of the damages suffered, results from a 
natural hazard, depends on the resilience of the targeted 
society which assumes the risks of that event. In other words, 
the so called hazards can just occur when a phenomenon, 
intrinsically dangerous, is convoluted with a systematical 
vulnerability of the target. Particularly in Brazil, we have 
encountered successive disastrous events such as floods, 
landslides and mudflows during the rainy season, from 
December to March, and, more recently, even small 
hurricanes. Regarding the landslides, the uncontrolled 
occupation of foothills and mountains unsafe areas associated 
with the rainfall intensification, leads to catastrophic 
scenarios, where the alliance between natural danger and 
vulnerability unfortunately succeeded. We can easily recall 
the last events occurred in the Brazilian territory, called as 
“predictable tragedies” by the local media. In this year, as 
results from extreme weather conditions and lack of effective 
social management, Rio de Janeiro State suffered from a 
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great catastrophe: 844 dead, 449 missing, 8,777 homeless and 
more than 20,000 people displaced (Data collected from the 
Civil Defense Department of Rio de Janeiro State on 28 
January 2011). Rainfall reached high rates which, allied to 
the previous period of rain, promoted the instability of hills 
and the further mudflow configuration, causing destruction 
of houses, families, and leaving a tragic scenario behind. In 
2010, the same state suffered from a landslide in Angra dos 
Reis. The occurrences list goes on, and is not restricted to one 
specific place. Santa Catarina, São Paulo, Pernambuco, 
Espírito Santo are all states where the same kind of 
phenomenon have been observed. It is true that disasters of 
this nature have been solved through palliative methods, 
which hardly recover the losses suffered by the affected ones. 
Corrective methods lessen the effects but do not prevent 
accidents, and considering the poor situation faced by many 
Brazilians, actions of prevention and managementshould be 
applied urgently to avoid further damage to this people and, 
for that, the mudflow phenomenon and others must be deeply 
studied and known. 

The article presented here is within the context of 
mudflows characterized by the highly concentrated aqueous 
solution of sediment material that, in general, displays a non 
Newtonian behavior.Depending on flow conditions, waves 
can appear on the free surface of the flow; these instabilities 
are called roll waves. Their presence would significantly 
change the flow configuration, increasing the incurred risks  

Despite many mathematical and numerical models had 
been developed to study this phenomenon [1]-[3], only few 
physical models were developed that could from 
experimental data greatly assist the exploration of data to the 
validation of mathematical models. In fact, there is a lack of 
experimental results of roll waves in the literature. In order to 
fill this gap, experiments carried by [4] made possible 
measure roll waves from data acquisition of free surface 
variation in time by light absorption method. Roll waves 
pattern presented in this article were acquired when a 3 Hz 
disturbance was applied to a Newtonian flow (glycerin). 
These experimental tests have proportioned good data 
exploitation and initial validation of both numerical and 
mathematical model developed by RMVP team (Rheology of 
Viscous and Viscoplastic Materials Research Group). 
Concerning Non-Newtonian fluids, in this this article just 
preliminaries numerical results are shown. The next stage of 
this research will focus on obtaining the same type of results 
for non-Newtonian fluids (carbopol solution), thus allowing 
new performance on models evaluation. 

All characteristic parameters of tested fluids (glycerin and 
carbopol) were strictly controlled and measured. Rheometric 
parameters were obtained from the coaxial rheometer R/S 
that controls shear stress and shear rate. 
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II. MATHEMATICAL MODEL 
The modeling here presented was once developed by [3] 

taking as guide the classic work of [5], [1], [6], [7], which 
falls upon discontinuous functions for roll waves. This 
mathematical work was carried through Cauchy’s equations 
inserting the Herschel Bulkley rheological model (3 
parameters) at the viscous part of the stress tensor. Remark 
that the mathematical model presented in this section is 

Continuity equation: డడ௧  డሺ௨ഥሻడ௫ ൌ 0																																(1) 

 
Momentum equation: ߲ሺݑത݄ሻ߲ݐ  ߲ሺݑߙതଶ݄ሻ߲ݔ  12Frଶ ߲݄ଶ߲ݔൌ 	݄ െ െ∗ܥ ሺ1െ ሻ∗ܥ ቈݑത݄ ሺ1 െ ሻሺ݊∗ܥ  1  ሻሺ݄∗ܥ݊ െ ሻ൫ሺ݊∗ܥ  1ሻ݄  ൯∗ܥ݊ 																													ሺ2ሻ 

 
 
Froude number, Fr, and dimensionless parameter for yield 

stress, ܥ∗, are calculated from steady flow condition:ܥ∗ ൌ߬ ሺ݄݃ߩ sin ⁄ሻߠ  and Fr ൌ തݑ ඥ݄݃ cos ⁄ߠ ,	 where h  is the 
fluid height, ݑത , the mean flow velocity, ݔ , longitudinal 
distance across the channel, ݐ, the temporal variable, ݊ is the 
flow index, ߩ is the fluid density, ݃ , gravity acceleration, ߠ,channel steepness,݄ is the fluid height in steady flow, and ߙ is the momentum coefficient distribution, function of ݄, n 
and ܥ∗. Through this system, it is possible to evaluate it as a 
representative dynamical system of the phenomenon and 
apply stability analysis. 

A. Linear Stability Analysis – Criteria for the Generation 
of Roll Waves 
Linear stability theory is a tool that allows us to obtain 

important information about the dynamical system, such as 
growth rate and propagation velocity of instabilities. Through 
this method, widely discussed by [9], [10], it is possible to 
characterize the necessary conditions to the formation of 
instabilities. [11] carried this theory to evaluate the 
convective nature of roll waves instabilities, i.e. demonstrate 
how waves can appear and grow in time and space if the 
conditions of the flow are favorable. The objective is to reach 
the dispersion equation for the system and analyze how 
infinitesimals disturbances of height and mean flow velocity 
( ,ݔሺܪ ሻݐ and ܸሺݔ, ሻݐ , respectively) behave. Solving the 
system for ܪሺݔ,  ሻ, one single partial differential equation isݐ
found. From the linear theory, the surface wave problem is 
given by the solution of Laplace equation through the method 
of separation of variables. On the other hand, knowing the 
periodicity and uniformity of the solution, one can consider 
the perturbation of the form	ܪሺݔ, ሻݐ ൌ  ܪ ݁ሺ௫ିఠ௧ሻ, whereܪ
is the magnitude (constant), ݇ , wave number and ߱ , 
frequency of the perturbation. 
 1nd Criterion 

For disturbances to propagate downstream and amplify, 
the first instability generation criterion found through 
temporal stability analysis is shown on Eq. (3). The Froude 

number must be greater than a threshold value, Fr୫୧୬ , as 
determined by [3]. 

 Fr  Frmin ൌ ణඥఝమିଶఈఝణାఈణమ																				(3) 

 
where ሺ݊, ሻ∗ܥ ൌ ሺାଵሻሺଶାଵሻሺାଵା∗ሻ ,ሺ݊ߴ (4)																										 ሻ∗ܥ ൌ ݊ሺ1 െ  (5)																		ሻ∗ܥ

 
 2nd Criterion 

The second criterion for the generation of instabilities is 
determined by analysis spatial stability, where:ܪ, magnitude; ݇ , wavenumber with ݇	 ൌ 	݇ 	 	݅݇ ; and ߱ disturbance 
frequency (real). The dispersion relation is then written as: 

 ݇ଶ െ ሺଶఈఠାఝሻା൫ఠమାణఠ൯ቀ	ఈି భFrమቁ ൌ 0																(6) 

 
Solving equation 6: 
 ݇ ൌ ଵଶ ൣሺଶఈఠିఝሻേ√ା൧ቀఈି భFrమቁ 																																(7) ܽ ൌ 	4߱	ଶ ቀߙଶ െ ߙ  ଵFrమቁ െ ߮ଶ																						(8) ܾ ൌ 4߱ ቂ߮ߙ െ ߴߙ  ణFrమቃ																											(9) ܾ ൌ 4߱ ቂ߮ߙ െ ߴߙ  ణFrమቃ																										(9) 
 
The frequency perturbation domain for roll waves 

generation is defined by ݇  0. Thus: 
 ߱ ൏ ߱ ൌ ݏܾܽ ቆ ଵଶఈටቀߙ െ ଵFrమቁ ଶߴ െ  (10)						ቇ߮ߴߙ2

 

III. NUMERICAL SIMULATIONS 
The generalized equations of mass and momentum 

conservation allow the inserting of the suitable rheological 
model in the stress tensor. The system of equations was 
discretized and properly approached by FLUENT software 
[12], using finite volume method and VoF scheme, as 
described by [8]. As roll waves appear in both Newtonian and 
non-Newtonian fluid flows, we initially made up the 
numerical representation of the system to Newtonian fluid 
flow´s case using experimental results from the work carried 
out by [4], that used pure glycerin, highly viscous fluid 
(dynamic viscosity 0.217 – 0.206= ߤ Pa.s). 

The simulations were performed with a small sinusoidal 
perturbation of period T and magnitude (B) imposed on the 
uniform flow [8]. 

The first numerical test performed for non-Newtonian 
fluid was designed for power-law fluids [1], [9], which can be 
reached through the mathematical model adopted by ignoring 
the existence of a yield stress. The properties are given by: 
non-Newtonian fluid dynamic viscosity, ߤ ൌ 0.14	Pasn ; 
density ߩ ൌ 1120	kg/m3 and flow index, ݊	 ൌ 	0.4. In this 
paper, tests were also made when considering the same fluid 
with a yield stress ߬ . For both cases, analyzes were 
performed to verify generation and propagation of 
instabilities criteria. 
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dimensionless[8](Eq. (1) and (2)). 
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provves that the condition Fr  Frmin , is neecessary but nnot 



  

sufficient.  
Note that for non-Newtonian fluid, the critical frequencies 

are low, which may result in realistic conditions waves of 
larger amplitudes and lower wavelength. 
 

V. COMPARISON BETWEEN NUMERICAL SIMULATIONS 
USING THE FLUENT AND EXPERIMENTAL RESULTS 

This item shows the comparison between numerical and 
experimental results of [4]. The used fluid is glycerin with 
Newtonian properties, though highly viscous, whose 
viscosity is measured after each test. Measurements were 
made by fixing a flow rate (ܳ) for the inclined channel at 8 
degrees, considering a favorable field for the generation of 
instabilities at the free surface, i.e., to: Fr  1 √3⁄ . 

 

(a) 

(b) 
Fig. 3. Comparison between experimental (Fiorot, 2012) and numerical 

results for: (a) ܳ ൌ 0.75	l	/	s; (b) ܳ ൌ 0.96	l	/	s. 
 

TABLE II: COMPARISON OF THE EXPERIMENTAL RESULTS [4] AND 
NUMERICAL REFERRING TO FIGURE 3 

 Discharge:0,75	݈/ݏ Discharge:0,96 l/s 
Parameters Exp. 

results 
Num. 
results 

Error 
(%) 

Exp. 
results 

Num. 
results 

Error 
തሺm/sሻ 0,258 0,256 0,35ݑ (%) 0,297 0,298 0,40Fr 0,83 0,83 0,07  - ሺmmሻ 2.25 2.65 17,70 3.156 3.97 25,80ܶሺsሻ 0.33 0.33 - 0.33 0.33݄߂0,50 0,925 0,92

 
Fig. 3 shows a good similarity between the form and 

frequency of the waves generated by the model. Furthermore, 
concerning the amplitude ratio and flow wave, it is possible 
to observe that the increase in flow rate produces a raise in the 
amplitude of the waves generated. 

Fig. 3 shows that for a low flow, the discrepancy in the 
amplitude of roll waves is small. However, when the flow 

rate increases, the error increasessignificantly. 
From Table II, it is possible to observe that there is an error 

between the experimental and numerical average flow 
velocity. This is because the imposed average speeds in the 
numerical model; it is calculated considering as input 
parameters the experimental flow conditions: channel slope, 
normal depth and fluid properties (density and dynamic 
viscosity) [9]. Any error in the measurements of these 
parameters influences the numerical average velocity and; 
hence, the Froude number, which is an important parameter 
in defining the roll waves. 
 

VI. DISCUSSION 
The numerical and experimental results of roll waves 

generation were presented, whereas such waves stem from a 
disturbance imposed on uniform flow. In this, the 
propagation or not propagation of these waves depends on 
two criteria: the first associated with inertial and gravitational 
forces of the flow (Froude number), and the second with the 
frequency of disturbance. To simulate the Newtonian fluid, 
the experimental data obtained by [4] are inserted in the 
numerical model. To simulate the non-Newtonian, data with 
a power law fluid tested by [1] with the yield stress are 
inserted in model to check the validity of the criteria for 
generation of roll waves in Herschel Bulkley fluid flows. 
Through these simulations were possible to validate the 
criteria for generation to both cases. 

In respect to the physical model developed within the 
RMVP team [4], this has enabled measurements of roll waves 
in Newtonian fluid, there are few works in literature that 
show similar results [1], [3], [8], [11]. A comparative study 
between the numerical and physical models has been 
developed, achieving good concordance in respect toshape, 
amplitude and wave period. 

Finally, from these models we check the reproducibility of 
the phenomenon and improve the estimate of additional risks 
when roll waves are present in mudflows events. 
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