
  

  
Abstract—Many analytic factors affect predicted results of 

mooring line’s static and dynamic responses associated with the 
platform motions. The paper presents a study of analytic factors 
that influence static and dynamic responses of a mooring line. 
These factors include mooring line characteristics, 
environmental conditions, and external excitations such as 
platform motions. In this paper, a finite element model for a 
mooring line system is built for a comparative study on 
computational efficiency and convergence of different initial 
values for static analysis. The paper also presents investigation 
of mooring line dynamic responses under different 
environmental conditions and external excitations, and 
discusses various influences of the above mentioned factors on 
the mooring line dynamic tension. Some conclusions are drawn, 
which can be the reference for mooring line design and analysis. 
 

Index Terms—Mooring line, dynamic analysis, finite element 
model, slender rod theory. 

 

I. INTRODUCTION 
There are primarily three types of models for mooring line 

analysis: 1) catenary model, 2) lumped mass model, and 3) 
finite element model [1]. The traditional catenary model has 
various restrictions in use because of too many assumed 
conditions applied, in particular, when the environment loads 
can not be neglected [2]. The lumped mass method 
concentrates mass and external forces to nodes that are 
located at the ends of each segment. The nodes are then 
connectted by zero-mass spring that can simulate elongation 
and elastic stiffness. However, for a system with multiple 
mooring lines, the lumped mass method appears inopportune 
for programming [3]. The finite element model thus becomes 
ever more popular. Garrett advanced a three-dimensional 
elastic rod finite element model, in which elements are of 
linear elasticity and torsion is neglected [4]. The elastic rod 
method has been widely used in the analysis of a slender such 
as mooring line, riser and pipeline. 

In this paper, based on the elastic rod theory, the non-linear 
finite element method was adopted for analyzing static and 
dynamic responses of a mooring line in cooresponding to 
environment loads and external excitations. The paper first 
discusses computational efficiency and convergence of 
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different initial values for static analysis, and also 
investigates the mooring line dynamic response under 
different environmental conditions and external excitations.  

 

II. SLENDER ROD THEORY 
In Garrett’s slender rod theory, the behavior of the rod is 

described in terms of the position of the centerline as showed 
in Fig. 1. The instantaneous configuration is expressed by the 
position vector r(s, t) which is a function of arc length s and 
time t. We define that the unit tangent to the space curve is r′, 
the principal normal is r″ and the binormal is r′×r″. The 
Tangent, principal normal and binormal forms an orthogonal, 
right-handed triad.  

 

 
Fig. 1. Slender rod theory coordinate system. 

 
On the basis of conservation of linear momentum and 

moment of momentum, we have (1) and (2): 
'q F rρ+ =                                          (1) 

0M r F m′ ′+ × + =                                     (2) 

where q is the applied force per unit length, F is the resultant 
force and M is the resultant moment acting on the centerline, 
m is the applied moment per unit length and the superposed 
dot denotes differentiation with respect to time. 

For the elastic rods with equal principal stiffness, the 
bending moment is proportional to curvature and is directed 
along the binormal, which can be expressed as: 

M r EIr Hr′ ′′ ′= × +                                  (3) 

where EI is the bending stiffness and H is the torque. 
Substitutions of (3) into (2), and neglect bending stiffness 

and the torque, we can get: 

( )F EIr grλ′′ ′ ′= − +                                  (4) 

where λ yields: 
2( [( ) ])r g EIr F T EIλ κ′ ′′ ′= + = −                     (5) 

K is the local curvature of the rod, T is the local tension. 
Combining (4) with (1) obtains the equation of motion.   
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( )EIr gr q rλ ρ′′ ′′ ′− + + =                                 (6) 
 

And the stretch constrained equation: 
 

* 1 2 Tr r
EA

′ ′ = +                                          (7) 

 

III. NUMERICAL IMPLEMENTATION 
In this paper, a finite element solution method is employed 

to discrete the vector governing equations into algebraic 
equations. The method, based on the Galerkin method, uses a 
set of shape functions to approximate the cable and the 
variations of the tensions (and other parameters) along it. 
Then we use the Newton method to solve the static problem 
and Adams-Moulton method for the dynamic problem. 

A. Discretization of the Governing Equations 
As we can see from (6), the governing equation is a high 

order partial differential equation, so the Galerkin method is 
adopted to solve this problem [5]. By the use of shape 
functions, unknowns in the equation can be approximated as: 

 

 

( , ) ( ) ( )
( , ) ( ) ( )
( , ) ( ) ( )

in i n

m m

mn m n

r s t U t a s e
s t t p s

q s t q t p s e
λ λ

=
=
=

                             (8) 

 
where, ( )ia s and ( )mp s are shape functions, ( )inU t , ( )m tλ , 

( )q tmn represent the nodal and mid-section values. 
Multiplying both side of the equation with a(s) and 

integrating it with respect to s from 0 to L for a segment (or an 
element) of the rod with length L: 

 

{ }
0

( ) ( ) 0
L

ir EIr r q a s dsρ λ′′ ′′ ′+ − − =∫                      (9) 

 
We obtain the discrete form of the equation of motion for 

an element of a rod with length L: 
 

ikm m kn ikm m kn ikm m kn im mnM U B U U qγ α β λ μ+ + =              (10) 
 
where: 
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Similarly, we obtain the discrete form of (7) 

{ }1 1 2
2 2ikm in kn m km kU Uβ τ η ε= +                        (11) 

In which: 

1

0
1

0

( ) ( )
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lm l m

m m
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L p d
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=

=
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B. Newton Method for the Static Analysis 
For the static problem, all the terms related to the time 

derivatives are zero, so (10) is reduced to: 
 

ikm m kn ikm m kn im mnB U U qα β λ μ+ =                            (12) 
 

The fixed-point Newton iteration method is utilized to 
solve the equations. Let 0U and 0λ be a first guess, then the 
new values of U and λ are 

 
0

0

kn kn kn

m m m

U U Uδ
λ λ δλ

= +

= +
                                    (13) 

 
Plugging the new expression of U and λ into (11) and 

(12), and discarding all the high order terms, the static 
problem to be solved is then represented by the following 
equations: 

 
0 0

0 0 0Uλ
+

= −
ikm m kn ikm m kn ikm m kn

im mn ikm m kn ikm m kn

α B δU β λ δU + β δλ U

μ q - α B U β
             (14) 

0

ll

0 0 0
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1 ( 2 )
2

−

=

ikm in kn lm f f i i
t t

m lm l ikm in kn

δλ δyβ U δU - η { g ρ A - ρ A
A E A E

τ + η ε - β U U

          (15) 

The static control equation is a group of linear equations, 
in which knUδ and mδλ are the unknowns. If the number of 
segments is N, then the dimension of whole matrix equations 
for mooring line should be 15+8(N-1). The entire matrix 
equations iterate as (13) repeatedly until knUδ and mδλ are 
small enough, then the steady static solutions are obtained. 

C. Adams Method for the Dynamic Analysis 
The basic thought of linear multistep method is: take full 

advantage of the known quantities like 0y to ny  to 
forecast 1ny +  in the steps of solve the equation.  One of the 

methods acts like 1
0

k

n k n k i n i
i

y y h fβ+ + − +
=

= + ∑ is named as 

Adams method [6]. If 0kβ = , we call it explicit method, and 
while 0kβ ≠ , we call it implicit method. 

The Adams-Moulton method (the implicit method) is 
adopted to solve the dynamic problem. As did in the static 
problem, we conclude that the dynamic equation of the 
motion of a rod is of the form MU c= , where vector 

im mn ikm m kn ikm m knc q B U Uμ α β λ= − − consists of all the terms   
which are not time derivatives. 

Let h be time step from t=n to t=n+1. We can 
approximately represent ,M U and c by: 
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where Taylor's expansion was employed to obtain the values 
at t = n+1: 
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where: 
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Then the equation can be written as: 
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 (18) 

Similarly we can transform the stretch equation, and it can 
be expanded to be of the form: 

1 12 2( ) ( )( ) ( )2 2
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 (19) 

where: 
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Equation (17) and (18) are solved to obtain the increment 

of the generalized velocity u  , and the effective tension λ . 
The values of u  and λ at the new time are obtained by the 
following approach: 

{ }( 1) ( ) ( ) ( )2
2

( 1) ( ) ( )

hn n n nu u u uk kk k
n n n

m m m

δ

λ λ δλ

+ = + +

+ = +
                   (20) 

The values of u  and λ  at time t = n+1 serve as a starting 
point for the next calculation. 

 

IV. MODEL FOR STATIC ANALYSIS 
The catenary model is a physical model which has an 

accurate analytical solution. In order to verify the feasibility 
of the program, we compare the result with catenary 
analytical solution. Then a discussion on the effects of 
different initial values on static analysis efficiency and 
stability was made, with the purpose of choosing a reasonable 
initial value. 

Take mooring line parameters for static analysis as follow: 
 

TABLE I: MOORING LINE PARAMETERS 
Property item Value 

Water depth(m) 120 
G (m/s2) 9.8 

Mass(kg/m) 1.35350E+02 
E（Pa） 5.51090E+10 

Cross area(m2) 9.07292E-03 
Length(m) 1200 

Diameter(m) 7.60000E-02 
Buoyancy(N/m) 1.70171E+02 

 
The catenary model has some parts with contact with the 

seabed, and this can verify the seabed boundary condition.  
The figure below is the comparison of catenary model and the 
slender rod model.  

 

 
Fig. 2. Static configuration of mooring line. 

 

 
Fig. 3. Tension distribution of mooring line. 

 
Fig. 2 and Fig. 3 show the static configuration and tension 

distribution of mooring line seperetely. The calculation 
results have little error with analytical solution: the maximum 
displacement error is 0.002%, and the maximum tension 
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error is 0.002%. Therefore, the slender rod theory can get the 
displacement and force of static mooring line accurately. 

 

V. DISCUSSION ABOUT INITIAL VALUES FOR STATIC 
ANALYSIS 

Before static analysis we should have the initial value of 
mooring line, including: positions and pretension for each 
nodes, etc. In this paper, we choose three different initial 
values for the static analysis and the contrastive analysis 
between them. 

Set the condition of convergence as 0.00001UΔ < , then 
compare the number of the iteration steps, we can see the 
computational efficiency of different initial values. 

 
TABLE II: INITIAL VALUE CHARACTERS 

Initial values Convergence NO. of iterations
Catenary line Yes 1 

Fold line Yes 14 
Oblique line No ~ 

 
From Table II we can see that the catenary line has a good 

computational efficiency, and fold line need certain iteration 
to converge, while the oblique line could not converge. 

 

 
Fig. 4. The initial value configurations. 

 
Then introduce the relaxation factor “relax”. When setting 

the convergence condition for 0.00001UΔ <  and the 
relaxation factor relax=0.2, iterative statement can be 
rewritten as 

0

0

kn kn kn

m m m

U U relax U

relax

δ
λ λ δλ

= + ⋅

= + ⋅
                        (21) 

 
TABLE III: INITIAL VALUE CHARACTERS WITH RELAXATION FACTOR 

Initial values Convergence NO. of iterations

Catenary line Yes 1 

Fold line Yes 46 

Oblique line Yes 67 

 
As can be seen from Table III, relaxation factor 

significantly increased the number of iterations, but oblique 
line becomes convergent. When considering the influence of 
relaxation factors, catenary line still is the most effective 
initial value, and oblique line cost the most iteration steps. 
Without relaxation factor, only the catenary line and fold line 
reach convergence. So although the relaxation factor can 
damp the speed of iteration, it can control equation 
divergence, and is conducive to solve equation. 

So the conclusion is: the catenary initial value can 
converge easily, but it needs catenary calculation beforehand. 
Other initial value seems more convenient to set, and the 
computing time has no obvious growth. So when do not 
consider the sea conditions, oblique line with the relaxation 
factor is a better choice, and when considering seabed 
conditions, fold line becomes more convenient and efficient. 

 

VI. MODEL FOR DYNAMIC ANALYSIS  

For simplicity, in the dynamic analysis we use the same 
mooring line showed in Table I. 

A. Verification for the Dynamic Model 
Assuming that the beam motion in vacuum without 

damping, so the energy of the system remains conserved the 
pendulum will remain the constant amplitude. 

 

 
Fig. 5. The physical pendulum. 

 
As shown in Fig. 5, a homogeneous beam swing freely, 

this movement can be called a compound pendulum or 
physical pendulum. To verify the dynamic model, the 
pendulum problem with exact solution was run.  

The period of physical pendulum can be expressed as: 

0

1

0 2 2 20

2 1( )
(1 )(1 )

T T dz
z k z

θ π
=

− −∫                  (22) 

where: 0sin( 2)k θ= , 0T is slight movement period of physical 
pendulum,

0
Tθ is physical pendulum period when angle 

between the initial position and vertical direction is 0θ .  
Table IV shows the comparison of the physical pendulum 

period, the computation time is 600s, and time step is 0.01s. 
There are two reasons that lead to error. First, the omission of 
higher order terms results in the truncation error in the 
numerical solution process. Second, due to the time step limit, 
period multiples such as 150.91s and theoretical value of 10 
times period 150.914s has a truncation error, but the error 
decreases with decreasing of time step. 
 

TABLE IV: RESULTS OF PHYSICAL PENDULUM PERIOD 
Property item Value 

Calculated period 15.0830 s 

Theory period 15.091369 s 

Error 0.008369 s 

Percentage 0.055% 

 

B. Effect of Environmental Factors  
In this section, we research the effect of environment load 

on the mooring line dynamic characteristics when the 
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mooring line experiences top disturbance. The upper end 
excitation is sinusoidal excitation in horizontal 
direction: ( ) 2sin(0.6 )X t t= . And the displacement curve 
shows in Fig. 6. 

 

 
Fig. 6. Horizontal force-displacement curve. 

 

 
Fig. 7. Variation tension at the mooring line’s upper end. 

 
As can be seen from Fig. 7, the tension changes in the 

equivalent frequency with external excitation and its 
amplitude flapping up and down cross the static tension.  The 
mooring line keeps in tension, and does not appear 
relaxation. 

1) Wave 
First we did some research about the influence of wave on 

mooring line dynamic response. The wave height is 6 meters, 
and different wave frequencies are chosen to compute the top 
tension of mooring line.  

 

 
Fig. 8. Variation of maximum tension with wave frequency. 

 
Fig. 8 shows the maximum top tension change with wave 

frequency. The straight line means the maximum tension of 
mooring line without the wave load.  

For further explanation on this phenomenon, Fig. 9 show 
the top tension-time curve separately for the wave frequency 
0.3rad/s and 0.8rad/s. 

It can be seen that in the wave frequency 0.3rad/s, wave 
plays a certain influence on the movement of the mooring 
line; but when the wave frequency reaches 0.8 rad/s, its effect 

becomes tiny. 
 

 
(a) Wave frequency 0.3rad/s. 

 
(b) Wave frequency 0.8rad/s. 

Fig. 9. Mooring line top tension in different wave frequency.  
 
2) Current 
To investigate the current’s influence on the mooring line, 

6 kinds of current velocity are chosen to carry on the 
research. 

 
TABLE V: CURRENT VELOCITY 

WD C1 C2 C3 C4 C5 C6 

0 3 2.5 2 1.5 1 0.5 

-40 2.3 1.9 1.5 1.05 0.7 0.3 

-80 1.6 1.2 0.9 0.6 0.4 0.15 

-120 0.8 0.6 0.4 0.2 0.15 0.05 

 
In Table V, WD stands for Water Depth, the unit is m. 

C1-C6 stand for different current velocity, and the unit is m/s. 
 

 
Fig. 10. Variation of maximum tension with current velocity. 

 

 
Fig. 11. Variation of minimum tension with current velocity. 

 
Fig. 10 and Fig. 11 shows the maximum and minimum top 
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tension of mooring line separately. The straight line stands 
for the maximum and minimum top tension without current 
loads. As can be seen, the maximum and minimum top 
tensions decrease with the increase of current velocity. This 
illustrates that, under external excitation, the current acts like 
a quasi-static force and has damping effect to the mooring 
line on certain extent, and the damping effect becomes 
manifest when the current velocity increase. 

3) Drag coefficients 
Mooring damping is one of the main components of slow 

drift damping, which has a large effect on slow drift motion 
of the floater. Mooring line damping mainly comes from the 
drag force on the mooring line and the friction with the 
seabed. We change the drag force by varying the drag 
coefficient in order to research mooring line damping effect 
on the response of dynamic tension. A set of dynamic 
analysis of mooring line with different drag coefficients (Cd) 
were made.  

We can see that, under the same environmental condition 
and the same external excitation, mooring line maximum 
tension increase with the drag coefficients. Combine Fig. 12 
and Fig. 13, the top tension vibration scope also extend with 
Cd, which indicates that the response of mooring line 
becomes more intensive. 

 

 
Fig. 12. Variation of maximum tension with Cd. 

 

 
Fig. 13. Variation of minimum tension with Cd. 

 
In the production, large drag force will cause excessive 

tension on the chain and lead fatigue problem; while on the 
other hand, some measures that increase the mooring line 
drag coefficient properly can be adopted to improve the 
overall performance of the mooring system and restrict the 
movement of the moored floater. 

C. Effect of External Excitation Factors 
Analysis showed that, compared to the "passive" power 

interference from the waves and currents, the "active" 
movement disturbance from floater is more important [7]. So 
in this section, we focus on the impact of external excitation 
on the dynamic response of mooring line, and mainly 
consider the change of external excitation amplitude and 

frequency’ effect on the mooring line dynamic tension. 
1) Excitation amplitude 
First we study effects of different vibration amplitude on 

the top tension of the chain, without the impact of external 
environment loads (the wave and current are not considered). 
The external excitation frequency is 0.6 rad/s.  

 

 
Fig. 14. Variation of maximum tension with excitation amplitude 

( 0.6 /rad sω = ). 
 

As can be seen in Fig. 14, during the increases of excitation 
amplitude, the fluctuation amplitude of top tension increase 
to a great extent. In the scope of linear theory, the dynamic 
tension amplitude should be the same slope even with 
different excitation amplitudes, but in this calculation the 
obtained result reflect some difference, although this 
difference did not change very intense but still be able to 
explain the nonlinear kinetics factors exist, which cannot be 
ignored. 

 
(a) Excitation amplitude A=2m. 

 
(b) Excitation amplitude A=6m. 

 
(c) Excitation amplitude A=12m. 

Fig. 15. Variation of top tension with excitation amplitude.  
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By comparison Fig. 15 (a) ~ (c), we obtain that when the 
outer excitation amplitude is small, and the fluctuation of 
mooring line tension at the top point is symmetrical about the 
static tension. When the external excitation amplitude 
increases, this symmetry disappears, minimum mooring line 
tension gradually reduced to zero. This means that at this time 
there has been alternating slack-tension state. Accompanied 
with this phenomenon is the sharply increases of maximum 
dynamic tension, and maximum amplitude can reach about 
3-5 times of static tension. 

Mooring chain has properties that it can afford tension but 
cannot withstand the pressure, so there will be alternating 
slack-tension state. In fact, many mooring line breaks did not 
because the environmental loads exceed the design value, 
and the fact is mooring system failed for a load mutation 
caused by the alternating slack-tension. The test results show 
that this force mutation is several times to ten times of the 
average tension force [8]. So far, we still lack of effective 
methods to forecast the mooring tension properties during 
slack-tension process. And it is still uncertain about how the 
transitions of mooring lines slack-tension impact the entire 
mooring system under the effect of wave loads [9]. 

2) Excitation frequency 
Then a study of different vibration frequency’ effects on 

the top tension was made without the external environment 
loads from wave and current. External excitation amplitude is 
4m. 

As can be seen in Fig. 16, the response amplitude of the 
maximum tension has a significant increase with the growth 
of excitation frequency.  

 

 
Fig. 16. Variation of maximum tension with excitation frequency 

(A=4m). 
 

Through Fig. 17 (a) - (c), it can be seen that the effects of 
excitation frequency have the same rules with the excitation 
amplitude. When the outer excitation frequency is relatively 
small, the top tension fluctuates about the static tension. 
Minimum mooring line tension gradually reduced to zero 
when the excitation frequency increases, and there appears 
the alternating slack-tension state. 

 
(a) Excitation frequency 0.6 /rad sω =  . 

 
(b) Excitation frequency 0.8 /rad sω = . 

 
(c) Excitation frequency 1.2 /rad sω = . 

Fig. 17. Variation of top tension with excitation frequency. 
 

Analysis of Fig. 17 (c) (external excitation frequency is 
1.2rad/s), at the beginning of ten seconds, due to the effect of 
ramp function, external load applied to the chain gradually, 
and the top tension of this stage is smooth; while the structure 
and environmental forces achieve fully interaction state, the 
top tension curves show great nonlinear characteristics; when 
more frequency characteristics of the system are excited out, 
mooring line dynamic behavior become more complex, 
which reflects the non-linear characteristic of the system. 

 

VII. CONCLUSIONS 
The paper presents a study of analytic factors that 

influence static and dynamic responses of a mooring line. 
Observations are summrized in the following: 
1) Although introduction of the “relaxation factor” 

increases the number of iterations (during analysis) in a 
certain way, it controls equation divergence and 
becomes conducive in solving equation. 

2) Existence of waves increases the mooring line top 
tension. However, the maximum tension decreases for 
the case of higher wave frequency. Note that the effect of 
waves becomes inconspicuous while the wave frequency 
increases to a certain extent. Water currents have some 
damping effect on the mooring line, and can reduce the 
line tension when the current speed increases.   

3) Mooring line maximum tension increases when the drag 
coefficients increase. Some measures may be adopted to 
increase the drag coefficients, for better performances of 
the mooring system and restricting motions of the 
moored floater. 

4) The magnitude of mooring line maximum tension 
increases with increase of excitation frequency and 
amplitude, unless an alternating slack-tension state 
appears. In this phenomenon, there is a sharply increases 
of the maximum dynamic tension, up to 3~5 times of the 
static tension. This might be an important reason causing 
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the mooring system failure. 
Finally, the current study is based on a heavy steel chain; 

further investigation is needed for a light cable in this respect. 
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